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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC16(L)F1713/6
TABLE 3-8: PIC16(L)F1713/6 MEMORY MAP, BANK 28-30 
  

Legend:  = Unimplemented data memory locations, read as ‘0’, 

Note 1: Only available on PIC16(L)F1713 devices

Bank 28 Bank 29 Bank 30
E0Ch — E8Ch — F0Ch —
E0Dh — E8Dh — F0Dh —
E0Eh — E8Eh — F0Eh —
E0Fh PPSLOCK E8Fh — F0Fh CLCDATA
E10h INTPPS E90h RA0PPS F10h CLC1CON
E11h T0CKIPPS E91h RA1PPS F11h CLC1POL
E12h T1CKIPPS E92h RA2PPS F12h CLC1SEL0
E13h T1GPPS E93h RA3PPS F13h CLC1SEL1
E14h CCP1PPS E94h RA4PPS F14h CLC1SEL2
E15h CCP2PPS E95h RA5PPS F15h CLC1SEL3
E16h — E96h RA6PPS F16h CLC1GLS0
E17h COGINPPS E97h RA7PPS F17h CLC1GLS1
E18h — E98h RB0PPS F18h CLC1GLS2
E19h — E99h RB1PPS F19h CLC1GLS3
E1Ah — E9Ah RB2PPS F1Ah CLC2CON
E1Bh — E9Bh RB3PPS F1Bh CLC2POL

E1Ch — E9Ch RB4PPS(1) F1Ch CLC2SEL0

E1Dh — E9Dh RB5PPS(1) F1Dh CLC2SEL1

E1Eh — E9Eh RB6PPS(1) F1Eh CLC2SEL2

E1Fh — E9Fh RB7PPS(1) F1Fh CLC2SEL3
E20h SSPCLKPPS EA0h RC0PPS F20h CLC2GLS0
E21h SSPDATPPS EA1h RC1PPS F21h CLC2GLS1
E22h SSPSSPPS EA2h RC2PPS F22h CLC2GLS2
E23h — EA3h RC3PPS F23h CLC2GLS3
E24h RXPPS EA4h RC4PPS F24h CLC3CON
E25h CKPPS EA5h RC5PPS F25h CLC3POL

E26h — EA6h RC6PPS(1) F26h CLC3SEL0

E27h — EA7h RC7PPS(1) F27h CLC3SEL1
E28h CLCIN0PPS EA8h — F28h CLC3SEL2
E29h CLCIN1PPS EA9h — F29h CLC3SEL3
E2Ah CLCIN2PPS EAAh — F2Ah CLC3GLS0
E2Bh CLCIN3PPS EABh — F2Bh CLC3GLS1
E2Ch — EACh — F2Ch CLC3GLS2
E2Dh — EADh — F2Dh CLC3GLS3
E2Eh — EAEh — F2Eh CLC4CON
E2Fh — EAFh — F2Fh CLC4POL
E30h — EB0h — F30h CLC4SEL0
E31h — EB1h — F31h CLC4SEL1
E32h — EB2h — F32h CLC4SEL2
E33h — EB3h — F33h CLC4SEL3
E34h — EB4h — F34h CLC4GLS0
E35h — EB5h — F35h CLC4GLS1
E36h — EB6h — F36h CLC4GLS2
E37h — EB7h — F37h CLC4GLS3
E38h — EB8h — F38h —
E39h — EB9h — F39h —
E3Ah — EBAh — F3Ah —
E3Bh — EBBh — F3Bh —
E3Ch — EBCh — F3Ch —
E3Dh — EBDh — F3Dh —
E3Eh — EBEh — F3Eh —
E3Fh — EBFh — F3Fh —
E40h

—

EC0h

—

F40h
—

E6Fh EEFh F6Fh
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PIC16(L)F1713/6
4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words,
Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow
different oscillator and memory protection options.
These are implemented as Configuration Word 1 at
8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in Configuration Words is
managed automatically by device
development tools including debuggers
and programmers. For normal device
operation, this bit should be maintained as
a ‘1’.
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PIC16(L)F1713/6
             
REGISTER 4-2: CONFIG2: CONFIGURATION WORD 2

R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1

LVP(1) DEBUG(2) LPBOR BORV(3) STVREN PLLEN

bit 13 bit 8

R/P-1 U-1 U-1 U-1 U-1 R/P-1 R/P-1 R/P-1

ZCDDIS — — — — PPS1WAY WRT<1:0>

bit 7 bit 0

Legend:

R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘1’

‘0’ = Bit is cleared ‘1’ = Bit is set -n = Value when blank or after Bulk Erase

bit 13 LVP: Low-Voltage Programming Enable bit(1)

1 = Low-voltage programming enabled
0 = High-voltage on MCLR must be used for programming

bit 12 DEBUG: In-Circuit Debugger Mode bit(2)

1 = In-Circuit Debugger disabled, ICSPCLK and ICSPDAT are general purpose I/O pins
0 = In-Circuit Debugger enabled, ICSPCLK and ICSPDAT are dedicated to the debugger

bit 11 LPBOR: Low-Power BOR Enable bit
1 = Low-Power Brown-out Reset is disabled
0 = Low-Power Brown-out Reset is enabled

bit 10 BORV: Brown-out Reset Voltage Selection bit(3)

1 = Brown-out Reset voltage (VBOR), low trip point selected.
0 = Brown-out Reset voltage (VBOR), high trip point selected.

bit 9 STVREN: Stack Overflow/Underflow Reset Enable bit
1 = Stack Overflow or Underflow will cause a Reset
0 = Stack Overflow or Underflow will not cause a Reset

bit 8 PLLEN: PLL Enable bit
1 = 4xPLL enabled
0 = 4xPLL disabled

bit 7 ZCDDIS: ZCD Disable bit
1 = ZCD disabled. ZCD can be enabled by setting the ZCDSEN bit of ZCDCON
0 = ZCD always enabled

bit 6-3 Unimplemented: Read as ‘1’

bit 2 PPS1WAY: PPSLOCK Bit One-Way Set Enable bit
1 = The PPSLOCK bit can only be set once after an unlocking sequence is executed; once PPSLOCK is set, all

future changes to PPS registers are prevented
0 = The PPSLOCK bit can be set and cleared as needed (provided an unlocking sequence is executed)

bit 1-0 WRT<1:0>: Flash Memory Self-Write Protection bits
4 kW Flash memory

11 = Write protection off
10 = 000h to 1FFh write protected, 200h to FFFh may be modified by PMCON control
01 = 000h to 7FFh write protected, 800h to FFFh may be modified by PMCON control
00 = 000h to FFFh write protected, no addresses may be modified by PMCON control

Note 1: The LVP bit cannot be programmed to ‘0’ when Programming mode is entered via LVP.
2: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers 

and programmers. For normal device operation, this bit should be maintained as a ‘1’.
3: See VBOR parameter for specific trip point voltages.
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PIC16(L)F1713/6
6.3 Clock Switching

The system clock source can be switched between
external and internal clock sources via software using
the System Clock Select (SCS) bits of the OSCCON
register. The following clock sources can be selected
using the SCS bits:

• Default system oscillator determined by FOSC 
bits in Configuration Words

• Timer1 32 kHz crystal oscillator

• Internal Oscillator Block (INTOSC)

6.3.1 SYSTEM CLOCK SELECT (SCS) 
BITS

The System Clock Select (SCS) bits of the OSCCON
register select the system clock source that is used for
the CPU and peripherals.

• When the SCS bits of the OSCCON register = 00, 
the system clock source is determined by the 
value of the FOSC<2:0> bits in the Configuration 
Words.

• When the SCS bits of the OSCCON register = 01, 
the system clock source is the secondary oscillator.

• When the SCS bits of the OSCCON register = 1x, 
the system clock source is chosen by the internal 
oscillator frequency selected by the IRCF<3:0> 
bits of the OSCCON register. After a Reset, the 
SCS bits of the OSCCON register are always 
cleared.

When switching between clock sources, a delay is
required to allow the new clock to stabilize. These
oscillator delays are shown in Table 6-1.

6.3.2 OSCILLATOR START-UP TIMER 
STATUS (OSTS) BIT

The Oscillator Start-up Timer Status (OSTS) bit of the
OSCSTAT register indicates whether the system clock
is running from the external clock source, as defined by
the FOSC<2:0> bits in the Configuration Words, or
from the internal clock source. In particular, OSTS
indicates that the Oscillator Start-up Timer (OST) has
timed out for LP, XT or HS modes. The OST does not
reflect the status of the secondary oscillator.

6.3.3 SECONDARY OSCILLATOR

The secondary oscillator is a separate crystal oscillator
associated with the Timer1 peripheral. It is optimized
for timekeeping operations with a 32.768 kHz crystal
connected between the SOSCO and SOSCI device
pins.

The secondary oscillator is enabled using the
T1OSCEN control bit in the T1CON register. See
Section 26.0 “Timer1 Module with Gate Control” for
more information about the Timer1 peripheral.

