

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1713-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Flash Program Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

Note 1: The method to access Flash memory through the PMCON registers is described in Section 10.0 "Flash Program Memory Control".

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack

TABLE 3-1:

Indirect Addressing

3.1 **Program Memory Organization**

The enhanced mid-range core has a 15-bit program counter capable of addressing a 32K x 14 program memory space. Table 3-1 and Table 3-2 show the memory sizes implemented for the PIC16(L)F1713/6 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 3-1).

3.2 High Endurance Flash

This device has a 128-byte section of high-endurance program Flash memory (PFM) in lieu of data EEPROM. This area is especially well suited for nonvolatile data storage that is expected to be updated frequently over the life of the end product. See Section 10.2 "Flash **Program Memory Overview**" for more information on writing data to PFM. See Section 3.2.1.2 "Indirect Read with FSR" for more information about using the FSR registers to read byte data stored in PFM.

Device	Program Memory Space (Words)	Last Program Memory Address	High-Endurance Flash Memory Address Range ⁽¹⁾
PIC16(L)F1713	4,096	FFFh	F80h-FFFh
PIC16(L)F1716	16,384	3FFFh	3F80h-3FFFh

Note 1: High-endurance Flash applies to the low byte of each address in the range.

DEVICE SIZES AND ADDRESSES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA			ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	120
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	122
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	120
ODCONA	ODA7	ODA6	ODA5	ODA4	ODA3	ODA2	ODA1	ODA0	121
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		256
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	119
SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	122
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	119
WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	121

TABLE 11-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

TABLE 11-3. SUMMANT OF COMPOUND MOTOR WOLLD WITTER ON	TABLE 11-3:	SUMMARY OF CONFIGURATION WORD WITH PO	RTA
---	-------------	---------------------------------------	-----

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	FCMEN	IESO	CLKOUTEN	BOREN<1:0>			47
CONFIGT	7:0	CP	MCLRE	PWRTE	WDT	E<1:0>	FOSC<2:0>		47	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

12.8 Register Definitions: PPS Input Selection

REGISTER 12-1: xxxPPS: PERIPHERAL xxx INPUT SELECTION

U-0	U-0	U-0	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u
—	—	—			xxxPPS<4:0>		
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	

u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = value depends on peripheral

bit 7-5	Unimplemented: Read as '0'

bit 4-3	 xxxPPS<4:3>: Peripheral xxx Input PORTx Selection bits See Table 12-1 for the list of available ports for each peripheral. 11 = Reserved. Do not use. 10 = Peripheral input is from PORTC 01 = Peripheral input is from PORTB 00 = Peripheral input is from PORTA
bit 2-0	<pre>xxxPPS<2:0>: Peripheral xxx Input PORTx Bit Selection bits 111 = Peripheral input is from PORTx Bit 7 (Rx7) 111 = Peripheral input is from PORTx Bit 6 (Rx6) 101 = Peripheral input is from PORTx Bit 5 (Rx5) 100 = Peripheral input is from PORTx Bit 4 (Rx4) 011 = Peripheral input is from PORTx Bit 3 (Rx3) 010 = Peripheral input is from PORTx Bit 2 (Rx2) 001 = Peripheral input is from PORTx Bit 1 (Rx1) 000 = Peripheral input is from PORTx Bit 0 (Rx0)</pre>

TABLE 12-1:

Peripheral	Register	PORTA	PORTB	PORTC
PIN interrupt	INTPPS	Х	Х	
Timer0 clock	TOCKIPPS	Х	Х	
Timer1 clock	T1CKIPPS	Х		Х
Timer1 gate	T1GPPS		Х	Х
CCP1	CCP1PPS		Х	Х
CCP2	CCP2PPS		Х	Х
COG	COGINPPS		Х	Х
MSSP	SSPCLKPPS		Х	Х
MSSP	SSPDATPPS		Х	Х
MSSP	SSPSSPPS	Х		Х
EUSART	RXPPS		Х	Х
EUSART	CKPPS		Х	Х
All CLCs	CLCIN0PPS	Х		Х
All CLCs	CLCIN1PPS	Х		Х
All CLCs	CLCIN2PPS		Х	Х
All CLCs	CLCIN3PPS		Х	Х
Example: $CCP1PPS = 0x0$	0B selects RB3 as the input t	o CCP1.	•	•

Note: Inputs are not available on all ports. A check in a port column of a peripheral row indicates that the port selection is valid for that peripheral. Unsupported ports will input a '0'.

16.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 16-4. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

18.0 COMPLEMENTARY OUTPUT GENERATOR (COG) MODULE

The primary purpose of the Complementary Output Generator (COG) is to convert a single output PWM signal into a two output complementary PWM signal. The COG can also convert two separate input events into a single or complementary PWM output.

The COG PWM frequency and duty cycle are determined by a rising event input and a falling event input. The rising event and falling event may be the same source. Sources may be synchronous or asynchronous to the COG_clock.

The rate at which the rising event occurs determines the PWM frequency. The time from the rising event input to the falling event input determines the duty cycle.

A selectable clock input is used to generate the phase delay, blanking, and dead-band times. Dead-band time can also be generated with a programmable time delay, which is independent from all clock sources.

Simplified block diagrams of the various COG modes are shown in Figure 18-2 through Figure 18-6.

The COG module has the following features:

- Six modes of operation:
- Steered PWM mode
- Synchronous Steered PWM mode
- Forward Full-Bridge mode
- Reverse Full-Bridge mode
- Half-Bridge mode
- Push-Pull mode
- Selectable COG_clock clock source
- · Independently selectable rising event sources
- Independently selectable falling event sources
- Independently selectable edge or level event sensitivity
- Independent output polarity selection
- Phase delay with independent rising and falling delay times
- Dead-band control with:
 - independent rising and falling event dead-band times
 - Synchronous and asynchronous timing
- Blanking control with independent rising and falling event blanking times
- Auto-shutdown control with:
 - Independently selectable shutdown sources
 - Auto-restart enable
 - Auto-shutdown pin override control (high, low, off, and Hi-Z)

18.1 Fundamental Operation

18.1.1 STEERED PWM MODES

In steered PWM mode, the PWM signal derived from the input event sources is output as a single phase PWM which can be steered to any combination of the four COG outputs. Outputs are selected by setting the GxSTRA through GxSTRD bits of the COGxSTR register (Register 18-9). When the steering bits are cleared, then the output data is the static level determined by the GxSDATA through GxSDATD bits of the COGxSTR register. Output steering takes effect on the instruction cycle following the write to the COGxSTR register.

Synchronous steered PWM mode is identical to the steered PWM mode except that changes to the output steering take effect on the first rising event after the COGxSTR register write. Static output data is not synchronized.

Steering mode configurations are shown in Figure 18-2 and Figure 18-3.

Steered PWM and synchronous steered PWM modes are selected by setting the GxMD bits of the COGxCON0 register (Register 18-1) to '000' and '001' respectively.

18.1.2 FULL-BRIDGE MODES

In both Forward and Reverse Full-Bridge modes, two of the four COG outputs are active and the other two are inactive. Of the two active outputs, one is modulated by the PWM input signal and the other is on at 100% duty cycle. When the direction is changed, the dead-band time is inserted to delay the modulated output. This gives the unmodulated driver time to shut down, thereby, preventing shoot-through current in the series connected power devices.

In Forward Full-Bridge mode, the PWM input modulates the COGxD output and drives the COGA output at 100%.

In Reverse Full-Bridge mode, the PWM input modulates the COGxB output and drives the COGxC output at 100%.

The full-bridge configuration is shown in Figure 18-4. Typical full-bridge waveforms are shown in Figure 18-12 and Figure 18-13.

Full-Bridge Forward and Full-Bridge Reverse modes are selected by setting the GxMD bits of the COGxCON0 register to '010' and '011', respectively.

29.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (FOSC/4), or by an external clock source.

When Timer1 is clocked by FOSC/4, Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

Capture mode will operate during Sleep when Timer1 is clocked by an external clock source.

29.2 Compare Mode

The Compare mode function described in this section is available and identical for all CCP modules.

Compare mode makes use of the 16-bit Timer1 resource. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMR1H:TMR1L register pair. When a match occurs, one of the following events can occur:

- · Toggle the CCPx output
- Set the CCPx output
- Clear the CCPx output
- Generate an Auto-conversion Trigger
- Generate a Software Interrupt

The action on the pin is based on the value of the CCPxM<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set.

All Compare modes can generate an interrupt.

Figure 29-2 shows a simplified diagram of the compare operation.

FIGURE 29-2: COMPARE MODE OPERATION BLOCK DIAGRAM

29.2.1 CCPX PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Note:	Clearing the CCPxCON register will force
	the CCPx compare output latch to the
	default low level. This is not the PORT I/O
	data latch.

29.2.2 TIMER1 MODE RESOURCE

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

See **Section 26.0 "Timer1 Module with Gate Control"** for more information on configuring Timer1.

Note:	Clocking Timer1 from the system clock
	(Fosc) should not be used in Compare
	mode. In order for Compare mode to
	recognize the trigger event on the CCPx
	pin, TImer1 must be clocked from the
	instruction clock (Fosc/4) or from an
	external clock source.

29.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the CCPx module does not assert control of the CCPx pin (see the CCPxCON register).

29.2.4 AUTO-CONVERSION TRIGGER

When Auto-conversion Trigger mode is chosen (CCPxM<3:0> = 1011), the CCPx module does the following:

- · Resets Timer1
- Starts an ADC conversion if ADC is enabled

The CCPx module does not assert control of the CCPx pin in this mode.

The Auto-conversion Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPRxH, CCPRxL register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. The Auto-conversion Trigger output starts an ADC conversion (if the ADC module is enabled). This allows the CCPRxH, CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1.

30.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 30-27) occurs when the RSEN bit of the SSPCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSPCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPSTAT register will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

30.6.6 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high. When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKSTAT bit

on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 30-28).

After the write to the SSPBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

REGISTER 30-2: SSP1CON1: SSP CONTROL REGISTER 1

R/C/HS-0/0) R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPOV ⁽¹⁾	SSPEN	CKP		SSPM<	:3:0>	
bit 7							bit 0
							,
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemen	ted bit, read as '0'		
u = Bit is unch	anged	x = Bit is unknown	n	-n/n = Value at P	OR and BOR/Value a	t all other Resets	
'1' = Bit is set		'0' = Bit is cleared	I	HS = Bit is set by	hardware	C = User cleared	
bit 7	WCOL: Write Co <u>Master mode:</u> 1 = A write to ti 0 = No collision <u>Slave mode:</u> 1 = The SSPBL 0 = No collision	Illision Detect bit he SSPBUF register 1 JF register is written v 1	r was attempted v vhile it is still transr	vhile the I ² C conditinition in the previous v	ons were not valid fo vord (must be cleared i	r a transmission to n software)	be started
bit 6	SSPOV: Receive In SPI mode: 1 = A new byte Overflow ca setting over SSPBUF re 0 = No overflow In I ² C mode: 1 = A byte is re (must be cl 0 = No overflow	e Overflow Indicator is received while the an only occur in Slave flow. In Master mode gister (must be clear v eccived while the S eared in software). v	bit ⁽¹⁾ e SSPBUF register e mode. In Slave r e, the overflow bit is red in software). SPBUF register i	is still holding the p node, the user must a not set since each r s still holding the p	revious data. In case c read the SSPBUF, ev new reception (and trans revious byte. SSPOV	f overflow, the data en if only transmitt nsmission) is initiat ' is a "don't care"	a in SSPSR is lost. ing data, to avoid ed by writing to the in Transmit mode
bit 5	SSPEN: Synchro In both modes, w <u>In SPI mode:</u> 1 = Enables se 0 = Disables se <u>In I²C mode:</u> 1 = Enables the 0 = Disables se	nous Serial Port Er hen enabled, these rial port and configur erial port and config e serial port and config erial port and config	hable bit pins must be pro- es SCK, SDO, SD ures these pins a gures the SDA an- ures these pins a	perly configured as I and SS as the sous I/O port pins d SCL pins as the so s I/O port pins	input or output rce of the serial port p purce of the serial port	ins ⁽²⁾ pins ⁽³⁾	
bit 4	CKP: Clock Pola In SPI mode: 1 = Idle state for 0 = Idle state for In I2C Slave mod SCL release con 1 = Enable clock 0 = Holds clock I In I2C Master mod Unused in this m	rity Select bit clock is a high level clock is a low level <u>le:</u> trol ow (clock stretch). (<u>de:</u> ode	Used to ensure d	ata setup time.)			
bit 3-0	SSPM<3:0>: Syr 1111 = I ² C Slave 1100 = I ² C Slave 1101 = Reserved 1000 = Reserved 1011 = I ² C firmw 1010 = SPI Masi 1001 = Reserved 1010 = I ² C Slave 0110 = I ² C Slave 0101 = SPI Slav 0100 = SPI Slav 0100 = SPI Masi 0001 = SPI Masi 0000 = SPI Masi	hochronous Serial Po e mode, 10-bit addres d mode, 7-bit addres d d avare controlled Mast ter mode, clock = Fo e mode, clock = Co e mode, clock = Co e mode, clock = SC e mode, clock = SC ter mode, clock = SC ter mode, clock = Fo ter mode, clock = Fo ter mode, clock = Fo ter mode, clock = Fo	ort Mode Select bi ess with Start and ss with Start and ter mode (slave ic DSC/(4 * (SSPADI DSC / (4 * (SSPADI DSC / (4 * (SSPADI DSC / (4 * (SSPADI SS K pin, <u>SS</u> pin con K pin, <u>SS</u> pin con Camatch/2 DSC/16 DSC/16 DSC/4	ts Stop bit interrupts Stop bit interrupts e lle) ()+1)) ⁽⁵⁾ D+1)) ⁽⁴⁾ trol disabled, SS ca trol enabled	enabled nabled an be used as I/O pin		
Note 1: 1 2: \ 3: \	n Master mode, the ov When enabled, these p o select the pins. When enabled, the SD/	erflow bit is not set ins must be properly A and SCL pins mus	since each new ro y configured as in st be configured a	eception (and trans put or output. Use s inputs. Use SSP(mission) is initiated b SSPSSPPS, SSPCLI CLKPPS, SSPDATPF	y writing to the SS KPPS, SSPDATPI PS, and RxyPPS to	PBUF register. PS, and RxyPPS o select the pins.

- 4: SSPADD values of 0, 1 or 2 are not supported for I²C mode.
- 5: SSPADD value of '0' is not supported. Use SSPM = 0000 instead.

R/W-0/0	R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0	
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	
bit 7		•				•	bit 0	
Legend:								
R = Readab	ole bit	W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is un	changed	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is s	et	'0' = Bit is clea	ared	HC = Cleared by hardware S = User set				
bit 7	GCEN: Gener 1 = Enable int 0 = General c	ral Call Enable terrupt when a all address dis	bit (in I ² C Sla general call ad abled	ve mode only) ddress (0x00 c	or 00h) is receive	ed in the SSPS	ŝR	
bit 6	ACKSTAT: Ac 1 = Acknowled 0 = Acknowled	cknowledge Sta dge was not re dge was receiv	atus bit (in I ² C eceived /ed	mode only)				
bit 5	ACKDT: Ackn In Receive mo Value transmit 1 = Not Ackno 0 = Acknowlet	nowledge Data ode: tted when the pwledge dge	bit (in I ² C moo user initiates a	de only) an Acknowledg	e sequence at t	he end of a red	ceive	
bit 4	ACKEN: Ackr In Master Rec 1 = Initiate A Automatic 0 = Acknowle	nowledge Sequ <u>ceive mode:</u> Acknowledge s cally cleared by edge sequence	uence Enable l sequence on y hardware. i idle	bit (in I ² C Mas [.] SDA and S	ter mode only) CL pins, and	transmit ACk	CDT data bit.	
bit 3	RCEN: Receiv 1 = Enables R 0 = Receive io	ve Enable bit (Receive mode f dle	in I ² C Master ı for I ² C	mode only)				
bit 2	PEN: Stop Co SCKMSSP Re 1 = Initiate Sto 0 = Stop cond	ondition Enable elease Control: op condition or lition Idle	bit (in I ² C Ma SDA and SC	ster mode only L pins. Automa	y) atically cleared b	by hardware.		
bit 1	RSEN: Repeat1 = Initiate Re0 = Repeated	ated Start Conc epeated Start c d Start conditio	dition Enable b condition on SI n Idle	oit (in I ² C Maste DA and SCL pi	er mode only) ins. Automatical	lly cleared by h	ardware.	
bit 0	SEN: Start Co In Master moo 1 = Initiate Sta 0 = Start cond In Slave mode 1 = Clock stre	ondition Enable de: art condition or lition Idle e: etching is enable	e/Stretch Enab n SDA and SC led for both sla	le bit L pins. Automa ave transmit ar	atically cleared I nd slave receive	by hardware. (stretch enabl	ed)	
Note 1. F	0 = Clock stre	tching is disab	led SEN SEN: If th	he l ² C module	is not in the Idle	e mode this hi	t may not be	

REGISTER 30-3: SSP1CON2: SSP CONTROL REGISTER 2⁽¹⁾

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

31.3 Register Definitions: EUSART Control

REGISTER 31-1: TX1STA: TRANSMIT STATUS AND CONTROL REGISTER

r]
R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable bit		U = Unimpler	mented bit, read	as '0'	
u = Bit is und	changed	x = Bit is unknown		-n/n = Value	at POR and BOI	R/Value at all o	other Resets
'1' = Bit is se	t	'0' = Bit is cle	ared				
bit 7	CSRC: Clock Asynchronou	x Source Select I <u>s mode</u> :	bit				
	Don t care	modo					
	1 = Master r	mode (clock ae	nerated interr	ally from BRG)		
	0 = Slave m	ode (clock fron	n external sou	rce)	/		
bit 6	TX9: 9-bit Tra	ansmit Enable I	oit				
	1 = Selects	9-bit transmiss	ion				
	0 = Selects 8-bit transmission						
bit 5	IXEN: Irans	mit Enable bit	')				
	0 = Transmit	disabled					
bit 4	SYNC: EUSART Mode Select bit						
	1 = Synchro	nous mode					
	0 = Asynchro	onous mode					
bit 3	SENDB: Sen	id Break Chara	cter bit				
	Asynchronou	<u>is mode</u> :					
	1 = Send Sy 0 = Sync Bre	ak transmissio	n completed	on (cleared by	nardware upon o	completion)	
	Synchronous	<u>mode</u> :	in completed				
	Don't care						
bit 2	BRGH: High	Baud Rate Sel	ect bit				
	Asynchronou	<u>is mode</u> :					
	1 = High spe	ed					
	Svnchronous	eu mode:					
	Unused in thi	is mode					
bit 1	TRMT: Trans	mit Shift Regist	ter Status bit				
	1 = TSR em	pty					
	0 = TSR full						
bit 0	TX9D: Ninth	bit of Transmit	Data				
	Can be addre	ess/data bit or a	a parity bit.				
Note 1: S	REN/CREN over	rrides TXEN in	Sync mode.				

FIGURE 33-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file regist	terop	erat	ions	0
OPCODE	d		f (FILE #)	
d = 0 for destination d = 1 for destination f = 7-bit file register	n W n f addre	ess]
Bit-oriented file registe	r oper	atio	ons	0
OPCODE b	(BIT :	#)	f (FILE #)	
b = 3-bit bit address f = 7-bit file register	addre	ess		
Literal and control oper	ation	s		
General				
13	8 7			0
OPCODE			k (literal)	
k = 8-bit immediate	value			
CALL and GOTO instruction	ons on	ly		
13 11 10				0
OPCODE		k (lit	eral)	
MOVLP instruction only	7	6		0
OPCODE			k (literal)	
k = 7-bit immediate	value			
13		5	4	0
OPCODE			k (literal)	
k = 5-bit immediate	value			
BRA instruction only	Q			0
OPCODE			k (literal)	
k = 9-bit immediate	value	!		
FSR Offset instructions				
13	7 6	5	L. (114 1)	0
OPCODE	n		k (literal)	
n = appropriate FS k = 6-bit immediate	R value	•		
FSR Increment instruction	ns		321	0
OPCODE			n m (m	ode)
n = appropriate FS m = 2-bit mode val	R Ue			
OPCODE only 13				0
OF	CODI	Ξ		

33.2 Instruction Descriptions

ADDFSR	Add Literal to FSRn
Syntax:	[label]ADDFSR FSRn, k
Operands:	$-32 \le k \le 31$ n \in [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.

ADDLW	Add literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.

wrap-around.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ASRF	Arithmetic Right Shift
Syntax:	[label]ASRF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \ \in \ [0,1] \end{array}$
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

ADDWFC ADD W and CARRY bit to f

Syntax:	[<i>label</i>] ADDWFC f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) + (C) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.

BCF	Bit Clear f
Syntax:	[label] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k
Operands:	-256 \leq label - PC + 1 \leq 255 -256 \leq k \leq 255
Operation:	$(PC) + 1 + k \rightarrow PC$
Status Affected:	None
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

BRW Relative Branch with W

Syntax:	[label] BRW
Operands:	None
Operation:	$(PC) + (W) \to PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruction.

BSF	Bit Set f
Syntax:	[label]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

FIGURE 34-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 34-11: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 34-13: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.	Characteristic Min. Typ† Max. Units Conditions								
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	—	—	ns			
			With Prescaler	20	-		ns			
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5Tcy + 20	-		ns			
			With Prescaler	20	-		ns			
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u> *N	—	—	ns	N = prescale value		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 34-19: 8-BIT DIGITAL-TO-ANALOG CONVERTER (DAC1) SPECIFICATIONS

Operating Conditions (unless otherwise stated)

VDD = 3.0V, TA = 25°C

See Section 35.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
DAC01*	Clsb	Step Size	_	VDD/256	_	V	
DAC02*	CACC	Absolute Accuracy	_	—	± 1.5	LSb	
DAC03*	CR	Unit Resistor Value (R)	_	600	_	Ω	
DAC04*	CST	Settling Time ⁽¹⁾		—	10	μS	

* These parameters are characterized but not tested.

Note 1: Settling time measured while DACR<7:0> transitions from '0x00' to '0xFF'.

TABLE 34-20: 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC2) SPECIFICATIONS

Operating Conditions (unless otherwise stated)

VDD = 3.0V, TA = 25°C See Section 35.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
DAC05*	Clsb	Step Size		VDD/32	_	V	
DAC06*	CACC	Absolute Accuracy		—	± 0.5	LSb	
DAC07*	CR	Unit Resistor Value (R)	_	6000	_	Ω	
DAC08*	CST	Settling Time ⁽¹⁾		_	10	μS	

* These parameters are characterized but not tested.

Note 1: Settling time measured while DACR<7:0> transitions from ' $0 \times 00'$ to ' $0 \times FF'$.

TABLE 34-21: ZERO CROSS PIN SPECIFICATIONS

Operating Conditions (unless otherwise stated)

VDD = 3.0V, TA = 25°C

VDD - 0.0V,	14 - 20 0						
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
ZC01	ZCPINV	Voltage on Zero Cross Pin	_	0.75	_	V	
ZC02	ZCSRC	Source current		600		μA	
ZC03	ZCSNK	Sink current		600		μA	
ZC04	Zcisw	Response Time Rising Edge	_	1	_	μS	
		Response Time Falling Edge	_	1	_	μS	
ZC05	ZCOUT	Response Time Rising Edge		1		μS	
		Response Time Falling Edge	_	1	_	μS	

* These parameters are characterized but not tested.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 35-25: IDD Typical, HFINTOSC Mode, PIC16F1713/6 Only.

FIGURE 35-26: IDD Maximum, HFINTOSC Mode, PIC16F1713/6 Only.

FIGURE 35-27: IDD Typical, HS Oscillator, 25°C, PIC16LF1713/6 Only.

FIGURE 35-28: IDD Maximum, HS Oscillator, PIC16LF1713/6 Only.

FIGURE 35-29: IDD Typical, HS Oscillator, 25°C, PIC16F1713/6 Only.

FIGURE 35-30: IDD Maximum, HS Oscillator, PIC16F1713/6 Only.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

100 Max: Typical + 3σ (-40°C to +125°C) Typical; statistical mean @ 25°C Min: Typical - 3σ (-40°C to +125°C) 90 Max 80 ms Typica Time 70 Min. 60 50 40 2.5 3.5 4.5 5.5 5 2 3 4 VDD (V)

FIGURE 35-69: PWRT Period, PIC16F1713/6 Only.

FIGURE 35-72: POR Rearm Voltage, NP Mode (VREGPM1 = 0), PIC16F1713/6 Only.

Note: Unless otherwise noted, VIN = 5V, FOSC = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 35-85: Temp. Indicator Initial Offset, High Range, Temp. = 20°C, PIC16F1713/6 Only.

FIGURE 35-86: Temp. Indicator Initial Offset, Low Range, Temp. = 20°C, PIC16F1713/6 Only.

FIGURE 35-87: Temp. Indicator Initial Offset, Low Range, Temp. = 20°C, PIC16LF1713/6 Only.

FIGURE 35-88: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 5.5V, PIC16F1713/6 Only.

FIGURE 35-90: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V, PIC16F1713/6 Only.

FIGURE 35-89: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.0V, PIC16F1713/6 Only.