

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1716-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

TABLE 3-4: PIC16(L)F1716 MEMORY MAP (BANKS 0-7)

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	Core Registers (Table 3-2)	080h	Core Registers (Table 3-2)	100h	Core Registers (Table 3-2)	180h	Core Registers (Table 3-2)	200h	Core Registers (Table 3-2)	280h	Core Registers (Table 3-2)	300h	Core Registers (Table 3-2)	380h	Core Registers (Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	ODCONB	30Dh	SLRCONB	38Dh	INLVLB
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
00Fh	_	08Fh	_	10Fh	_	18Fh	—	20Fh	—	28Fh	_	30Fh	_	38Fh	_
010h	PORTE	090h	TRISE	110h	_	190h	—	210h	WPUE	290h	_	310h	_	390h	INLVLE
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	SSP1BUF	291h	CCPR1L	311h	_	391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	SSP1ADD	292h	CCPR1H	312h	—	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h	SSP1MSK	293h	CCP1CON	313h	—	393h	IOCAF
014h	_	094h	—	114h	CM2CON1	194h	PMDATH	214h	SSP1STAT	294h	_	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	SSP1CON1	295h	_	315h	—	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	SSP1CON2	296h	_	316h	—	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	SSP1CON3	297h	—	317h	—	397h	IOCCP
018h	T1CON	098h	OSCTUNE	118h	DAC1CON0	198h	_	218h	_	298h	CCPR2L	318h	—	398h	IOCCN
019h	T1GCON	099h	OSCCON	119h	DAC1CON1	199h	RC1REG	219h	_	299h	CCPR2H	319h	—	399h	IOCCF
01Ah	TMR2	09Ah	OSCSTAT	11Ah	DAC2CON0	19Ah	TX1REG	21Ah	_	29Ah	CCP2CON	31Ah	—	39Ah	_
01Bh	PR2	09Bh	ADRESL	11Bh	DAC2CON1	19Bh	SP1BRGL	21Bh	_	29Bh	_	31Bh	—	39Bh	
01Ch	T2CON	09Ch	ADRESH	11Ch	ZCD1CON	19Ch	SP1BRGH	21Ch	_	29Ch	_	31Ch	—	39Ch	
01Dh	_	09Dh	ADCON0	11Dh	—	19Dh	RC1STA	21Dh	_	29Dh	_	31Dh	—	39Dh	IOCEP
01Eh	_	09Eh	ADCON1	11Eh	—	19Eh	TX1STA	21Eh	—	29Eh	CCPTMRS	31Eh	—	39Eh	IOCEN
01Fh	—	09Fh	ADCON2	11Fh	—	19Fh	BAUD1CON	21Fh	—	29Fh	—	31Fh	—	39Fh	IOCEF
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General Purpose Register 80 Bytes														
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
	Common RAM 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

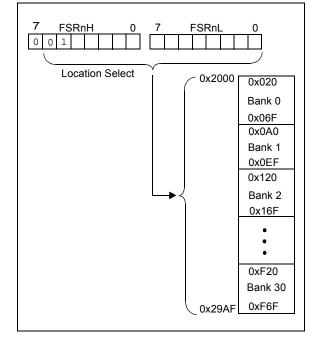
Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16(L)F1713/6.

TABLE 3-6: PIC16(L)F1716 MEMORY MAP, BANK 8-23

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h		480h		500h		580h		600h		680h		700h		780h	
	Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)						
40Bh		48Bh		50Bh		58Bh		60Bh		68Bh		70Bh		78Bh	
40Ch	—	48Ch	—	50Ch	—	58Ch	—	60Ch	—	68Ch	—	70Ch	—	78Ch	—
40Dh	—	48Dh	_	50Dh	—	58Dh	—	60Dh	—	68Dh		70Dh	—	78Dh	—
40Eh	—	48Eh	—	50Eh	—	58Eh	—	60Eh	—	68Eh	—	70Eh	—	78Eh	—
40Fh	—	48Fh		50Fh	_	58Fh		60Fh	—	68Fh	_	70Fh		78Fh	—
410h	_	490h		510h	—	590h		610h	—	690h	—	710h		790h	—
411h	_	491h		511h	OPA1CON	591h		611h	—	691h	COG1PHR	711h		791h	—
412h	—	492h	—	512h	—	592h	—	612h	—	692h	COG1PHF	712h	—	792h	—
413h	_	493h		513h	_	593h		613h	_	693h	COG1BLKR	713h	_	793h	_
414h	—	494h	—	514h	—	594h	—	614h	—	694h	COG1BLKF	714h	—	794h	—
415h	TMR4	495h		515h	OPA2CON	595h		615h	—	695h	COG1DBR	715h	—	795h	—
416h	PR4	496h	—	516h	—	596h	—	616h	—	696h	COG1DBF	716h	—	796h	—
417h	T4CON	497h		517h	_	597h		617h	PWM3DCL	697h	COG1CON0	717h	_	797h	_
418h	—	498h	NCO1ACCL	518h	—	598h	—	618h	PWM3DCH	698h	COG1CON1	718h	—	798h	—
419h	_	499h	NCO1ACCH	519h	_	599h		619h	PWM3CON	699h	COG1RIS	719h		799h	—
41Ah	—	49Ah	NCO1ACCU	51Ah	—	59Ah	—	61Ah	PWM4DCL	69Ah	COG1RSIM	71Ah	—	79Ah	—
41Bh	—	49Bh	NCO1INCL	51Bh	—	59Bh	—	61Bh	PWM4DCH	69Bh	COG1FIS	71Bh	—	79Bh	—
41Ch	TMR6	49Ch	NCO1INCH	51Ch		59Ch	_	61Ch	PWM4CON	69Ch	COG1FSIM	71Ch	—	79Ch	_
41Dh	PR6	49Dh	NCO1INCU	51Dh	—	59Dh	—	61Dh	—	69Dh	COG1ASD0	71Dh	—	79Dh	—
41Eh	T6CON	49Eh	NCO1CON	51Eh	—	59Eh	_	61Eh	_	69Eh	COG1ASD1	71Eh	—	79Eh	_
41Fh	—	49Fh	NCO1CLK	51Fh	—	59Fh	—	61Fh	—	69Fh	COG1STR	71Fh	—	79Fh	—
420h		4A0h		520h		5A0h		620h	General Purpose	6A0h		720h		7A0h	
	General		General		General		General		Register						
	Purpose		Purpose		Purpose		Purpose		48 Bytes		Unimplemented		Unimplemented		Unimplemented
	Register		Register		Register		Register	64Fh	Unimplemented		Read as '0'		Read as '0'		Read as '0'
	80 Bytes		80 Bytes		80 Bytes		80 Bytes		Read as '0'						
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh						
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	
	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h		880h		900h		980h		A00h		A80h		B00h		B80h	
	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
	(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)
80Bh		88Bh		90Bh		98Bh		A0Bh		A8Bh		B0Bh		B8Bh	
80Ch		88Ch		90Ch		98Ch		A0Ch		A8Ch		B0Ch		B8Ch	
00011	Unimplemented	00011	Unimplemented	30011	Unimplemented	30011	Unimplemented	Auon	Unimplemented	AUCII	Unimplemented	DUCII	Unimplemented	Doon	Unimplemented
	Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'						
005		000		005								DOC		DEEL	
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
870h		8F0h		970h		9F0h		A70h		AF0h		B70h		BF0h	
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh						
87Fh		8FFh		97Fh		9FFh		A7Fh		AFFh		B7Fh		BFFh	

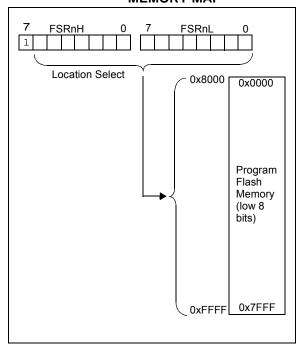
Legend: = Unimplemented data memory locations, read as '0'.

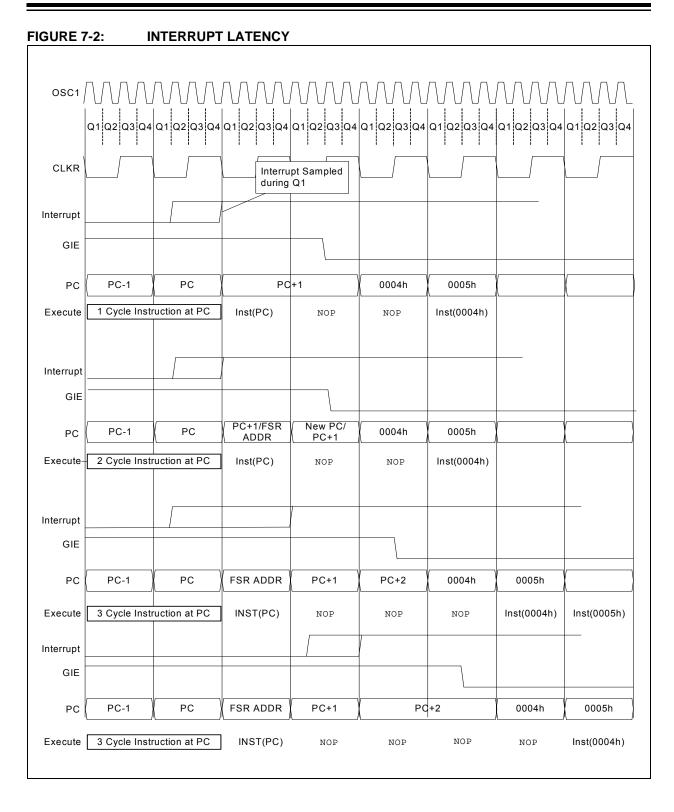

3.7.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks.

Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.


FIGURE 3-11: LINEAR DATA MEMORY MAP


3.7.3 PROGRAM FLASH MEMORY

To make constant data access easier, the entire program Flash memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower eight bits of each memory location is accessible via INDF. Writing to the program Flash memory cannot be accomplished via the FSR/INDF interface. All instructions that access program Flash memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 3-12: PROGRAM FLASH MEMORY MAP

PIC16(L)F1713/6

	•••					••••••		— ···	
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF	<3:0>		—	SCS	75	
STATUS	—	_	—	TO	PD	Z	DC	С	19
WDTCON	—	—		١	WDTPS<4:0	>		SWDTEN	98

 TABLE 9-3:
 SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 9-4:	SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER
IADLE 3^{-4} .	

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8			FCMEN	IESO	CLKOUTEN	BOREN	BOREN<1:0>		47
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		F	>	4/	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

REGISTER 11-12:	ANSELB: PORTB ANALOG SELECT REGISTER
------------------------	--------------------------------------

U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1				
	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0				
	·		·	•		bit 0				
bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets							
	'0' = Bit is clea	ared								
	bit	ANSB5 bit W = Writable anged x = Bit is unkr	— ANSB5 ANSB4 bit W = Writable bit	ANSB5 ANSB4 ANSB3 bit W = Writable bit U = Unimpler anged x = Bit is unknown -n/n = Value a	— ANSB5 ANSB4 ANSB3 ANSB2 bit W = Writable bit U = Unimplemented bit, read anged x = Bit is unknown -n/n = Value at POR and BO	— ANSB5 ANSB4 ANSB3 ANSB2 ANSB1 bit W = Writable bit U = Unimplemented bit, read as '0' anged x = Bit is unknown -n/n = Value at POR and BOR/Value at all of the second				

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **ANSB<5:0>**: Analog Select between Analog or Digital Function on pins RB<5:4>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

REGISTER 11-13: WPUB: WEAK PULL-UP PORTB REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits

- 1 = Pull-up enabled
- 0 = Pull-up disabled
- Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
 - 2: The weak pull-up device is automatically disabled if the pin is configured as an output.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
_	—	—			RxyPPS<4:0>		
pit 7							bi
Legend:							
R = Readab	ole bit	W = Writable	e bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is un	changed	x = Bit is unl	known	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is s	et	'0' = Bit is cl	eared				
	l lus incur la un	antadi Daad aa	(o)				
bit 7-5	-	ented: Read as		laction bita	DODTA		DODTO
bit 4-0	11xxx = R	I:0>: Pin Rxy Ou	ilput Source Se	ection bits	PORTA	PORTB	PORTC
		xy source is C2			х		Х
		xy source is C2			X		X
		xy source is DT				Х	Х
		xy source is TX				Х	Х
	10100 = R		OR				
	10011 = R						
		xy source is SD	(1) مחא			N/	V
		xy source is SC				X X	X X
	10000 - 10		NOOL			~	~
	01111 = R	xy source is PW	/M4OUT			х	Х
		xy source is PW				Х	Х
		xy source is CC				Х	Х
		xy source is CC				Х	Х
		xy source is CO				Х	Х
		xy source is CO				Х	Х
		xy source is CO				X	Х
		xy source is CO				Х	Х
	00111 - D		1 out				X
		xy source is LC	_			X X	X
		xy source is LC	_		×	X	X
		xy source is LC	_		X X		X X
		xy source is LC			×		X
		xy source is NC	O1_out		X		χ
	00010 = R						
	00001 = R				Х	х	Х
	00000 = R	xy source is LA	іху				
	Example: F	RC3PPS = 0x0D	outputs CCP2	on RC3			
	Outputs are	e available only	on those ports	indicated with			
			-				

REGISTER 12-2: RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER

a check.

Note 1: TRIS control is overridden by the peripheral as required.

18.5.4 RISING EVENT DEAD-BAND

Rising event dead band delays the turn-on of the primary outputs from when complementary outputs are turned off. The rising event dead-band time starts when the rising_ event output goes true.

See Section 18.5.1, Asynchronous Delay Chain Dead-band Delay and Section 18.5.2, Synchronous Counter Dead-band Delay for more information on setting the rising edge dead-band time.

18.5.5 FALLING EVENT DEAD-BAND

Falling event dead band delays the turn-on of complementary outputs from when the primary outputs are turned off. The falling event dead-band time starts when the falling event output goes true.

See Section 18.5.1, Asynchronous Delay Chain Dead-band Delay and Section 18.5.2, Synchronous Counter Dead-band Delay for more information on setting the rising edge dead-band time.

18.5.6 DEAD-BAND OVERLAP

There are two cases of dead-band overlap:

- Rising-to-falling
- Falling-to-rising

18.5.6.1 Rising-to-Falling Overlap

In this case, the falling event occurs while the rising event dead-band counter is still counting. When this happens, the primary drives are suppressed and the dead-band extends by the falling event dead-band time. At the termination of the extended dead-band time, the complementary drive goes true.

18.5.6.2 Falling-to-Rising Overlap

In this case, the rising event occurs while the falling event dead-band counter is still counting. When this happens, the complementary drive is suppressed and the dead-band extends by the rising event dead-band time. At the termination of the extended dead-band time, the primary drive goes true.

18.6 Blanking Control

Input blanking is a function, whereby, the event inputs can be masked or blanked for a short period of time. This is to prevent electrical transients caused by the turn-on/off of power components from generating a false input event.

The COG contains two blanking counters: one triggered by the rising event and the other triggered by the falling event. The counters are cross coupled with the events they are blanking. The falling event blanking counter is used to blank rising input events and the rising event blanking counter is used to blank falling input events. Once started, blanking extends for the time specified by the corresponding blanking counter. Blanking is timed by counting COG_clock periods from zero up to the value in the blanking count register. Use Equation 18-1 to calculate blanking times.

18.6.1 FALLING EVENT BLANKING OF RISING EVENT INPUTS

The falling event blanking counter inhibits rising event inputs from triggering a rising event. The falling event blanking time starts when the rising event output drive goes false.

The falling event blanking time is set by the value contained in the COGxBLKF register (Register 18-13). Blanking times are calculated using the formula shown in Equation 18-1.

When the COGxBLKF value is zero, falling event blanking is disabled and the blanking counter output is true, thereby, allowing the event signal to pass straight through to the event trigger circuit.

18.6.2 RISING EVENT BLANKING OF FALLING EVENT INPUTS

The rising event blanking counter inhibits falling event inputs from triggering a falling event. The rising event blanking time starts when the falling event output drive goes false.

The rising event blanking time is set by the value contained in the COGxBLKR register (Register 18-12).

When the COGxBLKR value is zero, rising event blanking is disabled and the blanking counter output is true, thereby, allowing the event signal to pass straight through to the event trigger circuit.

18.6.3 BLANKING TIME UNCERTAINTY

When the rising and falling sources that trigger the blanking counters are asynchronous to the COG_clock, it creates uncertainty in the blanking time. The maximum uncertainty is equal to one COG_clock period. Refer to Equation 18-1 and Example 18-1 for more detail.

18.7 Phase Delay

It is possible to delay the assertion of either or both the rising event and falling events. This is accomplished by placing a non-zero value in COGxPHR or COGxPHF phase-delay count register, respectively (Register 18-14 and Register 18-15). Refer to Figure 18-10 for COG operation with CCP1 and phase delay. The delay from the input rising event signal switching to the actual assertion of the events is calculated the same as the dead-band and blanking delays. Refer to Equation 18-1.

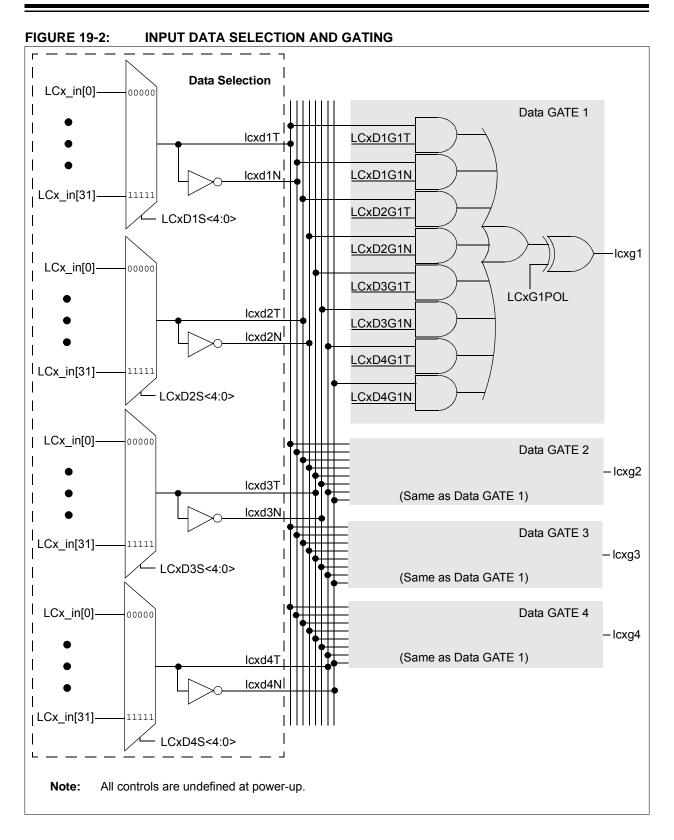
When the phase-delay count value is zero, phase delay is disabled and the phase-delay counter output is true, thereby, allowing the event signal to pass straight through to the complementary output driver flop.

^{© 2013-2016} Microchip Technology Inc.

REGISTER 18-4: COGxRSIM: COG RISING EVENT SOURCE INPUT MODE REGISTER

bit 0

GxRSIM0: COGx Rising Event Input Source 0 Mode bit


<u>GxRIS0 = 1:</u>

- 1 = Pin selected with COGxPPS control low-to-high transition will cause a rising event after rising event phase delay
- 0 = Pin selected with COGxPPS control high level will cause an immediate rising event

<u>GxRIS0 = 0:</u>

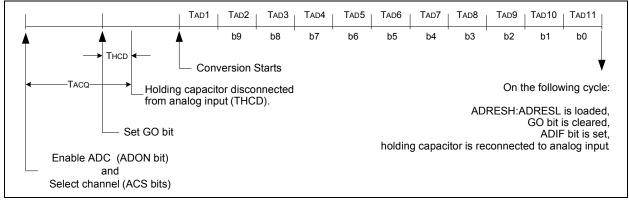
Pin selected with COGxPPS control has no effect on rising event

PIC16(L)F1713/6

TABLE 21-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock P	eriod (TAD)	Device Frequency (Fosc)								
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz			
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs			
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs			
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾			
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾			
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽²⁾			
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽²⁾	64.0 μs ⁽²⁾			
FRC	x11	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)							

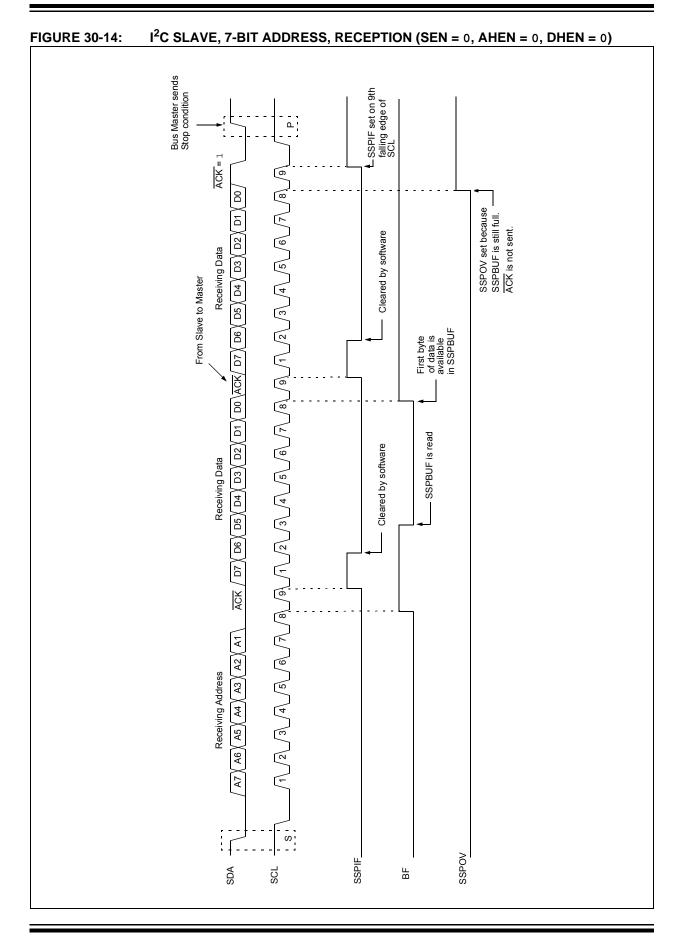
Legend: Shaded cells are outside of recommended range.


Note 1: See TAD parameter for FRC source typical TAD value.

2: These values violate the required TAD time.

3: Outside the recommended TAD time.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.



27.5 Register Definitions: Timer2 Control

REGISTER 27-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
		T2OUTF	PS<3:0>		TMR2ON	T2CKF	'S<1:0>		
bit 7							bit (
Legend:									
R = Readab	le bit	W = Writable	hit	U = Unimpler	nented bit, read	as '0'			
u = Bit is un		x = Bit is unkr		•	at POR and BO		other Resets		
'1' = Bit is se	-	'0' = Bit is clea							
1 Ditio ot									
bit 7	Unimpleme	nted: Read as '	0'						
bit 6-3	T2OUTPS<	3:0>: Timer2 Ou	tput Postscale	er Select bits					
	1111 = 1 :16	Postscaler							
	1110 = 1:15	Postscaler							
	1101 = 1:14								
	1100 = 1:13 Postscaler								
	1011 = 1:12 Postscaler								
	1010 = 1:11 Postscaler								
	1001 = 1:10 Postscaler 1000 = 1:9 Postscaler								
	0111 = 1:8								
	0110 = 1:7								
	0101 = 1:6								
	0100 = 1:5								
	0011 = 1:4								
	0010 = 1:3 I	Postscaler							
	0001 = 1:2 I	Postscaler							
	0000 = 1:1 	Postscaler							
bit 2	TMR2ON: T	ïmer2 On bit							
	1 = Timer2 0 = Timer2								
bit 1-0	T2CKPS<1:0>: Timer2 Clock Prescale Select bits								
	11 = Presca	ler is 64							
	10 = Presca	ler is 16							
	01 = Presca								
	00 = Presca								

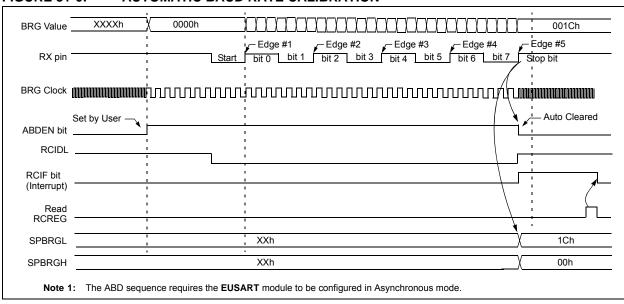
PIC16(L)F1713/6

31.4.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDCON register starts the auto-baud calibration sequence. While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Figure 31-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH, SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.


The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 31-6. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 31.4.3 "Auto-Wake-up on Break").
 - It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the auto-baud counter starts counting at one. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

TABLE 31-6: BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of the BRG16 setting.

FIGURE 31-6: AUTOMATIC BAUD RATE CALIBRATION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	126
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2		—	131
BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	349
CKPPS	—		—			CKPPS<4:0>			136
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	83
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	84
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	87
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	348
RxyPPS	—	_	—		137				
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	125
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	130
TX1REG	EUSART Transmit Data Register							339*	
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	347

TABLE 31-9:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE
TRANSMISSION

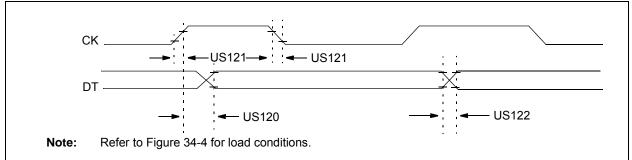
Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave transmission.

* Page provides register information.

TABLE 34-4: I/O PORTS

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage					
		I/O PORT:					
D034		with TTL buffer	—	_	0.8	V	$4.5V \le V\text{DD} \le 5.5V$
D034A				_	0.15 VDD	V	$1.8V \le V\text{DD} \le 4.5V$
D035		with Schmitt Trigger buffer	—	_	0.2 Vdd	V	$2.0V \le V\text{DD} \le 5.5V$
		with I ² C levels	_	_	0.3 VDD	V	
		with SMBus levels	—	_	0.8	V	$2.7V \leq V\text{DD} \leq 5.5V$
D036		MCLR, OSC1 (EXTRC mode)	—	_	0.2 VDD	V	(Note 1)
D036A		OSC1 (HS mode)	—	_	0.3 Vdd	V	
	Vih	Input High Voltage					
		I/O ports:					
D040		with TTL buffer	2.0	_	—	V	$4.5V \leq V\text{DD} \leq 5.5V$
D040A			0.25 VDD + 0.8	_	-	V	$1.8V \le V\text{DD} \le 4.5V$
D041		with Schmitt Trigger buffer	0.8 VDD	_	_	V	$2.0V \leq V\text{DD} \leq 5.5V$
		with I ² C levels	0.7 VDD	_	_	V	
		with SMBus levels	2.1	_	_	V	$2.7V \le V\text{DD} \le 5.5V$
D042		MCLR	0.8 Vdd	_	_	V	
D043A		OSC1 (HS mode)	0.7 VDD	_	_	V	
D043B		OSC1 (EXTRC oscillator)	0.9 VDD	_	_	V	VDD > 2.0V(Note 1)
	lı∟	Input Leakage Current ⁽²⁾					
D060		I/O Ports	—	± 5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C
			—	± 5	± 1000	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 125°C
D061		MCLR ⁽³⁾	—	± 5	± 200	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C
	IPUR	Weak Pull-up Current					
D070*			25	100	200	μA	VDD = 3.3V, VPIN = VSS
			25	140	300	μΑ	VDD = 5.0V, VPIN = VSS
	Vol	Output Low Voltage ⁽⁴⁾					
D080		I/O ports	_	_	0.6	V	IOL = 8mA, VDD = 5V IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V
	Voн	Output High Voltage ⁽⁴⁾			•		•
D090		I/O ports	VDD - 0.7	_	_	V	IOH = 3.5mA, VDD = 5V IOH = 3mA, VDD = 3.3V IOH = 1mA, VDD = 1.8V
		Capacitive Loading Specs on	Output Pins		1	l	, -
D101*	COSC2	OSC2 pin	_	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101A*	Сю	All I/O pins			50	рF	

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are † not tested.


Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in EXTRC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

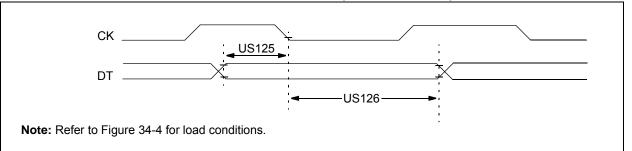


TABLE 34-22: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard	d Operating C					
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US120	ТскН2ртV	SYNC XMIT (Master and Slave) Clock high to data-out valid		80	ns	$3.0V \le V\text{DD} \le 5.5V$
			—	100	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US121	TCKRF	Clock out rise time and fall time (Master mode)	_	45	ns	$3.0V \leq V\text{DD} \leq 5.5V$
			_	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US122	TDTRF	DTRF Data-out rise time and fall time	—	45	ns	$3.0V \le V\text{DD} \le 5.5V$
			_	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$

FIGURE 34-16: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

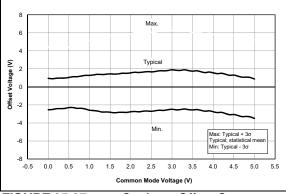


TABLE 34-23: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Standar	Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol Characteristic		Min.	Max.	Units	Conditions			
US125	TDTV2CKL	SYNC RCV (Master and Slave) Data-setup before CK \downarrow (DT hold time)	10		ns				
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15		ns				

PIC16(L)F1713/6

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 35-97: Op Amp, Offset Over Common Mode Voltage, VDD = 5.0V, Temp. = 25°C, PIC16F1713/6 Only.

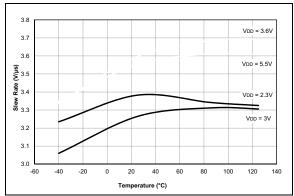
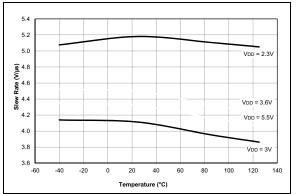
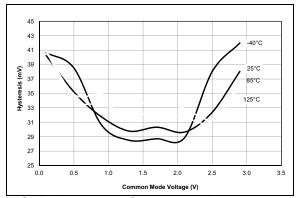
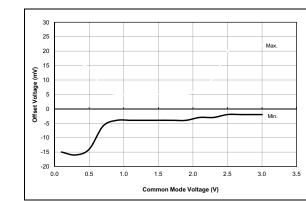


FIGURE 35-98: Op Amp, Output Slew Rate, Rising Edge, PIC16F1713/6 Only.

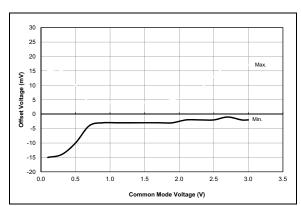

FIGURE 35-99: Op Amp, Output Slew Rate, Falling Edge, PIC16F1713/6 Only.

FIGURE 35-100: Comparator Hysteresis, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values.

FIGURE 35-102: Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values From -40°C to 125°C.

FIGURE 35-101: Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values at 25°C.

NOTES: