

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1716t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC16(L)F1713/6 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description		
RC4/AN16/SDI ⁽¹⁾ /SDA ⁽¹⁾	RC4	TTL/ST	CMOS	General purpose I/O.		
	AN16	AN	_	ADC Channel 16 input.		
	SDI	TTL/ST	_	SPI Data input		
	SDA	l ² C	_	I ² C Data input		
RC5/AN17	RC5	TTL/ST	CMOS	General purpose I/O.		
	AN17	AN	_	ADC Channel 17 input.		
RC6/AN18/CK ⁽¹⁾	RC6	TTL/ST	CMOS	General purpose I/O.		
	AN16	AN	_	ADC Channel 16 input.		
	СК	TTL/ST		EUSART synchronous clock		
RC7/AN19/RX ⁽¹⁾	RC7	TTL/ST	CMOS	General purpose I/O.		
	AN18	AN	_	ADC Channel 18 input.		
	RX	TTL/ST	_	EUSART receive		
RE3/MCLR/VPP	RE3	TTL/ST	_	General purpose input.		
	MCLR	ST	_	Master clear input		
	Vpp	HV	_	Programming enable		
VDD	Vdd	Power	_	Positive supply		
Vss		Power	_	Ground reference		
OUT ⁽²⁾	C10UT		CMOS	Comparator 1 output		
	C2OUT		CMOS	Comparator 2 output		
	CCP1		CMOS	Compare/PWM1 output		
	CCP2		CMOS	Compare/PWM2 output		
	NCO10UT		CMOS	Numerically controlled oscillator output		
	PWM3OUT		CMOS	PWM3 output		
	PWM4OUT		CMOS	PWM4 output		
	COGA		CMOS	Complementary output generator output A		
	COGB		CMOS	Complementary output generator output B		
	COGC		CMOS	Complementary output generator output C		
	COGD		CMOS	Complementary output generator output D		
	SDA ⁽³⁾		OD	I ² C Data output		
	SCK		CMOS	SPI clock output		
	SCL ⁽³⁾		OD	I ² C clock output		
	SDO		CMOS	SPI data output		
	TX/CK		CMOS	EUSART asynchronous TX data/synchronous clock out		
	DT ⁽³⁾		CMOS	EUSART synchronous data output		
	CLC10UT		CMOS	Configurable logic cell 1 output		
	CLC2OUT		CMOS	Configurable logic cell 2 output		
	CLC3OUT		CMOS	Configurable logic cell 3 output		
	CLC4OUT		CMOS	Configurable logic cell 4 output		

Legend:AN = Analog input or outputCMOS = CMOS compatible input or outputOD= Open-DrainTTL = TTL compatible inputST= Schmitt Trigger input with CMOS levelsI²C= Schmitt Trigger input with I²CHV = High VoltageXTAL = Crystal levelsXTAL = Crystal levelsII

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.
 All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

3.3.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- the arithmetic status of the ALU
- · the Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

3.4 Register Definitions: Status

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u u1uu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPFand MOVWFinstructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to **Section 33.0** "Instruction Set Summary").

Note:	The C	C and DC	bits	opera	te as Borrow a	nd
	Digit	Borrow	out	bits,	respectively,	in
	subtra	action.				

REGISTER 3-1:	STATUS: STATUS REGISTER

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u
—	—	—	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion	
bit 7-5	Unimplemen	ted: Read as ')'				
bit 4	TO: Time-Out	t bit					
	1 = After pow	er-up, CLRWD	Tnstruction or	SLEEPinstruc	tion		
	0 = A WDT Ti	me-out occurre	ed				
bit 3	PD: Power-De	own bit					
	1 = After pow	er-up or by the	CLRWDTnstr	uction			
	0 = By execut	tion of the SLE	EPinstruction				
bit 2	Z: Zero bit						
	1 = The result	t of an arithmet	ic or logic ope	eration is zero			
	0 = 1 he result	t of an arithmet	ic or logic ope	eration is not ze	ero	(4)	
bit 1	DC: Digit Carry/Digit Borrow bit (ADDW,FADDLWSUBLWSUBWFinstructions) ⁽¹⁾						
	1 = A carry-ou	ut from the 4th	low-order bit o	of the result oc	curred		
	0 = No carry-0	out from the 4th	low-order bil	t of the result	(4)		
bit 0	C: Carry/Borr	ow bit ⁽¹⁾ (ADD\	v,Faddly,vsu	BLWSUBWFin	structions)(1)		
	1 = A carry-ou	ut from the Mos	t Significant b	bit of the result	occurred		
	0 = No carry-0	out from the Mo	ost Significant	bit of the resu	it occurred		

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand.

