

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1713t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

					Comparator			Timers		a J J	555					COG			MSSP			EUSAKI		0	CLC				
RC4	15	12	AN16																SI SI) ⁽¹⁾)A ⁽¹⁾							IOC	Υ	
RC5	16	13	AN17																								IOC	Υ	
RC6	17	14	AN18																		С	K ⁽³⁾					IOC	Υ	
RC7	18	15	AN19																		R	X ⁽³⁾					IOC	Y	
RE3	1	26																									IOC	Υ	MCLR Vpp
Vdd	20	17																											Vdd
Vec	8	5																											Vss
V 55	19	16																											
OUT ⁽⁴⁾				CIOUT	C2OUT					CCP1	CCP2	NCO1OUT	PWM30UT	PWM40UT	COG1A	COG1B	C0G1C	COG1D	SUA'SCI (3)	SDO	TX/CK	DT(3)	CLC4OUT	CLC3OUT	CLC2OUT	CLC1OUT			
IN ⁽⁵⁾							T1G	T1CKI	TOCKI	CCP1	CCP2					COG1IN			201 SCK/SCI (3)	SS	RX(3)	ск	CLCINO	CLCIN1	CLCIN2	CLCIN3	INT		

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.

2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: Alternate outputs are excluded from solid shaded areas.

5: Alternate inputs are excluded from dot shaded areas.

3.3.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- · the arithmetic status of the ALU
- · the Reset status

REGISTER 3-1:

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the \overline{TO} and \overline{PD} bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

3.4 **Register Definitions: Status**

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to Section 33.0 "Instruction Set Summary").

Note:	The C	and DC	bits	opera	te as Borrow a	nd
	Digit	Borrow	out	bits,	respectively,	in
	subtra	action.				

	11.0	11.0	

STATUS: STATUS REGISTER

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	ı R/W-0/u R/W					
_	_	_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾				
bit 7	•						bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'					
u = Bit is uncha	anged	x = Bit is unkr	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets					
'1' = Bit is set '0' = Bit is cleared q = Value depends on condition											
bit 7-5	Unimplemented: Read as '0'										
bit 4	TO: Time-Out bit										
	1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT Time-out occurred										
bit 3	PD: Power-Do	own bit									
	1 = After powe 0 = By execut	er-up or by the ion of the SLE	CLRWDT instr	ruction							
bit 2	Z: Zero bit										
	1 = The result 0 = The result	of an arithmet of an arithmet	ic or logic ope ic or logic ope	eration is zero eration is not ze	ero						
bit 1	DC: Digit Car	ry/Digit Borrow	bit (ADDWF, A	DDLW, SUBLW,	SUBWF instruction	ons) ⁽¹⁾					
	1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result										
bit 0	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾										
	1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred										

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand.