6.3.4 SECONDARY OSCILLATOR READY 
(SOSCR) BIT

The user must ensure that the secondary oscillator is
ready to be used before it is selected as a system clock
source. The Secondary Oscillator Ready (SOSCR) bit
of the OSCSTAT register indicates whether the
secondary oscillator is ready to be used. After the
SOSCR bit is set, the SCS bits can be configured to
select the secondary oscillator.

6.3.5 CLOCK SWITCHING BEFORE 
SLEEP

When clock switching from an old clock to a new clock
is requested just prior to entering Sleep mode, it is
necessary to confirm that the switch is complete before
the SLEEP instruction is executed. Failure to do so may
result in an incomplete switch and consequential loss
of the system clock altogether. Clock switching is
confirmed by monitoring the clock status bits in the
OSCSTAT register. Switch confirmation can be
accomplished by sensing that the ready bit for the new
clock is set or the ready bit for the old clock is cleared.
For example, when switching between the internal
oscillator with the PLL and the internal oscillator without
the PLL, monitor the PLLR bit. When PLLR is set, the
switch to 32 MHz operation is complete. Conversely,
when PLLR is cleared, the switch from 32 MHz
operation to the selected internal clock is complete.

Note: Any automatic clock switch, which may
occur from Two-Speed Start-up or
Fail-Safe Clock Monitor, does not update
the SCS bits of the OSCCON register. The
user can monitor the OSTS bit of the
OSCSTAT register to determine the current
system clock source.
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PIC16(L)F1713/6
6.4.2 TWO-SPEED START-UP 
SEQUENCE

1. Wake-up from Power-on Reset or Sleep.

2. Instructions begin execution by the internal
oscillator at the frequency set in the IRCF<3:0>
bits of the OSCCON register.

3. OST enabled to count 1024 clock cycles.

4. OST timed out, wait for falling edge of the
internal oscillator.

5. OSTS is set.

6. System clock held low until the next falling edge
of new clock (LP, XT or HS mode).

7. System clock is switched to external clock
source.

6.4.3 CHECKING TWO-SPEED CLOCK 
STATUS

Checking the state of the OSTS bit of the OSCSTAT
register will confirm if the microcontroller is running
from the external clock source, as defined by the
FOSC<2:0> bits in the Configuration Words, or the
internal oscillator.

FIGURE 6-8: TWO-SPEED START-UP 
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PIC16(L)F1713/6
bit 0 GxFSIM0: COGx Falling Event Input Source 0 Mode bit
GxFIS0 = 1:
1 = Pin selected with COGxPPS control high-to-low transition will cause a falling event after falling event

phase delay
0 = Pin selected with COGxPPS control low level will cause an immediate falling event
GxFIS0 = 0:
Pin selected with COGxPPS control has no effect on falling event

REGISTER 18-6: COGxFSIM: COG FALLING EVENT SOURCE INPUT MODE REGISTER
 2013-2016 Microchip Technology Inc. DS40001726C-page 195
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27.5 Register Definitions: Timer2 Control

  
REGISTER 27-1: T2CON: TIMER2 CONTROL REGISTER

U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

— T2OUTPS<3:0> TMR2ON T2CKPS<1:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 Unimplemented: Read as ‘0’

bit 6-3 T2OUTPS<3:0>: Timer2 Output Postscaler Select bits

1111 = 1:16 Postscaler
1110 = 1:15 Postscaler
1101 = 1:14 Postscaler
1100 = 1:13 Postscaler
1011 = 1:12 Postscaler
1010 = 1:11 Postscaler
1001 = 1:10 Postscaler
1000 = 1:9 Postscaler
0111 = 1:8 Postscaler
0110 = 1:7 Postscaler
0101 = 1:6 Postscaler
0100 = 1:5 Postscaler
0011 = 1:4 Postscaler
0010 = 1:3 Postscaler
0001 = 1:2 Postscaler
0000 = 1:1 Postscaler

bit 2 TMR2ON: Timer2 On bit

1 = Timer2 is on
0 = Timer2 is off

bit 1-0 T2CKPS<1:0>: Timer2 Clock Prescale Select bits

11 = Prescaler is 64
10 = Prescaler is 16
01 = Prescaler is 4
00 = Prescaler is 1
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FIGURE 30-6: SPI MODE WAVEFORM (MASTER MODE)        

30.2.4 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as
external clock pulses appear on SCK. When the last
bit is latched, the SSPIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock
line must match the proper Idle state. The clock line can
be observed by reading the SCK pin. The Idle state is
determined by the CKP bit of the SSPCON1 register.