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Namo	D:4 7	Dit 6	Dit 5	Dit 4	Dit 2	Bit 2	Dit 1	Bit 0	Value on	Value on all
Addr	Name	DIT /	DIE 0	DIT 3	DIT 4	DIT 3	DIT 2	DICI	BILV	POR, BOR	Resets
Ban	k 2										· · · · · · · · · · · · · · · · · · ·
10Ch	LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx xxxx	uu -uuu
10Dh	LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX XXXX U	uuu
10Eh	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	XXXX XXXX U	սսս սսսս
10Fh	—	Unimplement	ed							_	—
110h	—	Unimplement	ed							_	—
111h	CM1CON0	C10N	C1OUT	_	C1POL	C1ZLF	C1SP	C1HYS	C1SYNC	00-0 0100	00-0 0100
112h	CM1CON1	C1INTP	C1INTN		C1PCH<2:0>			C1NCH<2:0>	•	0000 0000	0000 0000
113h	CM2CON0	C2ON	C2OUT	_	C2POL	C2ZLF	C2SP	C2HYS	C2SYNC	00-0 0100	00-0 0100
114h	CM2CON1	C2INTP	C2INTN		C2PCH<2:0>			C2NCH<2:0>	•	0000 0000	0000 0000
115h	CMOUT	—	—	_	—	_	—	MC2OUT	MC10UT	00	00
116h	BORCON	SBOREN	BORFS	_	—	_	—	—	BORRDY	10q uu-	u
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	R<1:0>	0000 00p0	0000 00p
118h	DAC1CON0	DAC1EN		DAC10E1	DAC10E2	DAC1PS	SS<1:0>		DAC1NSS	0-00 00-0	00 00-0
119h	DAC1CON1				DAC1	R<7:0>				0000 0000	0000 0000
11Ah	DAC2CON0	DAC2EN		DAC2OE1	DAC2OE2	DAC2PS	SS<1:0>	—	DAC2NSS	0-00 00-0	00 00-0
11Bh	DAC2CON1	—					DAC2R<4:0	>		0 0000	0 0000
11Ch	ZCD1CON	ZCD1EN		ZCD10UT	ZCD1POL			ZCD1INTP	ZCD1INTN	0-x000 0-	0000
11Dh	—	Unimplement	ed							—	_
11Eh	—	Unimplement	ed							—	_
11Fh	—	Unimplement	ed							—	_
Ban	k 3										
18Ch	ANSELA	—		ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	11 1111	1 1111
18Dh	ANSELB	—		ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11
18Eh	ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—		1111 11 1	111 1111
18Fh	—	Unimplement	ed							—	—
190h	—	Unimplement	ed							—	—
191h	PMADRL	Program Mer	mory Address	Register Low	Byte					0000 0000	0000 0000
192h	PMADRH	—	Program Mer	nory Address	Register High	Byte				1000 0000	000 0000
193h	PMDATL	Program Mer	nory Read Da	ta Register Lo	w Byte					xxxx xxxx u	սսս սսսս
194h	PMDATH	—	-	Program Mer	nory Read Dat	ta Register Hi	gh Byte			xx xxxxu	ս սսսս
195h	PMCON1	_	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	-000 x000 -(000 q000
196h	PMCON2	Program Mer	nory Control F	Register 2						0000 0000	000 0000
197h	VREGCON	_	_	_	_	_	_	VREGPM	Reserved	01	-01
198h	—	Unimplement	ed							—	_
199h	RC1REG	USART Rece	eive Data Regi	ster						0000 0000	000 0000
19Ah	TX1REG	USART Trans	smit Data Reg	ister						0000 0000	000 0000
19Bh	SP1BRGL				SP1BF	RG<7:0>				0000 0000	000 0000
19Ch	SP1BRGH				SP1BR	G<15:8>				0000 0000	000 0000
19Dh	RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0000	000 0000
19Eh	TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	000 0010
19Fh	BAUD1CON	ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN	01-0 0-00 0	1-0 0-00

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: Unimplemented on PIC16(L)F1713/6.

Value on all Value on Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Addr Name other POR, BOR Resets Bank 10 50Ch Unimplemented 510h OPA1SP 511h **OPA1CON OPA1EN** OPA1UG 00-0 --00 OPA1PCH<1:0> 00-0 --00 512h Unimplemented 514h 515h OPA2CON OPA2EN OPA2SP OPA2UG _ OPA2PCH<1:0> 00-0 --00 00-0 --00 516h Unimplemented 51Fh Bank 11 58Ch Unimplemented to 59Fh Bank 12 60Ch to Unimplemented 616h 617h PWM3DCL PWM3DC<1:0> _ хх-- ---uu-**PWM3DCH** 618h PWM3DCH<7:0> XXXX XXXX นนนน นนนน 619h PWM3CON **PWM3EN** PWM3OUT PWM3POL 0-x0 ---u-uu ----61Ah PWM4DCL PWM4DCL<1:0> xx-- ---uu--.... 61Bh PWM4DCH PWM4DCH<7:0> XXXX XXXX սսսս սսսս 61Ch PWM4CON PWM4EN PWM4OUT PWM4POL 0-x0 ---u-u ----61Dh Unimplemented 61Fh Bank 13 68Ch Unimplemented to 690h 691h COG1PHR COG Rising Edge Phase Delay Count Register _ --xx xxxx --uu uuuu 692h COG1PHF COG Falling Edge Phase Delay Count Register --xx xxxx --uu uuuu 693h COG1BLKR COG Rising Edge Blanking Count Register --uu uuuu --xx xxxx COG1BLKF 694h COG Falling Edge Blanking Count Register --xx xxxx --uu uuuu 695h COG1DBR _ _ COG Rising Edge Dead-band Count Register --uu uuuu -xx xxxx 696h COG1DBF COG Falling Edge Dead-band Count Register -xx xxxx --uu uuuu G1MD<2:0> 697h COG1CON0 G1EN G1LD G1CS<1:0> 00-0 0000 00-0 0000 698h COG1CON1 G1RDBS G1FDBS _ G1POLD G1POLC G1POLB G1POLA 00-- 0000 00-- 0000 _ 699h COG1RIS G1RIS7 G1RIS6 G1RIS5 G1RIS4 G1RIS3 G1RIS2 G1RIS1 G1RIS0 0000 0000 000 0000 69Ah COG1RSIM G1RSIM7 0000 0000 000 0000 G1RSIM6 G1RSIM5 G1RSIM4 G1RSIM2 G1RSIM0 G1RSIM3 G1RSIM1 69Bh COG1FIS G1FIS7 000 0000 G1FIS6 G1FIS1 0000 0000 G1FIS5 G1FIS4 G1FIS3 G1FIS2 G1FIS0 COG1FSIM 69Ch G1FSIM7 G1FSIM6 G1FSIM5 G1FSIM4 G1FSIM3 G1FSIM2 G1FSIM1 G1FSIM0 0000 0000 000 0000 69Dh COG1ASD0 G1ASE G1ARSEN G1ASDBD<1:0> G1ASDAC<1:0> 0001 01--0001 01--COG1ASD1 G1AS3E G1AS1E G1AS0E 69Eh _ G1AS2E ---- 0000 0000 69Fh COG1STR 0000 0001 0000 0001 G1SDATD G1SDATC G1SDATB G1SDATA G1STRD G1STRC G1STRB G1STRA

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-11:**

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved Shaded locations are unimplemented, read as '0'. Note

1: Unimplemented, read as '1'

2: Unimplemented on PIC16(L)F1713/6.

		D (A (A)	D # 4 / 0 / 0	D A A A A	D M M M M	D A A / A / A	D A A A A			
U-0	0-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
				TUN	<5:0>					
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7-6	Unimplemer	nted: Read as '	0'							
bit 5-0	TUN<5:0>: F	requency Tunir	ng bits							
	100000 = M	linimum frequer	ncy							
	•	-	-							
	•									
	•									
	111111 =									
	000000 = 0	scillator module	e is running at	the factory-call	brated frequen	су				
	•									
	•									
	•									
	011110 =									
	011111 = M	laximum freque	ncy							

REGISTER 6-3: OSCTUNE: OSCILLATOR TUNING REGISTER

TABLE 6-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF	-<3:0>		—	SCS	75	
OSCSTAT	SOSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	76
OSCTUNE	_	-		TUN<5:0>				77	
PIR2	OSFIF	C2IF	C1IF	—	BCL1IF	TMR6IF	TMR4IF	CCP2IF	88
PIE2	OSFIE	C2IE	C1IE	—	BCL1IE	TMR6IE	TMR4IE	CCP2IE	85
T1CON	TMR1C	:S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC		TMR10N	265

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 6-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8	—	_	FCMEN	IESO	CLKOUTEN	BOREI	N<1:0>	—	47
	7:0	CP	MCLRE	PWRTE	WD	ΓE<1:0>		FOSC<2:0>		47

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

REGISTER 13-11: IOCEN: INTERRUPT-ON-CHANGE PORTE NEGATIVE EDGE REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	U-0	U-0	U-0
_			_	IOCEN3			—
bit 7							bit 0

W = Writable bit	U = Unimplemented bit, read as '0'
x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'0' = Bit is cleared	
	W = Writable bit x = Bit is unknown '0' = Bit is cleared

bit 7-4	Unimplemented: Read as '0'
bit 3	 IOCEN: Interrupt-on-Change PORTE Negative Edge Enable bits 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCEFx bit and IOCIF flag will be set upon detecting an edge. 0 = Interrupt-on-Change disabled for the associated pin.
bit 2-0	Unimplemented: Read as '0'

REGISTER 13-12: IOCEF: INTERRUPT-ON-CHANGE PORTE FLAG REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	U-0	U-0	U-0
_			—	IOCEF3			—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4	Unimplemented: Read as '0'
bit 3	 IOCEF: Interrupt-on-Change PORTE Flag bits 1 = An enabled change was detected on the associated pin. Set when IOCEPx = 1 and a rising edge was detected on REx, or when IOCENx = 1 and a falling edge was detected on REx.
	0 = No change was detected, or the user cleared the detected change.
bit 2-0	Unimplemented: Read as '0'

Peripheral	Conditions	Description
HFINTOSC	FOSC<2:0> = 100 and IRCF<3:0> ≠ 000x	INTOSC is active and device is not in Sleep
	BOREN<1:0> = 11	BOR always enabled
BOR	BOREN<1:0> = 10 and BORFS = 1	BOR disabled in Sleep mode, BOR Fast Start enabled
	BOREN<1:0> = 01 and BORFS = 1	BOR under software control, BOR Fast Start enabled
LDO	All PIC16F1713/6 devices, when VREGPM = 1 and not in Sleep	The device runs off of the ULP regulator when in Sleep mode

TABLE 14-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)

14.3 Register Definitions: FVR Control

REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAFVR<1:0>		ADFV	R<1:0>
bit 7							bit 0

Legend:			
R = Read	able bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is	unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is	set	'0' = Bit is cleared	q = Value depends on condition
bit 7	FVREN: Fix 1 = Fixed \ 0 = Fixed \	ked Voltage Reference Enal /oltage Reference is enable /oltage Reference is disable	ble bit d ed
bit 6	FVRRDY: F 1 = Fixed \ 0 = Fixed \	ixed Voltage Reference Re /oltage Reference output is /oltage Reference output is	ady Flag bit ⁽¹⁾ ready for use not ready or not enabled
bit 5	TSEN: Tem 1 = Tempe 0 = Tempe	perature Indicator Enable b rature Indicator is enabled rature Indicator is disabled	_{iť} (3)
bit 4	TSRNG: Te 1 = Vout = 0 = Vout =	mperature Indicator Range VDD - 4VT (High Range) VDD - 2VT (Low Range)	Selection bit ⁽³⁾
bit 3-2	CDAFVR <1 11 = Comp 10 = Comp 01 = Comp 00 = Comp	I:0>: Comparator FVR Buffe arator FVR Buffer Gain is 4 arator FVR Buffer Gain is 2 arator FVR Buffer Gain is 1 arator FVR Buffer is off	er Gain Selection bits x, with output VCDAFVR = 4x VFVR ⁽²⁾ x, with output VCDAFVR = 2x VFVR ⁽²⁾ x, with output VCDAFVR = 1x VFVR
bit 1-0	ADFVR<1: 11 = ADC F 10 = ADC F 01 = ADC F 00 = ADC F	D>: ADC FVR Buffer Gain S FVR Buffer Gain is 4x, with a FVR Buffer Gain is 2x, with a FVR Buffer Gain is 1x, with a FVR Buffer is off	Gelection bit Dutput VADEVR = 4x VEVR ⁽²⁾ Dutput VADEVR = 2x VEVR ⁽²⁾ Dutput VADEVR = 1x VEVR
Note 1:	FVRRDY is alwa	ays '1' on PIC16(L)F1713/6	only.

- 2: Fixed Voltage Reference output cannot exceed VDD.
- 3: See Section 15.0 "Temperature Indicator Module" for additional information.

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVF	<1:0>	151

Legend: Shaded cells are not used with the Fixed Voltage Reference.

15.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDFV	R<1:0>	ADFVF	R<1:0>	151

Legend: Shaded cells are unused by the temperature indicator module.

FIGURE 18-8: COG (RISING/FALLING) DEAD-BAND BLOCK

FIGURE 23-2:

VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

27.6 CCP/PWM Clock Selection

The PIC16(L)F1713/6 allows each individual CCP and PWM module to select the timer source that controls the module. Each module has an independent selection.

As there are up to three 8-bit timers with auto-reload (Timer2, Timer4, and Timer6), PWM mode on the CCP and PWM modules can use any of these timers.

The CCPTMRS register is used to select which timer is used.

27.7 Register Definitions: CCP/PWM Timers Control

REGISTER 27-2: CCPTMRS: PWM TIMER SELECTION CONTROL REGISTER 0

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| P4TSE | L<1:0> | P3TSE | :L<1:0> | C2TSE | EL<1:0> | C1TSE | EL<1:0> |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unch	anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set		'0' = Bit is cleared	
hit 7 6		- DWM4 Timer Selection	
DIL 7-0	11 - Poson/		
	10 = PWM4 i	s based off Timer 6	
	01 = PWM4 i	s based off Timer 4	
	00 = PWM4 i	s based off Timer 2	
bit 5-4	P3TSEL<1:0	>: PWM3 Timer Selection	
	11 = Reserve	ed	
	10 = PWM3 i 01 = PWM3 i	s based off Timer 6	
	00 = PWM3 i	s based off Timer 2	
bit 3-2	C2TSEL<1:0	>: CCP2 (PWM2) Timer Sele	ction
	11 = Reserve	ed	
	10 = CCP2 is	based off Timer 6 in PWM m	node
	01 = CCP2 is	s based off Timer 4 in PWW m s based off Timer 2 in PWM m	lode
hit 1₋0		Subsect on Timer 2 in twinn	ction
bit 1-0	11 = Reserve	2. 001 1 (1 WW1) 11110 0010 24	
	10 = CCP1 is	based off Timer 6 in PWM m	node
	01 = CCP1 is	s based off Timer 4 in PWM m	ode
	00 = CCP1 is	s based off Timer 2 in PWM m	node

31.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCSTA register which resets the EUSART. Clearing the CREN bit of the RCSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

Note:	If all receive characters in the receive
	FIFO have framing errors, repeated reads
	of the RCREG will not clear the FERR bit.

31.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCSTA register or by resetting the EUSART by clearing the SPEN bit of the RCSTA register.

31.1.2.6 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

31.1.2.7 Address Detection

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCSTA register.

Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RCIF interrupt bit. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.

FIGURE 31-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

8898138138 889381388 		ξ · · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·
99099 	: : !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	: : : ::::::::::::::::::::::::::::::::	: : //////////////////////////////////		- Siyosots 1111111111111111111111111111111111	ton to Span B IIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIII	 99990 ² 111111111111111111111111111111111	

0: The 8348A87 reveales is ido while the VrDE bit is set

FIGURE 31-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RX/DT pin TX/CK pin (SCKP = 0)	
TX/CK pin	
SREN bit	.0,
RCIF bit (Interrupt)	
Note: Timing dia	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

TABLE 31-8: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	126
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2			131
BAUD1CON	ABDOVF	RCIDL	-	SCKP	BRG16	—	WUE	ABDEN	349
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	83
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	84
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	87
RC1REG	EUSART Receive Data Register								342*
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	348
RXPPS	—	—	_		136				
RxyPPS	_	—	_		137				
SP1BRGL	SP1BRG<7:0>							350*	
SP1BRGH	SP1BRG<15:8>								350*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	125
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	130
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	347

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

TABLE 34-4: I/O PORTS

Standard Operating Conditions (unless otherwise stated)										
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
	VIL Input Low Voltage									
I/O PORT:										
D034		with TTL buffer	—		0.8	V	$4.5V \le V \text{DD} \le 5.5V$			
D034A			_		0.15 VDD	V	$1.8V \le V \text{DD} \le 4.5V$			
D035		with Schmitt Trigger buffer	_		0.2 Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$			
		with I ² C levels	_	_	0.3 Vdd	V				
		with SMBus levels	_		0.8	V	$2.7V \leq V\text{DD} \leq 5.5V$			
D036		MCLR, OSC1 (EXTRC mode)	_		0.2 Vdd	V	(Note 1)			
D036A		OSC1 (HS mode)	_	_	0.3 Vdd	V				
	VIH	Input High Voltage								
		I/O ports:								
D040		with TTL buffer	2.0	_	_	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D040A			0.25 VDD + 0.8	—	—	V	$1.8V \leq V\text{DD} \leq 4.5V$			
D041		with Schmitt Trigger buffer	0.8 Vdd	_	_	V	$2.0V \le VDD \le 5.5V$			
		with I ² C levels	0.7 Vdd	_	_	V				
		with SMBus levels	2.1	_	_	V	$2.7V \le VDD \le 5.5V$			
D042		MCLR	0.8 Vdd	_	_	V				
D043A		OSC1 (HS mode)	0.7 Vdd	_	_	V				
D043B		OSC1 (EXTRC oscillator)	0.9 Vdd	_	_	V	VDD > 2.0V(Note 1)			
	lı∟	Input Leakage Current ⁽²⁾								
D060		I/O Ports	—	± 5	± 125	nA	Vss ≤ VPIN ≤ VDD, Pin at high-impedance, 85°C			
			—	± 5	± 1000	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 125°C			
D061		MCLR ⁽³⁾	—	± 5	± 200	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 85°C			
	IPUR	Weak Pull-up Current								
D070*			25	100	200	μA	VDD = 3.3V, VPIN = VSS			
			25	140	300	μΑ	VDD = 5.0V, VPIN = VSS			
	Vol	Output Low Voltage ⁽⁴⁾								
D080		I/O ports	_	_	0.6	V	IOL = 8MA, VDD = 5V IOL = 6MA, VDD = 3.3V IOL = 1.8MA, VDD = 1.8V			
	Voн	Output High Voltage ⁽⁴⁾								
D090		I/O ports	Vdd - 0.7	_	_	V	IOH = 3.5mA, VDD = 5V IOH = 3mA, VDD = 3.3V IOH = 1mA, VDD = 1.8V			
	Capacitive Loading Specs on Output Pins									
D101*	COSC2	OSC2 pin	—	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1			
D101A*	Сю	All I/O pins	_	_	50	pF				
*	* These parameters are characterized but not tested.									

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are † not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in EXTRC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

FIGURE 34-11: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 34-13: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteri	Min.	Тур†	Max.	Units	Conditions		
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	—	—	ns		
			With Prescaler	20	-		ns		
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5Tcy + 20	-		ns		
			With Prescaler	20	-		ns		
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u> *N	—	—	ns	N = prescale value	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.