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 2										
10Ch	LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx xxxx	uu -uuu
10Dh	LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx xxxx	uuuu
10Eh	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx	uuuu uuuu
10Fh	_	Unimplement	ed	L			L				_
110h	_	Unimplement	ed							_	_
111h	CM1CON0	C10N	C1OUT	_	C1POL	C1ZLF	C1SP	C1HYS	C1SYNC	00-0 0100	00-0 0100
112h	CM1CON1	C1INTP	C1INTN		C1PCH<2:0>			C1NCH<2:0>	>	0000 0000	0000 0000
113h	CM2CON0	C2ON	C2OUT	—	C2POL	C2ZLF	C2SP	C2HYS	C2SYNC	00-0 0100	00-0 0100
114h	CM2CON1	C2INTP	C2INTN		C2PCH<2:0>			C2NCH<2:0>	>	0000 0000	0000 0000
115h	CMOUT	_	_	_	_	—	_	MC2OUT	MC10UT	00	00
116h	BORCON	SBOREN	BORFS	_	_	_	_	_	BORRDY	10q	uuu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	R<1:0>	0q00 0000	0q00 00p0
118h	DAC1CON0	DAC1EN		DAC10E1	DAC10E2	DAC1PS	SS<1:0>		DAC1NSS	0-00 00-0	0-00 00-0
119h	DAC1CON1				DAC1	R<7:0>				0000 0000	0000 0000
11Ah	DAC2CON0	DAC2EN		DAC2OE1	DAC2OE2	DAC2PS	SS<1:0>	_	DAC2NSS	0-00 00-0	0-00 00-0
11Bh	DAC2CON1	_					DAC2R<4:0	>		0 0000	0 0000
11Ch	ZCD1CON	ZCD1EN	_	ZCD10UT	ZCD1POL	_	_	ZCD1INTP	ZCD1INTN	0-x000	0-0000
11Dh	_	Unimplement	ed		_	_					
11Eh	—	Unimplement	ed		_	—					
11Fh	—	Unimplement	ed							_	—
Ban	k 3										
18Ch	ANSELA	—	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	11 1111	1 1111
18Dh	ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11
18Eh	ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	_	1111 11	1111 1111
18Fh	—	Unimplement	ed							—	_
190h	—	Unimplement	ed							—	_
191h	PMADRL	Program Mer	nory Address	Register Low	Byte					0000 0000	0000 0000
192h	PMADRH	_	Program Mer	nory Address	Register High	Byte				1000 0000	1000 0000
193h	PMDATL	Program Mer	nory Read Da	ta Register Lo	w Byte					XXXX XXXX	uuuu uuuu
194h	PMDATH	—		Program Mer	nory Read Da	ta Register Hi	gh Byte			xx xxxx	uu uuuu
195h	PMCON1	_	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	-000 x000	-000 q000
196h	PMCON2	Program Mer	nory Control F	Register 2						0000 0000	0000 0000
197h	VREGCON	_	_	_	_	_	_	VREGPM	Reserved	01	01
198h	—	Unimplement	ed							—	—
199h	RC1REG	USART Rece	eive Data Regi	ster						0000 0000	0000 0000
19Ah	TX1REG	USART Trans	smit Data Reg	ister						0000 0000	0000 0000
19Bh	SP1BRGL				SP1BF	RG<7:0>				0000 0000	0000 0000
19Ch	SP1BRGH				SP1BR	G<15:8>				0000 0000	0000 0000
19Dh	RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0000	0000 0000
19Eh	TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
19Fh	BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: Unimplemented on PIC16(L)F1713/6.

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banl	k 14-27										
x0Ch/ x8Ch 	_	Unimplement	ted							_	_
Banl	k 28										
E0Ch											
 E0Eh	—	Unimplement	ted							—	—
E0Fh	PPSLOCK	—	—	_	—	—	—	—	PPSLOCKED	0	0
E10h	INTPPS	—	_	_			INTPPS<4:0	>		0 1000	u uuuu
E11h	T0CKIPPS	—	—	—			T0CKIPPS<4:	0>		0 0100	u uuuu
E12h	T1CKIPPS	—	—	—			T1CKIPPS<4:	0>		1 0000	u uuuu
E13h	T1GPPS	—	—	_			T1GPPS<4:0	>		0 1101	u uuuu
E14h	CCP1PPS	—	—	—			CCP1PPS<4:)>		1 0010	u uuuu
E15h	CCP2PPS	—	—	_			CCP2PPS<4:)>		1 0001	u uuuu
E16h	_	Unimplement	ted			—					
E17h	COGINPPS	—	— — — COGINPPS<4:0>								u uuuu
E18h	—	Unimplement	ted								_
E19h	—	Unimplement	ted							—	—
E1Ah E1FH	_	Unimplement	ted							_	-
E20h	SSPCLKPPS	_	—	—		S	SPCLKPPS<4	4:0>		1 0011	u uuuu
E21h	SSPDATPPS	_	—	_		S	SPDATPPS<4	1:0>		1 0100	u uuuu
E22h	SSPSSPPS	—	—	-		5	SSPSSPPS<4	:0>		0 0101	u uuuu
E23h	_	Unimplement	ted							_	—
E24h	RXPPS	—	—	—			RXPPS<4:0	>		1 0111	u uuuu
E25h	CKPPS	—	—	—			CKPPS<4:0	>		1 0110	u uuuu
E26h		Unimplement	ted							_	
E27h	—	Unimplement	ted							_	—
E28h	CLCIN0PPS	—	—	_		(CLCIN0PPS<4	:0>		0 0000	u uuuu
E29h	CLCIN1PPS	—	—	—		(CLCIN1PPS<4	:0>		0 0001	u uuuu
E2Ah	CLCIN2PPS	-	—	_		(CLCIN2PPS<4	:0>		0 1110	u uuuu
E2Bh	CLCIN3PPS	_	—	-		(CLCIN3PPS<4	:0>		0 1111	u uuuu
E2Ch to E6Fh	_	Unimplement	ted							_	_

