

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1716-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-6: PIC16(L)F1716 MEMORY MAP, BANK 8-23

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	Core Registers (Table 3-2)	480h	Core Registers (Table 3-2)	500h	Core Registers (Table 3-2)	580h	Core Registers (Table 3-2)	600h	Core Registers (Table 3-2)	680h	Core Registers (Table 3-2)	700h	Core Registers (Table 3-2)	780h	Core Registers (Table 3-2)
40Bh	(/	48Bh	(50Bh	(,	58Bh	(,	60Bh	(/	68Bh	(,	70Bh	(/	78Bh	(/
40Ch	_	48Ch		50Ch		58Ch		60Ch		68Ch		70Ch		78Ch	
40Dh	_	48Dh	_	50Dh	_	58Dh	_	60Dh	_	68Dh	_	70Dh	_	78Dh	_
40Eh	_	48Eh	_	50Eh	_	58Eh	_	60Eh	_	68Eh	_	70Eh	_	78Eh	_
40Fh	_	48Fh	_	50Fh	_	58Fh	_	60Fh	_	68Fh	_	70Fh	_	78Fh	_
410h	_	490h	_	510h	—	590h	—	610h	_	690h	—	710h	_	790h	—
411h	_	491h	—	511h	OPA1CON	591h	_	611h	_	691h	COG1PHR	711h	—	791h	_
412h	_	492h	—	512h	-	592h		612h	_	692h	COG1PHF	712h	_	792h	-
413h	—	493h	—	513h	—	593h	—	613h	—	693h	COG1BLKR	713h	—	793h	—
414h	_	494h	_	514h		594h		614h	_	694h	COG1BLKF	714h	_	794h	
415h	TMR4	495h	_	515h	OPA2CON	595h	_	615h	—	695h	COG1DBR	715h	—	795h	_
416h	PR4	496h	—	516h	—	596h	—	616h	—	696h	COG1DBF	716h	—	796h	—
417h	T4CON	497h		517h		597h	_	617h	PWM3DCL	697h	COG1CON0	717h	_	797h	
418h	_	498h	NCO1ACCL	518h		598h	_	618h	PWM3DCH	698h	COG1CON1	718h	_	798h	
419h	_	499h	NCO1ACCH	519h	—	599h	—	619h	PWM3CON	699h	COG1RIS	719h	_	799h	—
41Ah	_	49Ah	NCO1ACCU	51Ah		59Ah		61Ah	PWM4DCL	69Ah		71Ah	_	79Ah	
41Bh	-	49Bh	NCOTINCL	51Bh	—	59Bh	—	61Bh	PWM4DCH	69Bh	COGIFIS	71Bh	—	79Bh	—
41Ch	TMR6	49Ch	NCOTINCH	51Ch	—	59Ch	—	61Ch	PWM4CON	69Ch		71Ch	—	79Ch	—
41Dh	PR6	49Dh	NCOTINCU	51Dh	—	59Dh	—	61Dh	—	69Dh		/1Dh	—	79Dh	—
41Eh	16CON	49Eh	NCO1CON	51Eh	—	59Eh	—	61Eh	—	69Eh	COGIASDI	/1Eh	—	79Eh	—
41Fn 420h	—	49Fn 440h	NCOTCLK	51FN 520h	—	59Fn 5∆0h	—	620h		69FN	COGISTR	71FN 720h	_	79⊢n 7∆0h	
42011	. .	7/1011	. .	02011	a .	0/1011	a .	02011	General Purpose	0/1011		72011		77,011	
	General		General		General		General		48 Bytes		Unimplemented		Linimalamented		Unimplemented
	Puipose Register		Pagister		Pagister		Pagister	64Fh	10 2 3 100		Dhimplemented Read as '∩'				Dhimplemented Read as '∩'
	80 Bytes		80 Bytes		80 Bytes		80 Bytes	•	Unimplemented		Redu do 0		itedu do 0		Redu do 0
46 C h	00 29,000	455h	00 29100	FOL	00 29,000	FFFh	00 29,000	COLP	Read as '0'	6C.C.h		7656		7556	
40F11 470b		4EF11 4E0b		570h				670h		6E0b		70FII 770h		7E0h	
47011		41 011		57011		51 011	•	07011	•	01 011		77011	A	71 011	A
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	7011 - 7711		7011-7711		7011 - 7711		7011 - 7711		7011 - 7711		7011 - 7711		7011 - 7711		7011 - 7711
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	
-	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h		880h		900h		980h		A00h		A80h		B00h		B80h	
	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
	(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)
80Bh		88Bh		90Bh		98Bh		A0Bh		A8Bh		B0Bh		B8Bh	
80Ch		88Ch		90Ch		98Ch		A0Ch		A8Ch		B0Ch		B8Ch	
	Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented
	Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
870h		8F0h		970h		9F0h		A70h		AF0h		B70h		BF0h	
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
87Fh		8FFh		97Fh		9FFh		A7Fh		AFFh		B7Fh		BFFh	

Legend: = Unimplemented data memory locations, read as '0'.

5.3 Register Definitions: BOR Control

REGISTER 5-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	R/W-0/u	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	BORFS ⁽¹⁾	—	—	—	—	—	BORRDY
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-out Reset Enable bit
	If BOREN <1:0> in Configuration Words ≠ 01:
	SBOREN is read/write, but has no effect on the BOR.
	If BOREN <1:0> in Configuration Words = 01:
	1 = BOR Enabled
	0 = BOR Disabled
bit 6	BORFS: Brown-out Reset Fast Start bit ⁽¹⁾
	<u>If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off)</u>
	BORFS is Read/Write, but has no effect.
	If BOREN <1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):
	 1 = Band gap is forced on always (covers sleep/wake-up/operating cases)
	0 = Band gap operates normally, and may turn off
bit 5-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-out Reset Circuit Ready Status bit
	1 = The Brown-out Reset circuit is active
	0 = The Brown-out Reset circuit is inactive

Note 1: BOREN<1:0> bits are located in Configuration Words.

8.0 POWER-DOWN MODE (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running, if enabled for operation during Sleep.
- 2. PD bit of the STATUS register is cleared.
- 3. $\overline{\text{TO}}$ bit of the STATUS register is set.
- 4. CPU clock is disabled.
- 5. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may continue operation in Sleep.
- 6. Timer1 and peripherals that operate from Timer1 continue operation in Sleep when the Timer1 clock source selected is:
 - LFINTOSC
 - T1CKI
 - Secondary oscillator
- 7. ADC is unaffected, if the dedicated FRC oscillator is selected.
- I/O ports maintain the status they had before SLEEP was executed (driving high, low or high-impedance).
- 9. Resets other than WDT are not affected by Sleep mode.

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- · Internal circuitry sourcing current from I/O pins
- · Current draw from pins with internal weak pull-ups
- Modules using 31 kHz LFINTOSC
- · Modules using secondary oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 22.0 "Operational Amplifier (OPA) Modules" and Section 14.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

8.1 Wake-up from Sleep

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled
- 3. POR Reset
- 4. Watchdog Timer, if enabled
- 5. Any external interrupt
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information)

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 5.12 "Determining the Cause of a Reset"**.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

8.2 Low-Power Sleep Mode

The PIC16F1713/6 device contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode. The PIC16F1713/6 allows the user to optimize the operating current in Sleep, depending on the application requirements.

A Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register. With this bit set, the LDO and reference circuitry are placed in a low-power state when the device is in Sleep.

8.2.1 SLEEP CURRENT VS. WAKE-UP TIME

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

8.2.2 PERIPHERAL USAGE IN SLEEP

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The Low-Power Sleep mode is intended for use only with the following peripherals:

- Brown-out Reset (BOR)
- Watchdog Timer (WDT)
- · External interrupt pin/Interrupt-on-change pins
- Timer1 (with external clock source < 100 kHz)

Note: The PIC16LF1713/6 does not have a configurable Low-Power Sleep mode. PIC16LF1713/6 is an unregulated device and is always in the lowest power state when in Sleep, with no wake-up time penalty. This device has a lower maximum VDD and I/O voltage than the PIC16F1713/6. Section 34.0 See "Electrical Specifications" for more information.

FIGURE 18-12	FULL -BRIDGE FORWARD MODE COG OPERATION WITH CCP1

CCP1	
COGxA	
COGxB	
COGxC	
COGxD	

FIGURE 18-13: FULL-BRIDGE MODE COG OPERATION WITH CCP1 AND DIRECTION CHANGE

CCP1		I		
COGxA			Dood Dood	
COGxB				
COGxC			 	
COGxD		1		
CxMD0				

Г

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
GxRIS7	GxRIS6	GxRIS5	GxRIS4	GxRIS3	GxRIS2	GxRIS1	GxRIS0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets			
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	pends on condit	ion				
bit 7	GxRIS7: COO	Gx Rising Ever	t Input Source	e 7 Enable bit						
	1 = NCO1_0	ut is enabled a	s a rising eve	nt input						
	$0 = NCO1_0$	ut has no effec	t on the rising	event						
bit 6	GxRIS6: COO	Gx Rising Even	it Input Source	e 6 Enable bit						
	$\perp = PWM3 of 0 = PWM3 has 10$	utput is enable as no effect on	d as a rising e the rising eve	event input						
bit 5	GxRIS5: COO	Gx Rising Ever	t Input Source	e 5 Enable bit						
	1 = CCP2 ou	Itput is enabled	l as a rising ev	vent input						
	0 = CCP2 ou	itput has no eff	ect on the risi	ng event						
bit 4	GxRIS4: COO	Gx Rising Ever	t Input Source	e 4 Enable bit						
	1 = CCP1 is	enabled as a r	nabled as a rising event input							
	0 = CCP1 ha	as no effect on	the rising ever	nt						
bit 3	GxRIS3: COO	Gx Rising Ever	It Input Source	e 3 Enable bit						
	1 = CLC1 ou 0 = CLC1 ou	tput is enabled	as a rising ev	ent input						
hit 2		Gy Rising Even	t Input Source	2 Enable bit						
Dit 2	1 = Compara	arator 2 output is enabled as a rising event input								
	0 = Compara	ator 2 output ha	is no effect on	the rising ever	nt					
bit 1	GxRIS1: COO	Gx Rising Ever	t Input Source	e 1 Enable bit						
	1 = Compara	ator 1 output is	enabled as a	rising event inp	out					
	0 = Compara	ator 1 output ha	is no effect on	the rising ever	nt					
bit 0	GxRIS0: COO	Gx Rising Ever	t Input Source	e 0 Enable bit						
	1 = Pin select	ted with COG	PPS control r	egister is enab	led as rising ev	ent input				
	v = Pin selec			ias no enect of	i the fishing ever	IL				

REGISTER 18-3: COGxRIS: COG RISING EVENT INPUT SELECTION REGISTER

REGISTER 18-14: COGxPHR: COG RISING EDGE PHASE DELAY COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	_			GxPH	R<5:0>		
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6	Unimplemented: Read as '0'
---------	----------------------------

bit 5-0

bit 5-0

GxPHR<5:0>: Rising Edge Phase Delay Count Value bits

= Number of COGx clock periods to delay rising edge event

REGISTER 18-15: COGxPHF: COG FALLING EDGE PHASE DELAY COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
—	—		GxPHF<5:0>							
bit 7							bit 0			

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'

GxPHF<5:0>: Falling Edge Phase Delay Count Value bits

= Number of COGx clock periods to delay falling edge event

REGISTER 19-3: CLCxSEL0: GENERIC CLCx DATA 1 SELECT REGISTER

U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	_	—			LCxD1S<4:0>	•	
bit 7							bit 0
Legend:							
R = Readable bit W = Writa		W = Writable b	oit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unchanged x = Bit is u		x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-5	Unimplemented: Read as '0	,

bit 4-0	LCxD1S<4:0>: CLCx Data1 Input Selection bits
	See Table 19-1.

REGISTER 19-4: CLCxSEL1: GENERIC CLCx DATA 2 SELECT REGISTER

U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—			LCxD2S<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 LCxD2S<4:0>: CLCx Data 2 Input Selection bits See Table 19-1.

REGISTER 19-5: CLCxSEL2: GENERIC CLCx DATA 3 SELECT REGISTER

U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—			LCxD3S<4:0>	>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 LCxD3S<4:0>: CLCx Data 3 Input Selection bits See Table 19-1.

21.4 ADC Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 21-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 21-4. **The maximum recommended impedance for analog sources is 10 k** Ω . As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 21-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 21-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} ; [1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} ; [2] V_{CHOLD} charge response to V_{APPLIED} V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) ; combining [1] and [2]$$

Note: Where n = number of bits of the ADC.

Solving for TC:

$$Tc = -CHOLD(RIC + RSS + RS) \ln(1/2047)$$

= $-10pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)$
= $1.37\mu s$

Therefore:

$$TACQ = 2\mu s + 892ns + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.62\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

FIGURE 23-2:

VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

28.9 Register Definitions: ZCD Control

REGISTER 28-1: ZCDxCON: ZERO-CROSS DETECTION CONTROL REGISTER

R/W-0/0	U-0	R-x/x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
ZCDxEN	—	ZCDxOUT	ZCDxPOL	—	—	ZCDxINTP	ZCDxINTN
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	nented bit, reac	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = value dep	ends on config	uration bits	
bit 7	ZCDxEN: Zer	o-Cross Detec	tion Enable bi	t(1)			
	1 = Zero-cros	s detect is ena	bled. ZCD pir	n is forced to o	utput to source	and sink currer	nt.
h:+ 0	0 = 2 ero-cros			n operates acc	fording to PPS a	and TRIS contro	OIS.
DIT 6	Unimplement	ted: Read as "	0.				
bit 5	ZCDxOUT: Ze	ero-Cross Dete	ction Logic Le	evel bit			
	ZCDxPOL bit	<u>= 0</u> :					
	1 = 2CD pin i	is sinking curre	nt				
	7CDxPOL hit		ent				
	1 = ZCD pin i	<u> </u>	rent				
	0 = ZCD pin i	is sinking curre	nt				
bit 4	ZCDxPOL: Ze	ero-Cross Dete	ction Logic O	utput Polarity b	bit		
	1 = ZCD logic	c output is inve	rted				
	$0 = ZCD \log c$	c output is not i	nverted				
bit 3-2	Unimplement	ted: Read as '	כ'				
bit 1	ZCDxINTP: Z	ero-Cross Pos	itive Edge Inte	errupt Enable b	oit		
	1 = ZCDIF bit	t is set on low-	to-high ZCDx	_output transiti	on		
	0 = ZCDIF bit	t is unaffected	by low-to-high	IZCDx_output	transition		
bit 0	ZCDxINTN: Z	ero-Cross Neg	ative Edge In	terrupt Enable	bit		
	1 = ZCDIF bit	t is set on high	-to-low ZCDx	output transiti	on		
••••		t is unaffected	by nigh-to-low	/ ZCDx_output	transition		
Note 1: The	ZCDxEN bit ha	as no effect wh	en the ZCDD	IS Configuratio	on bit is cleared.		

TABLE 28-1:	SUMMARY OF REGISTERS	ASSOCIATED WITH THE ZCD MODULE
-------------	----------------------	--------------------------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PIE3	—	—	COGIE	ZCDIE	_	—	—	—	86
PIR3	—	—	CWGIF	ZCDIF	_	—	—	—	89
ZCD1CON	ZCD1EN	—	ZCD10UT	ZCD1POL		—	ZCD1INTP	ZCD1INTN	276

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.

TABLE 28-2: SUMMARY OF CONFIGURATION WORD WITH THE ZCD MODULE

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG2	13:8		—	LVP	DEBUG	LPBOR	BORV	STVREN	PLLEN	49
	7:0	ZCDDIS	_	_	—	_	—	WRT	<1:0>	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the ZCD module.

FIGURE 30-9:	SPI N	IODE W	AVEFO	RM (SL	AVE MC	DE WIT	HCKE	= 0)			
	×										, januar Je
											: : : :
				· ·	, ,		4 4 		> > 		:
	:)) ; }	5 5 5 5	: : : :	; ; ;	9 9 9 8	« « «	e e o o	: : : : :	· · ·
		V 32.7	K 68.6	X 88 8 ,	X 338 4	X 88.3	X 338.2 ,	X. v		: 	···t. • • • • • • • • • • • • • • • • • • •
- 550%	· · · ·			; ,,		,	; naa ////////// ; ;	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		//////////////////////////////////////	:
itapati Secregies	· · · · · · · · · · · · · · · · · · ·	. 40. 			40. 	. <i>14</i> ,	, 19. 		s 5 - 4 2	%.	
SSPP Interrupt Pisco	: : :		• 6 9 9	- 	• • • •		- - 	- - - 	e 2 2 2 4		
	· . 		2 6	, ; ; ,	, 5 5 		, 2 2 2,	5 7 7	· • : • :		
Virite Codisson Generation ective					*******						

FIGURE 30-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

FIGURE 31-2: EUSART RECEIVE BLOCK DIAGRAM

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These registers are detailed in Register 31-1, Register 31-2 and Register 31-3, respectively.

The RX and CK input pins are selected with the RXPPS and CKPPS registers, respectively. TX, CK, and DT output pins are selected with each pin's RxyPPS register. Since the RX input is coupled with the DT output in Synchronous mode, it is the user's responsibility to select the same pin for both of these functions when operating in Synchronous mode. The EUSART control logic will control the data direction drivers automatically.

31.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 6.2.2.3 "Internal Oscillator Frequency Adjustment"** for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 31.4.1** "**Auto-Baud Detect**"). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

31.3 Register Definitions: EUSART Control

REGISTER 31-1: TX1STA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit 0
							J
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Re							other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	CSRC: Clock Asynchronous Don't care Synchronous 1 = Master r 0 = Slave m	Source Select <u>s mode</u> : <u>mode</u> : node (clock ge ode (clock fron	bit nerated interr n external sou	nally from BRG Irce))		
bit 6	TX9: 9-bit Tra 1 = Selects 0 = Selects	ansmit Enable I 9-bit transmiss 8-bit transmiss	pit ion ion	,			
bit 5	TXEN: Transi 1 = Transmit 0 = Transmit	mit Enable bit ⁽¹ enabled disabled)				
bit 4	SYNC: EUSA 1 = Synchror 0 = Asynchror	ART Mode Sele nous mode onous mode	ct bit				
bit 3	SENDB: Sen Asynchronous 1 = Send Syn 0 = Sync Bre Synchronous Don't care	d Break Chara <u>s mode</u> : nc Break on ne ak transmissio <u>mode</u> :	cter bit xt transmissio n completed	on (cleared by	hardware upon o	completion)	
bit 2	BRGH: High Asynchronous 1 = High spe 0 = Low spea Synchronous Unused in this	Baud Rate Sel <u>s mode</u> : ed ed <u>mode:</u> s mode	ect bit				
bit 1	TRMT: Transi 1 = TSR emp 0 = TSR full	mit Shift Regist oty	er Status bit				
bit 0	TX9D: Ninth I Can be addre	bit of Transmit ess/data bit or a	Data ı parity bit.				
Note 1: SR	EN/CREN over	rides TXEN in	Sync mode.				

TABLE 34-10. CERCUT AND 1/C THVIING FARAIVIETERS	TABLE 34-10:	CLKOUT	AND I/O	TIMING	PARAMETERS
--	--------------	--------	---------	--------	------------

Stanuar										
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—	—	70	ns	$3.3V \leq V\text{DD} \leq 5.0V$			
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	_	_	72	ns	$3.3V \leq V\text{DD} \leq 5.0V$			
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	_	20	ns				
OS14	TioV2ckH	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns	_	_	ns				
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	$3.3V \le V\text{DD} \le 5.0V$			
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	—	—	ns	$3.3V \le V\text{DD} \le 5.0V$			
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	—	—	ns				
OS18*	TioR	Port output rise time ⁽²⁾	_	40 15	72 32	ns	$\begin{array}{l} VDD = 1.8V \\ 3.3V \leq VDD \leq 5.0V \end{array}$			
OS19*	TioF	Port output fall time ⁽²⁾	_	28 15	55 30	ns	$\begin{array}{l} VDD \mbox{ = } 1.8V \\ 3.3V \leq VDD \leq 5.0V \end{array}$			
OS20*	Tinp	INT pin input high or low time	25			ns				
OS21*	Tioc	Interrupt-on-change new input level time	25		—	ns				

Standard Operating Conditions	(unless otherwise	stated)
-------------------------------	-------------------	---------

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in EXTRC mode where CLKOUT output is 4 x Tosc.

2: Slew rate limited.

TABLE 34-19: 8-BIT DIGITAL-TO-ANALOG CONVERTER (DAC1) SPECIFICATIONS

Operating Conditions (unless otherwise stated)

VDD = 3.0V, TA = 25°C

See Section 35.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
DAC01*	Clsb	Step Size	_	VDD/256	_	V	
DAC02*	CACC	Absolute Accuracy	_	—	± 1.5	LSb	
DAC03*	CR	Unit Resistor Value (R)	_	600	_	Ω	
DAC04*	CST	Settling Time ⁽¹⁾		—	10	μS	

* These parameters are characterized but not tested.

Note 1: Settling time measured while DACR<7:0> transitions from '0x00' to '0xFF'.

TABLE 34-20: 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC2) SPECIFICATIONS

Operating Conditions (unless otherwise stated)

VDD = 3.0V, TA = 25°C See Section 35.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
DAC05*	Clsb	Step Size		VDD/32	_	V	
DAC06*	CACC	Absolute Accuracy		—	± 0.5	LSb	
DAC07*	CR	Unit Resistor Value (R)	_	6000	_	Ω	
DAC08*	CST	Settling Time ⁽¹⁾		_	10	μS	

* These parameters are characterized but not tested.

Note 1: Settling time measured while DACR<7:0> transitions from ' $0 \times 00'$ to ' $0 \times FF'$.

TABLE 34-21: ZERO CROSS PIN SPECIFICATIONS

Operating Conditions (unless otherwise stated)

VDD = 3.0V, TA = 25°C

Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments	
ZC01	ZCPINV	Voltage on Zero Cross Pin	_	0.75	_	V		
ZC02	ZCSRC	Source current		600		μA		
ZC03	ZCSNK	Sink current		600		μA		
ZC04	Zcisw	Response Time Rising Edge	_	1	_	μS		
		Response Time Falling Edge	_	1	_	μS		
ZC05	ZCOUT	Response Time Rising Edge		1		μS		
		Response Time Falling Edge	_	1	_	μS		

* These parameters are characterized but not tested.

37.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			
	Dimension Limits			MAX	
Number of Pins		28			
Pitch	е		.100 BSC		
Top to Seating Plane	A	-	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	_	_	.430	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins		28			
Pitch	е		0.65 BSC		
Overall Height	Α	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	с	0.09	-	0.25	
Foot Angle	ø	0°	4°	8°	
Lead Width	b	0.22	_	0.38	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B