While in Slave mode, the external clock is supplied by
the external clock source on the SCK pin. This external
clock must meet the minimum high and low times as
specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive
data. The shift register is clocked from the SCK pin
input and when a byte is received, the device will
generate an interrupt. If enabled, the device will
wake-up from Sleep.

Daisy-Chain Configuration

The SPI bus can sometimes be connected in a
daisy-chain configuration. The first slave output is
connected to the second slave input, the second slave
output is connected to the third slave input, and so on.
The final slave output is connected to the master input.
Each slave sends out, during a second group of clock
pulses, an exact copy of what was received during the
first group of clock pulses. The whole chain acts as
one large communication shift register. The
daisy-chain feature only requires a single Slave Select
line from the master device.

Figure 30-7 shows the block diagram of a typical
daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent
byte on the bus is required by the slave. Setting the
BOEN bit of the SSPCON3 register will enable writes
to the SSPBUF register, even if the previous byte has
not been read. This allows the software to ignore data
that may not apply to it.
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FIGURE 30-9: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0) 

FIGURE 30-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)    
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30.3 I2C MODE OVERVIEW

The Inter-Integrated Circuit (I2C) bus is a multi-master
serial data communication bus. Devices communicate
in a master/slave environment where the master
devices initiate the communication. A slave device is
controlled through addressing.

The I2C bus specifies two signal connections:

• Serial Clock (SCL)

• Serial Data (SDA)

Figure 30-11 shows the block diagram of the MSSP
module when operating in I2C mode.

Both the SCL and SDA connections are bidirectional
open-drain lines, each requiring pull-up resistors for the
supply voltage. Pulling the line to ground is considered
a logical zero and letting the line float is considered a
logical one.

Figure 30-11 shows a typical connection between two
processors configured as master and slave devices.

The I2C bus can operate with one or more master
devices and one or more slave devices. 

There are four potential modes of operation for a given
device:

• Master Transmit mode
(master is transmitting data to a slave)

• Master Receive mode
(master is receiving data from a slave)

• Slave Transmit mode
(slave is transmitting data to a master)

• Slave Receive mode
(slave is receiving data from the master)

To begin communication, a master device starts out in
Master Transmit mode. The master device sends out a
Start bit followed by the address byte of the slave it
intends to communicate with. This is followed by a
single Read/Write bit, which determines whether the
master intends to transmit to or receive data from the
slave device.

If the requested slave exists on the bus, it will respond
with an Acknowledge bit, otherwise known as an ACK.
The master then continues in either Transmit mode or
Receive mode and the slave continues in the comple-
ment, either in Receive mode or Transmit mode,
respectively.

A Start bit is indicated by a high-to-low transition of the
SDA line while the SCL line is held high. Address and
data bytes are sent out, Most Significant bit (MSb) first.
The Read/Write bit is sent out as a logical one when the
master intends to read data from the slave, and is sent
out as a logical zero when it intends to write data to the
slave. 

FIGURE 30-11: I2C MASTER/
SLAVE CONNECTION

The Acknowledge bit (ACK) is an active-low signal,
which holds the SDA line low to indicate to the transmit-
ter that the slave device has received the transmitted
data and is ready to receive more.

The transition of a data bit is always performed while
the SCL line is held low. Transitions that occur while the
SCL line is held high are used to indicate Start and Stop
bits.

If the master intends to write to the slave, then it repeat-
edly sends out a byte of data, with the slave responding
after each byte with an ACK bit. In this example, the
master device is in Master Transmit mode and the
slave is in Slave Receive mode.

If the master intends to read from the slave, then it
repeatedly receives a byte of data from the slave, and
responds after each byte with an ACK bit. In this exam-
ple, the master device is in Master Receive mode and
the slave is Slave Transmit mode.

On the last byte of data communicated, the master
device may end the transmission by sending a Stop bit.
If the master device is in Receive mode, it sends the
Stop bit in place of the last ACK bit. A Stop bit is
indicated by a low-to-high transition of the SDA line
while the SCL line is held high.

In some cases, the master may want to maintain
control of the bus and re-initiate another transmission.
If so, the master device may send another Start bit in
place of the Stop bit or last ACK bit when it is in receive
mode.

The I2C bus specifies three message protocols;

• Single message where a master writes data to a 
slave.

• Single message where a master reads data from 
a slave.

• Combined message where a master initiates a 
minimum of two writes, or two reads, or a 
combination of writes and reads, to one or more 
slaves.

Master

SCL

SDA

SCL

SDA

Slave
VDD

VDD
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When one device is transmitting a logical one, or letting
the line float, and a second device is transmitting a log-
ical zero, or holding the line low, the first device can
detect that the line is not a logical one. This detection,
when used on the SCL line, is called clock stretching.
Clock stretching gives slave devices a mechanism to
control the flow of data. When this detection is used on
the SDA line, it is called arbitration. Arbitration ensures
that there is only one master device communicating at
any single time.

30.3.1 CLOCK STRETCHING

When a slave device has not completed processing
data, it can delay the transfer of more data through the
process of clock stretching. An addressed slave device
may hold the SCL clock line low after receiving or send-
ing a bit, indicating that it is not yet ready to continue.
The master that is communicating with the slave will
attempt to raise the SCL line in order to transfer the
next bit, but will detect that the clock line has not yet
been released. Because the SCL connection is
open-drain, the slave has the ability to hold that line low
until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up
with a transmitter to control the flow of incoming data. 

30.3.2 ARBITRATION

Each master device must monitor the bus for Start and
Stop bits. If the device detects that the bus is busy, it
cannot begin a new message until the bus returns to an
Idle state.

However, two master devices may try to initiate a trans-
mission on or about the same time. When this occurs,
the process of arbitration begins. Each transmitter
checks the level of the SDA data line and compares it
to the level that it expects to find. The first transmitter to
observe that the two levels do not match, loses arbitra-
tion, and must stop transmitting on the SDA line.

For example, if one transmitter holds the SDA line to a
logical one (lets it float) and a second transmitter holds
it to a logical zero (pulls it low), the result is that the
SDA line will be low. The first transmitter then observes
that the level of the line is different than expected and
concludes that another transmitter is communicating. 

The first transmitter to notice this difference is the one
that loses arbitration and must stop driving the SDA
line. If this transmitter is also a master device, it also
must stop driving the SCL line. It then can monitor the
lines for a Stop condition before trying to reissue its
transmission. In the meantime, the other device that
has not noticed any difference between the expected
and actual levels on the SDA line continues with its
original transmission. It can do so without any compli-
cations, because so far, the transmission appears
exactly as expected with no other transmitter disturbing
the message.

Slave Transmit mode can also be arbitrated, when a
master addresses multiple slaves, but this is less
common. 

If two master devices are sending a message to two
different slave devices at the address stage, the master
sending the lower slave address always wins arbitra-
tion. When two master devices send messages to the
same slave address, and addresses can sometimes
refer to multiple slaves, the arbitration process must
continue into the data stage.

Arbitration usually occurs very rarely, but it is a
necessary process for proper multi-master support. 
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30.4.9 ACKNOWLEDGE SEQUENCE

The 9th SCL pulse for any transferred byte in I2C is
dedicated as an Acknowledge. It allows receiving
devices to respond back to the transmitter by pulling
the SDA line low. The transmitter must release control
of the line during this time to shift in the response. The
Acknowledge (ACK) is an active-low signal, pulling the
SDA line low indicates to the transmitter that the
device has received the transmitted data and is ready
to receive more. 

The result of an ACK is placed in the ACKSTAT bit of
the SSPCON2 register.

Slave software, when the AHEN and DHEN bits are
set, allow the user to set the ACK value sent back to
the transmitter. The ACKDT bit of the SSPCON2 regis-
ter is set/cleared to determine the response.

Slave hardware will generate an ACK response if the
AHEN and DHEN bits of the SSPCON3 register are
clear. 

There are certain conditions where an ACK will not be
sent by the slave. If the BF bit of the SSPSTAT register
or the SSPOV bit of the SSPCON1 register are set
when a byte is received. 

When the module is addressed, after the eighth falling
edge of SCL on the bus, the ACKTIM bit of the
SSPCON3 register is set. The ACKTIM bit indicates
the acknowledge time of the active bus. The ACKTIM
Status bit is only active when the AHEN bit or DHEN
bit is enabled.

30.5 I2C SLAVE MODE OPERATION

The MSSP Slave mode operates in one of four modes
selected by the SSPM bits of SSPCON1 register. The
modes can be divided into 7-bit and 10-bit Addressing
mode. 10-bit Addressing modes operate the same as
7-bit with some additional overhead for handling the
larger addresses.

Modes with Start and Stop bit interrupts operate the
same as the other modes with SSPIF additionally
getting set upon detection of a Start, Restart, or Stop
condition.

30.5.1 SLAVE MODE ADDRESSES

The SSPADD register (Register 30-6) contains the
Slave mode address. The first byte received after a
Start or Restart condition is compared against the
value stored in this register. If the byte matches, the
value is loaded into the SSPBUF register and an inter-
rupt is generated. If the value does not match, the
module goes idle and no indication is given to the
software that anything happened.

The SSP Mask register (Register 30-5) affects the
address matching process. See Section 30.5.9 “SSP
Mask Register” for more information.

30.5.1.1 I2C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data
byte is ignored when determining if there is an address
match.

30.5.1.2 I2C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is
compared to the binary value of ‘1 1 1 1 0 A9 A8 0’. A9
and A8 are the two MSb’s of the 10-bit address and
stored in bits 2 and 1 of the SSPADD register.

After the acknowledge of the high byte the UA bit is set
and SCL is held low until the user updates SSPADD
with the low address. The low address byte is clocked
in and all eight bits are compared to the low address
value in SSPADD. Even if there is not an address
match; SSPIF and UA are set, and SCL is held low
until SSPADD is updated to receive a high byte again.
When SSPADD is updated the UA bit is cleared. This
ensures the module is ready to receive the high
address byte on the next communication.

A high and low address match as a write request is
required at the start of all 10-bit addressing communi-
cation. A transmission can be initiated by issuing a
Restart once the slave is addressed, and clocking in
the high address with the R/W bit set. The slave
hardware will then acknowledge the read request and
prepare to clock out data. This is only valid for a slave
after it has received a complete high and low address
byte match.

30.5.2 SLAVE RECEPTION

When the R/W bit of a matching received address byte
is clear, the R/W bit of the SSPSTAT register is cleared.
The received address is loaded into the SSPBUF
register and acknowledged. 

When the overflow condition exists for a received
address, then not Acknowledge is given. An overflow
condition is defined as either bit BF of the SSPSTAT
register is set, or bit SSPOV of the SSPCON1 register
is set. The BOEN bit of the SSPCON3 register modifies
this operation. For more information see Register 30-4.

An MSSP interrupt is generated for each transferred
data byte. Flag bit, SSPIF, must be cleared by software.

When the SEN bit of the SSPCON2 register is set, SCL
will be held low (clock stretch) following each received
byte. The clock must be released by setting the CKP
bit of the SSPCON1 register, except sometimes in
10-bit mode. See Section 30.5.6.2 “10-bit
Addressing Mode” for more detail.
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FIGURE 31-2: EUSART RECEIVE BLOCK DIAGRAM     

The operation of the EUSART module is controlled
through three registers:

• Transmit Status and Control (TXSTA)

• Receive Status and Control (RCSTA)

• Baud Rate Control (BAUDCON)

These registers are detailed in Register 31-1,
Register 31-2 and Register 31-3, respectively.

The RX and CK input pins are selected with the RXPPS
and CKPPS registers, respectively. TX, CK, and DT
output pins are selected with each pin’s RxyPPS register.
Since the RX input is coupled with the DT output in
Synchronous mode, it is the user’s responsibility to select
the same pin for both of these functions when operating
in Synchronous mode. The EUSART control logic will
control the data direction drivers automatically.

RX/DT pin

Pin Buffer
and Control

SPEN

Data
Recovery

CREN OERR

FERR

RSR RegisterMSb LSb

RX9D RCREG Register
FIFO

InterruptRCIF
RCIE

Data Bus
8

Stop Start(8) 7 1 0

RX9

 • • •

SPBRGLSPBRGH

BRG16

RCIDL

FOSC
÷ n

n+ 1 Multiplier x4 x16 x64

SYNC 1 X 0 0 0

BRGH X 1 1 0 0

BRG16 X 1 0 1 0

Baud Rate Generator
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RRF Rotate Right f through Carry

Syntax: [ label ]    RRF   f,d

Operands: 0  f  127
d  [0,1]

Operation: See description below

Status Affected: C

Description: The contents of register ‘f’ are rotated 
one bit to the right through the Carry 
flag. If ‘d’ is ‘0’, the result is placed in 
the W register. If ‘d’ is ‘1’, the result is 
placed back in register ‘f’.

SLEEP Enter Sleep mode

Syntax: [ label ] SLEEP

Operands: None

Operation: 00h  WDT,
0  WDT prescaler,
1  TO,
0  PD

Status Affected: TO, PD

Description: The power-down Status bit, PD is 
cleared. Time-out Status bit, TO is 
set. Watchdog Timer and its 
prescaler are cleared.
The processor is put into Sleep mode 
with the oscillator stopped. 

Register fC

SUBLW Subtract W from literal

Syntax: [ label ] SUBLW   k

Operands: 0 k 255

Operation: k - (W) W)

Status Affected: C, DC, Z

Description: The W register is subtracted (2’s 
complement method) from the 8-bit 
literal ‘k’. The result is placed in the W 
register.

SUBWF Subtract W from f

Syntax: [ label ] SUBWF   f,d

Operands: 0 f 127
d  [0,1]

Operation: (f) - (W) destination)

Status Affected: C, DC, Z

Description: Subtract (2’s complement method) W 
register from register ‘f’. If ‘d’ is ‘0’, the 
result is stored in the W 
register. If ‘d’ is ‘1’, the result is stored 
back in register ‘f.

SUBWFB Subtract W from f with Borrow

Syntax: SUBWFB    f {,d}

Operands: 0  f  127
d  [0,1]

Operation: (f) – (W) – (B) dest

Status Affected: C, DC, Z

Description: Subtract W and the BORROW flag 
(CARRY) from register ‘f’ (2’s 
complement method). If ‘d’ is ‘0’, the 
result is stored in W. If ‘d’ is ‘1’, the 
result is stored back in register ‘f’.

C = 0 W  k

C = 1 W  k

DC = 0 W<3:0>  k<3:0>

DC = 1 W<3:0>  k<3:0>

C = 0 W  f

C = 1 W  f

DC = 0 W<3:0>  f<3:0>

DC = 1 W<3:0>  f<3:0>
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34.4 AC Characteristics

Timing Parameter Symbology has been created with one of the following formats:

FIGURE 34-4: LOAD CONDITIONS

1. TppS2ppS

2. TppS

T

F Frequency T Time

Lowercase letters (pp) and their meanings:

pp

cc CCP1 osc OSC1

ck CLKOUT rd RD

cs CS rw RD or WR

di SDI sc SCK

do SDO ss SS

dt Data in t0 T0CKI

io I/O PORT t1 T1CKI

mc MCLR wr WR

Uppercase letters and their meanings:

S

F Fall P Period

H High R Rise

I Invalid (High-impedance) V Valid

L Low Z High-impedance

VSS

CL

Legend: CL = 50 pF for all pins

Load Condition

Pin
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FIGURE 34-19: SPI SLAVE MODE TIMING (CKE = 0)

FIGURE 34-20: SPI SLAVE MODE TIMING (CKE = 1)

SS

SCK
(CKP = 0)

SCK
(CKP = 1)

SDO

SDI

SP70

SP71 SP72

SP73

SP74

SP75, SP76 SP77

SP78SP79

SP80

SP79SP78

MSb LSbbit 6 - - - - - -1

MSb In bit 6 - - - -1 LSb In

SP83

Note: Refer to Figure 34-4 for load conditions.

SS

SCK
(CKP = 0)

SCK
(CKP = 1)

SDO

SDI

SP70

SP71 SP72

SP82

SP74

SP75, SP76

MSb bit 6 - - - - - -1 LSb

SP77

MSb In bit 6 - - - -1 LSb In

SP80

SP83

Note: Refer to Figure 34-4 for load conditions.
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Note: Unless otherwise noted, VIN = 5V, FOSC = 300 kHz, CIN = 0.1 µF, TA = 25°C.

FIGURE 35-67: LPBOR Reset Voltage. FIGURE 35-68: LPBOR Reset Hysteresis.
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FIGURE 35-69: PWRT Period, 
PIC16F1713/6 Only.

FIGURE 35-70: PWRT Period, 
PIC16LF1713/6 Only.
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FIGURE 35-71: POR Release Voltage. FIGURE 35-72: POR Rearm Voltage, 
NP Mode (VREGPM1 = 0), PIC16F1713/6 Only.
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Note: Unless otherwise noted, VIN = 5V, FOSC = 300 kHz, CIN = 0.1 µF, TA = 25°C.

FIGURE 35-121: COG Deadband Delay Per 
Step, Typical Measured Values

FIGURE 35-122: COG Deadband Delay Per 
Step, Zoomed to First 10 Codes, Typical 
Measured Values.
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36.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C
compilers for all of Microchip’s 8, 16, and 32-bit MCU
and DSC devices. These compilers provide powerful
integration capabilities, superior code optimization and
ease of use. MPLAB XC Compilers run on Windows,
Linux or MAC OS X.

For easy source level debugging, the compilers provide
debug information that is optimized to the MPLAB X
IDE.

The free MPLAB XC Compiler editions support all
devices and commands, with no time or memory
restrictions, and offer sufficient code optimization for
most applications.

MPLAB XC Compilers include an assembler, linker and
utilities. The assembler generates relocatable object
files that can then be archived or linked with other relo-
catable object files and archives to create an execut-
able file. MPLAB XC Compiler uses the assembler to
produce its object file. Notable features of the assem-
bler include:

• Support for the entire device instruction set

• Support for fixed-point and floating-point data

• Command-line interface

• Rich directive set

• Flexible macro language

• MPLAB X IDE compatibility

36.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs. 

The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code, and COFF files for
debugging.

The MPASM Assembler features include:

• Integration into MPLAB X IDE projects

• User-defined macros to streamline 
assembly code

• Conditional assembly for multipurpose 
source files

• Directives that allow complete control over the 
assembly process

36.4 MPLINK Object Linker/
MPLIB Object Librarian

The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler. It can link
relocatable objects from precompiled libraries, using
directives from a linker script. 

The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications. 

The object linker/library features include:

• Efficient linking of single libraries instead of many 
smaller files

• Enhanced code maintainability by grouping 
related modules together

• Flexible creation of libraries with easy module 
listing, replacement, deletion and extraction

36.5 MPLAB Assembler, Linker and 
Librarian for Various Device 
Families

MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC DSC devices. MPLAB XC Compiler
uses the assembler to produce its object file. The
assembler generates relocatable object files that can
then be archived or linked with other relocatable object
files and archives to create an executable file. Notable
features of the assembler include:

• Support for the entire device instruction set

• Support for fixed-point and floating-point data

• Command-line interface

• Rich directive set

• Flexible macro language

• MPLAB X IDE compatibility
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36.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code
development in a PC-hosted environment by simulat-
ing the PIC MCUs and dsPIC DSCs on an instruction
level. On any given instruction, the data areas can be
examined or modified and stimuli can be applied from
a comprehensive stimulus controller. Registers can be
logged to files for further run-time analysis. The trace
buffer and logic analyzer display extend the power of
the simulator to record and track program execution,
actions on I/O, most peripherals and internal registers. 

The MPLAB X SIM Software Simulator fully supports
symbolic debugging using the MPLAB XC Compilers,
and the MPASM and MPLAB Assemblers. The soft-
ware simulator offers the flexibility to develop and
debug code outside of the hardware laboratory envi-
ronment, making it an excellent, economical software
development tool. 

36.7 MPLAB REAL ICE In-Circuit 
Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs all 8, 16 and 32-bit MCU, and DSC devices
with the easy-to-use, powerful graphical user interface of
the MPLAB X IDE.

The emulator is connected to the design engineer’s
PC using a high-speed USB 2.0 interface and is
connected to the target with either a connector
compatible with in-circuit debugger systems (RJ-11)
or with the new high-speed, noise tolerant, Low-
Voltage Differential Signal (LVDS) interconnection
(CAT5). 

The emulator is field upgradeable through future firm-
ware downloads in MPLAB X IDE. MPLAB REAL ICE
offers significant advantages over competitive emulators
including full-speed emulation, run-time variable
watches, trace analysis, complex breakpoints, logic
probes, a ruggedized probe interface and long (up to
three meters) interconnection cables.

36.8 MPLAB ICD 3 In-Circuit Debugger 
System

The MPLAB ICD 3 In-Circuit Debugger System is
Microchip’s most cost-effective, high-speed hardware
debugger/programmer for Microchip Flash DSC and
MCU devices. It debugs and programs PIC Flash
microcontrollers and dsPIC DSCs with the powerful,
yet easy-to-use graphical user interface of the MPLAB
IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is
connected to the design engineer’s PC using a high-
speed USB 2.0 interface and is connected to the target
with a connector compatible with the MPLAB ICD 2 or
MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3
supports all MPLAB ICD 2 headers.

36.9 PICkit 3 In-Circuit Debugger/
Programmer

The MPLAB PICkit 3 allows debugging and program-
ming of PIC and dsPIC Flash microcontrollers at a most
affordable price point using the powerful graphical user
interface of the MPLAB IDE. The MPLAB PICkit 3 is
connected to the design engineer’s PC using a full-
speed USB interface and can be connected to the tar-
get via a Microchip debug (RJ-11) connector (compati-
ble with MPLAB ICD 3 and MPLAB REAL ICE). The
connector uses two device I/O pins and the Reset line
to implement in-circuit debugging and In-Circuit Serial
Programming™ (ICSP™).

36.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages, and a mod-
ular, detachable socket assembly to support various
package types. The ICSP cable assembly is included
as a standard item. In Stand-Alone mode, the MPLAB
PM3 Device Programmer can read, verify and program
PIC devices without a PC connection. It can also set
code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices, and incorporates an MMC card for file
storage and data applications.
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