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: Unimplemented on PIC16(L)F1713/6.

8.0 POWER-DOWN MODE (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running, if enabled for operation during Sleep.
- 2. PD bit of the STATUS register is cleared.
- 3. $\overline{\text{TO}}$ bit of the STATUS register is set.
- 4. CPU clock is disabled.
- 5. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may continue operation in Sleep.
- 6. Timer1 and peripherals that operate from Timer1 continue operation in Sleep when the Timer1 clock source selected is:
 - LFINTOSC
 - T1CKI
 - Secondary oscillator
- 7. ADC is unaffected, if the dedicated FRC oscillator is selected.
- I/O ports maintain the status they had before SLEEP was executed (driving high, low or high-impedance).
- 9. Resets other than WDT are not affected by Sleep mode.

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- · Internal circuitry sourcing current from I/O pins
- · Current draw from pins with internal weak pull-ups
- Modules using 31 kHz LFINTOSC
- · Modules using secondary oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 22.0 "Operational Amplifier (OPA) Modules" and Section 14.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

8.1 Wake-up from Sleep

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled
- 3. POR Reset
- 4. Watchdog Timer, if enabled
- 5. Any external interrupt
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information)

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 5.12 "Determining the Cause of a Reset"**.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

8.3 Register Definitions: Voltage Regulator Control

REGISTER 8-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

r							
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1
_	—	—	—	—		VREGPM	Reserved
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable bi	t	U = Unimplem	ented bit, read as	'0'	

-n/n = Value at POR and BOR/Value at all other Resets

bit 7-2	Unimplemented: Read as '0'
bit 1	 VREGPM: Voltage Regulator Power Mode Selection bit 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾ Draws lowest current in Sleep, slower wake-up 0 = Normal-Power mode enabled in Sleep⁽²⁾ Draws higher current in Sleep, faster wake-up

x = Bit is unknown

'0' = Bit is cleared

bit 0 Reserved: Read as '1'. Maintain this bit set.

Note 1: PIC16F1713/6 only.

u = Bit is unchanged

'1' = Bit is set

2: See Section 34.0 "Electrical Specifications".

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
STATUS	_	—	_	TO	PD	Z	DC	С	19
VREGCON ⁽¹⁾	-	—	-	—	—	—	VREGPM	Reserved	94
WDTCON	_	_			WDTPS<4:0>			SWDTEN	98

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

Note 1: PIC16F1713/6 only.

11.6 Register Definitions: PORTC

REGISTER 11-17: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bi	t	U = Unimpleme	ented bit, read as	'0'	
u = Bit is unchan	ged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/V	alue at all other F	Resets
'1' = Bit is set		'0' = Bit is clear	ed				

 bit 7-0
 RC<7:0>: PORTC General Purpose I/O Pin bits⁽¹⁾

 1 = Port pin is
 VIH

 0 = Port pin is
 VIL

REGISTER 11-18: TRISC: PORTC TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISC<7:0>: PORTC Tri-State Control bits

1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

REGISTER 11-19: LATC: PORTC DATA LATCH REGISTER

LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LAT	R/W-x/u							
bit 7	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0
	bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

REGISTER 13-3. IOCAL INTERROFT-ON-CHANGE FORTATEAG REGISTER	REGISTER 13-3:	IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER
---	----------------	--

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCAF7 | IOCAF6 | IOCAF5 | IOCAF4 | IOCAF3 | IOCAF2 | IOCAF1 | IOCAF0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

IOCAF<7:0>: Interrupt-on-Change PORTA Flag bits

1 = An enabled change was detected on the associated pin.
 Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.

0 = No change was detected, or the user cleared the detected change.

REGISTER 13-4: IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCBP7 | IOCBP6 | IOCBP5 | IOCBP4 | IOCBP3 | IOCBP2 | IOCBP1 | IOCBP0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCBP<7:0>: Interrupt-on-Change PORTB Positive Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all oth		ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 13-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER

bit 7-0 IOCBN<7:0>: Interrupt-on-Change PORTB Negative Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 13-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCBF7 | IOCBF6 | IOCBF5 | IOCBF4 | IOCBF3 | IOCBF2 | IOCBF1 | IOCBF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0 IOCBF<7:0>: Interrupt-on-Change PORTB Flag bits

1 = An enabled change was detected on the associated pin.

- Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx.
- 0 = No change was detected, or the user cleared the detected change.

FIGURE 18-7: COG (RISING/FALLING) INPUT BLOCK

© 2013-2016 Microchip Technology Inc.

PIC16(L)F1713/6

18.7.1 CUMULATIVE UNCERTAINTY

It is not possible to create more than one COG clock of uncertainty by successive stages. Consider that the phase-delay stage comes after the blanking stage, the dead-band stage comes after either the blanking or phase-delay stages, and the blanking stage comes after the dead-band stage. When the preceding stage is enabled, the output of that stage is necessarily synchronous with the COG_clock, which removes any possibility of uncertainty in the succeeding stage.

EQUATION 18-1: PHASE, DEAD-BAND, AND BLANKING TIME CALCULATION

$T_{\min} = \frac{\text{Count}}{F_{COG_clock}}$
$T_{\text{max}} = \frac{\text{Count} + 1}{F_{COG_clock}}$
$T_{\text{uncertainty}} = T_{\text{max}} - T_{\text{min}}$
Also: $T_{\text{uncertainty}} = \frac{1}{F_{COG_clock}}$
Where:

Count
COGxPHR
COGxPHF
COGxDBR
COGxDBF
COGxBLKR
COGxBLKF

EXAMPLE 18-1: TIMER UNCERTAINTY

Given: Count = Ah = 10d $F_{COG_Clock} = 8MHz$ Therefore: fore: $T_{\text{uncertainty}} = \frac{1}{F_{COG_clock}}$ $= \frac{1}{8MHz} = 125ns$ Proof: $T_{\min} = \frac{Count}{F_{COG_clock}}$ $= 125ns \bullet 10d = 1.25 \mu s$ $T_{\max} = \frac{Count + 1}{F_{COG \ clock}}$ $= 125ns \bullet (10d + 1)$ $= 1.375 \mu s$

Therefore:

$$T_{\text{uncertainty}} = T_{\text{max}} - T_{\text{min}}$$
$$= 1.375 \,\mu s - 1.25 \,\mu s$$
$$= 125 n s$$

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, reac	l as '0'	
u = Bit is unch	anged	x = Bit is unknown -n/n = Value at POR and BOR/Value at all			R/Value at all c	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	LCxG4D4T:	Gate 4 Data 4 1	Frue (non-inve	rted) bit			
	1 = lcxd4T is	gated into Icxo	g4				
	0 = 1cxd41 is	not gated into	Icxg4				
DIT 6	LCXG4D4N:	Gate 4 Data 4	Negated (inve	rted) bit			
	$\perp = 100000 \text{ J}$	s galed into icx	y4 Icxa4				
hit 5		Gate 4 Data 3]	Frue (non-inve	rted) hit			
bit o	1 = lcxd3T is	aated into Icxo	1400 (11011 11170 114				
	0 = Icxd3T is	not gated into	lcxg4				
bit 4	LCxG4D3N:	Gate 4 Data 3	Negated (inve	rted) bit			
	1 = Icxd3N is	s gated into lcx	g4				
	0 = Icxd3N is	s not gated into	lcxg4				
bit 3	LCxG4D2T: (Gate 4 Data 2 1	Frue (non-inve	rted) bit			
	1 = lcxd2T is	gated into lcx	j4 Jova4				
hit 2		Cate 4 Data 2	Negated (inve	rted) bit			
	1 = lcxd2N is	s gated into Icx	negaleu (inve n4	neu) bh			
	0 = lcxd2N is	not gated into	lcxg4				
bit 1	LCxG4D1T: (Gate 4 Data 1 1	Frue (non-inve	rted) bit			
	1 = Icxd1T is	gated into Icxo	g4				
	0 = Icxd1T is	not gated into	lcxg4				
bit 0	LCxG4D1N:	Gate 4 Data 1	Negated (inve	rted) bit			
	1 = lcxd1N is	gated into lcx	g4				
	0 = 10001 N is	s not gated into	icxg4				

REGISTER 19-10: CLCxGLS3: GATE 4 LOGIC SELECT REGISTER

31.4.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDCON register starts the auto-baud calibration sequence. While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Figure 31-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH, SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 31-6. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 31.4.3 "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the auto-baud counter starts counting at one. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

TABLE 31-6: BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of the BRG16 setting.

FIGURE 31-6: AUTOMATIC BAUD RATE CALIBRATION

31.5 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

31.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for synchronous master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

31.5.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

31.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

31.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

31.5.1.4 Synchronous Master Transmission Setup:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 31.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXREG register.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<6:3>) → PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT} \\ \text{0} \rightarrow \text{WDT prescaler,} \\ \text{1} \rightarrow \overline{\text{TO}} \\ \text{1} \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits \overline{TO} and \overline{PD} are set.

CALLW	Subroutine Call With W
Syntax:	[label] CALLW
Operands:	None
Operation:	(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>, (PCLATH<6:0>) \rightarrow PC<14:8>
Status Affected:	None
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.

COMF	Complement f		
Syntax:	[<i>label</i>] COMF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	$(\overline{f}) \rightarrow (destination)$		
Status Affected:	Z		
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.		

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRWClear WSyntax:[label] CLRWOperands:NoneOperation: $00h \rightarrow (W)$
 $1 \rightarrow Z$ Status Affected:ZDescription:W register is cleared. Zero bit (Z) is
set.

TABLE 34-24: SPI MODE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)							
Param No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions
SP70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	2.25 TCY	_	—	ns	
SP71*	TscH	SCK input high time (Slave mode)	Tcy + 20	—	_	ns	
SP72*	TscL	SCK input low time (Slave mode)	TCY + 20	—	—	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge	100	_	—	ns	
SP74*	TscH2DIL, TscL2DIL	Hold time of SDI data input to SCK edge	100	_	_	ns	
SP75*	TDOR	SDO data output rise time	—	10	25	ns	$3.0V \le V\text{DD} \le 5.5V$
			—	25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP76*	TDOF	SDO data output fall time	—	10	25	ns	
SP77*	TssH2doZ	\overline{SS} to SDO output high-impedance	10	—	50	ns	
SP78*	TscR	SCK output rise time	—	10	25	ns	$3.0V \le V\text{DD} \le 5.5V$
		(Master mode)	—	25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP79*	TscF	SCK output fall time (Master mode)	—	10	25	ns	
SP80*	TscH2doV,	SDO data output valid after SCK	—	_	50	ns	$3.0V \le V\text{DD} \le 5.5V$
	TscL2DoV	edge	—	_	145	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge	1 Tcy	—	_	ns	
SP82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge	—	—	50	ns	
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5 Tcy + 40	_		ns	

These parameters are characterized but not tested. *

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

36.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

36.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker