

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1713-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

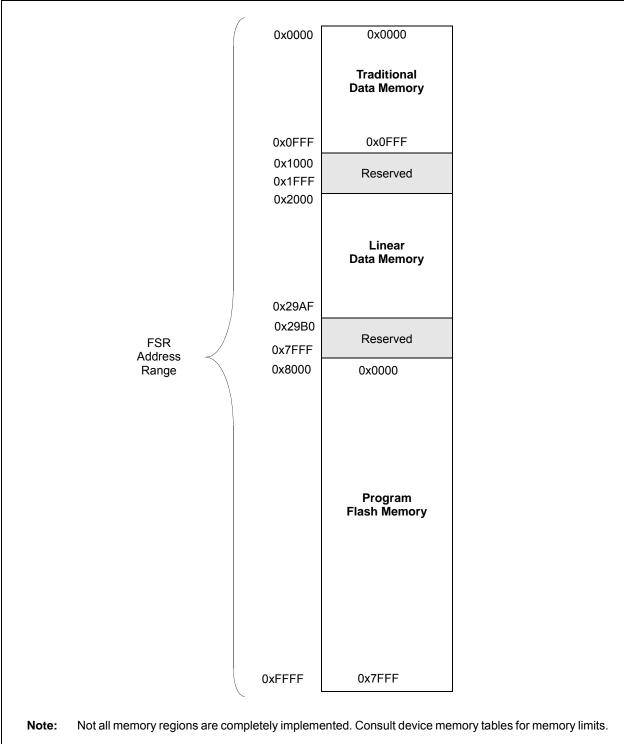
3.3.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-10.

TABLE 3-2: CORE REGISTERS

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
x02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
k0Ah or x8Ah	PCLATH
k0Bh or x8Bh	INTCON

TABLE 3-5: PIC16(L)F1713 MEMORY MAP, BANK 8-23


	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	Core Registers (Table 3-2)	480h	Core Registers (Table 3-2)	500h	Core Registers (Table 3-2)	580h	Core Registers (Table 3-2)	600h	Core Registers (Table 3-2)	680h	Core Registers (Table 3-2)	700h	Core Registers (Table 3-2)	780h	Core Registers (Table 3-2)
40Bh		48Bh		50Bh		58Bh		60Bh		68Bh		70Bh		78Bh	
40Ch	_	48Ch	_	50Ch	_	58Ch	_	60Ch	—	68Ch	—	70Ch	_	78Ch	_
40Dh	_	48Dh	_	50Dh	—	58Dh	—	60Dh	—	68Dh	—	70Dh		78Dh	_
40Eh	_	48Eh	—	50Eh	—	58Eh	—	60Eh		68Eh		70Eh		78Eh	_
40Fh	_	48Fh	—	50Fh	_	58Fh	_	60Fh	—	68Fh	—	70Fh	_	78Fh	_
410h	—	490h	—	510h	—	590h	—	610h	—	690h	—	710h	—	790h	—
411h	_	491h	_	511h	OPA1CON	591h		611h	_	691h	COG1PHR	711h		791h	_
412h	—	492h	—	512h	_	592h	_	612h	—	692h	COG1PHF	712h	_	792h	_
413h	_	493h	_	513h		593h		613h		693h	COG1BLKR	713h		793h	
414h	_	494h	_	514h		594h		614h		694h	COG1BLKF	714h		794h	
415h	TMR4	495h	_	515h	OPA2CON	595h		615h	_	695h	COG1DBR	715h	_	795h	
416h	PR4	496h	_	516h		596h		616h	_	696h	COG1DBF	716h		796h	_
417h	T4CON	497h	—	517h	—	597h	—	617h	PWM3DCL	697h	COG1CON0	717h		797h	—
418h	—	498h	NCO1ACCL	518h	—	598h	—	618h	PWM3DCH	698h	COG1CON1	718h	—	798h	—
419h	—	499h	NCO1ACCH	519h		599h		619h	PWM3CON	699h	COG1RIS	719h	_	799h	
41Ah	—	49Ah	NCO1ACCU	51Ah		59Ah		61Ah	PWM4DCL	69Ah	COG1RSIM	71Ah	_	79Ah	
41Bh	_	49Bh	NCO1INCL	51Bh	_	59Bh	_	61Bh	PWM4DCH	69Bh	COG1FIS	71Bh	_	79Bh	_
41Ch	TMR6	49Ch	NCO1INCH	51Ch	_	59Ch	_	61Ch	PWM4CON	69Ch	COG1FSIM	71Ch	_	79Ch	_
41Dh	PR6	49Dh	NCO1INCU	51Dh		59Dh		61Dh	_	69Dh	COG1ASD0	71Dh		79Dh	
41Eh	T6CON	49Eh	NCO1CON	51Eh		59Eh		61Eh	_	69Eh	COG1ASD1 COG1STR	71Eh	_	79Eh	
41Fh 420h		49Fh 4A0h	NCO1CLK	51Fh 520h		59Fh 5A0h		61Fh 620h		69Fh 6A0h	COGISTR	71Fh 720h		79Fh 7A0h	—
42011		47 1011		02011		0/1011		02011		0/1011		72011		////	
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses	-	Accesses		Accesses	-	Accesses								
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh	-	7FFh	
4/11/1		41111		5/111		51111		0/111		01111		77111			
	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h		880h		900h		980h		A00h		A80h		B00h		B80h	
	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
	(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)
80Bh		88Bh		90Bh		98Bh		A0Bh		A8Bh		B0Bh		B8Bh	
80Ch		88Ch		90Ch		98Ch		A0Ch		A8Ch		B0Ch		B8Ch	
	Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented
	Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'
06 5 6		000		OCEN		9EFh		A6Fh		AEFh		DOCH		BEFh	
86Fh		8EFh		96Fh								B6Fh			
870h	A	8F0h	A	970h	A	9F0h	A	A70h	A	AF0h	A	B70h	A	BF0h	A
	Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh
	7011 – 7FN		/011 – /FN		700 – 7FN										
87Fh		8FFh		97Fh		9FFh		A7Fh		AFFh		B7Fh		BFFh	

Legend: = Unimplemented data memory locations, read as '0'.

TABLE 3-9:PIC16(L)F1713/6 MEMORY
MAP, BANK 31

	Bank 31	
F8Ch		
	Unimplemented Read as '0'	
FE3h		
FE4h	STATUS_SHAD	
FE5h	WREG_SHAD	
FE6h	BSR_SHAD	
FE7h	PCLATH_SHAD	
FE8h	FSR0L_SHAD	
FE9h	FSR0H_SHAD	
FEAh	FSR1L_SHAD	
FEBh	FSR1H_SHAD	
FECh	—	
FEDh	STKPTR	
FEEh	TOSL	
FEFh	TOSH	
FF0h	_	
FFFh		
Legend:	= Unimplemented da read as '0',	ta memory locations,

6.2.2.5 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register.

The postscaled output of the 16 MHz HFINTOSC, 500 kHz MFINTOSC, and 31 kHz LFINTOSC connect to a multiplexer (see Figure 6-1). The Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register select the frequency output of the internal oscillators. One of the following frequencies can be selected via software:

- 32 MHz (requires 4x PLL)
- 16 MHz
- 8 MHz
- 4 MHz
- 2 MHz
- 1 MHz
- 500 kHz (default after Reset)
- 250 kHz
- 125 kHz
- 62.5 kHz
- 31.25 kHz
- 31 kHz (LFINTOSC)

Note:	Following any Reset, the IRCF<3:0> bits
	of the OSCCON register are set to '0111'
	and the frequency selection is set to
	500 kHz. The user can modify the IRCF
	bits to select a different frequency.

The IRCF<3:0> bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

6.2.2.6 32 MHz Internal Oscillator Frequency Selection

The Internal Oscillator Block can be used with the 4x PLL associated with the External Oscillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Words must be set to use the INTOSC source as the device system clock (FOSC<2:0> = 100).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<2:0> in Configuration Words (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4x PLL, or the PLLEN bit of the Configuration Words must be programmed to a '1'.
 - Note: When using the PLLEN bit of the Configuration Words, the 4x PLL cannot be disabled by software and the SPLLEN option will not be available.

The 4x PLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4x PLL with the internal oscillator.

6.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bits of the OSCCON register. The following clock sources can be selected using the SCS bits:

- Default system oscillator determined by FOSC bits in Configuration Words
- Timer1 32 kHz crystal oscillator
- Internal Oscillator Block (INTOSC)

6.3.1 SYSTEM CLOCK SELECT (SCS) BITS

The System Clock Select (SCS) bits of the OSCCON register select the system clock source that is used for the CPU and peripherals.

- When the SCS bits of the OSCCON register = 00, the system clock source is determined by the value of the FOSC<2:0> bits in the Configuration Words.
- When the SCS bits of the OSCCON register = 01, the system clock source is the secondary oscillator.
- When the SCS bits of the OSCCON register = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<3:0> bits of the OSCCON register. After a Reset, the SCS bits of the OSCCON register are always cleared.
- Note: Any automatic clock switch, which may occur from Two-Speed Start-up or Fail-Safe Clock Monitor, does not update the SCS bits of the OSCCON register. The user can monitor the OSTS bit of the OSCSTAT register to determine the current system clock source.

When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 6-1.

6.3.2 OSCILLATOR START-UP TIMER STATUS (OSTS) BIT

The Oscillator Start-up Timer Status (OSTS) bit of the OSCSTAT register indicates whether the system clock is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or from the internal clock source. In particular, OSTS indicates that the Oscillator Start-up Timer (OST) has timed out for LP, XT or HS modes. The OST does not reflect the status of the secondary oscillator.

6.3.3 SECONDARY OSCILLATOR

The secondary oscillator is a separate crystal oscillator associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz crystal connected between the SOSCO and SOSCI device pins.

The secondary oscillator is enabled using the T1OSCEN control bit in the T1CON register. See **Section 26.0 "Timer1 Module with Gate Control"** for more information about the Timer1 peripheral.

6.3.4 SECONDARY OSCILLATOR READY (SOSCR) BIT

The user must ensure that the secondary oscillator is ready to be used before it is selected as a system clock source. The Secondary Oscillator Ready (SOSCR) bit of the OSCSTAT register indicates whether the secondary oscillator is ready to be used. After the SOSCR bit is set, the SCS bits can be configured to select the secondary oscillator.

6.3.5 CLOCK SWITCHING BEFORE SLEEP

When clock switching from an old clock to a new clock is requested just prior to entering Sleep mode, it is necessary to confirm that the switch is complete before the SLEEP instruction is executed. Failure to do so may result in an incomplete switch and consequential loss of the system clock altogether. Clock switching is confirmed by monitoring the clock status bits in the OSCSTAT register. Switch confirmation can be accomplished by sensing that the ready bit for the new clock is set or the ready bit for the old clock is cleared. For example, when switching between the internal oscillator with the PLL and the internal oscillator without the PLL, monitor the PLLR bit. When PLLR is set, the switch to 32 MHz operation is complete. Conversely, when PLLR is cleared, the switch from 32 MHz operation to the selected internal clock is complete.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_			TUN	<5:0>		
bit 7	4						bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is und	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is se	t	'0' = Bit is clea	ared				
bit 7-6	Unimpleme	nted: Read as '	0'				
bit 5-0	TUN<5:0>:	Frequency Tunir	ng bits				
	100000 = N	/linimum frequer	ncy				
	•						
	•						
	111111 =						
	000000 = 0	Scillator module	e is running at	the factory-cali	brated frequen	су	
	000001 =						
	•						
	•						
	011110 =						
	011111 = N	/laximum freque	ency				

REGISTER 6-3: OSCTUNE: OSCILLATOR TUNING REGISTER

TABLE 6-2:	SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF	<3:0>		—	SCS	75	
OSCSTAT	SOSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	76
OSCTUNE	_	_		TUN<5:0>					
PIR2	OSFIF	C2IF	C1IF	_	BCL1IF	TMR6IF	TMR4IF	CCP2IF	88
PIE2	OSFIE	C2IE	C1IE	_	BCL1IE	TMR6IE	TMR4IE	CCP2IE	85
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T10SCEN	T1SYNC	_	TMR10N	265

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 6-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8			FCMEN	IESO	CLKOUTEN	BOREN<1:0>		—	47
	7:0	CP	MCLRE	PWRTE	WDT	TE<1:0>	FOSC<2:0			47

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

REGISTER 10-5:	PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER
----------------	---

U-1	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q ⁽²⁾	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
(1)	CFGS	LWLO ⁽³⁾	FREE	WRERR	WREN	WR	RD
bit 7							bit (
Legend:							
R = Reada		W = Writable b		U = Unimpleme	-		_
	n only be set	x = Bit is unkno				/alue at all other F	Resets
'1' = Bit is	set	'0' = Bit is clear	red	HC = Bit is clear	red by hardware	•	
h:4 7		tod. Deed as (1)					
bit 7	•	ted: Read as '1'					
bit 6		guration Select bit Configuration, Use					
		Flash program me		ID Registers			
bit 5		Write Latches On	-				
		addressed progra		e latch is loaded/u	pdated on the r	next WR comman	d
		ressed program m		h is loaded/update	ed and a write of	all program memo	ory write latche
		itiated on the next					
bit 4	•	am Flash Erase Ei					
		s an erase operati s a write operatior			rdware cleared	upon completion)	
bit 3		gram/Erase Error		Command			
DIL J		n indicates an imp		or erase sequence	e attempt or te	rmination (bit is s	et automatical
		et attempt (write '				(
	0 = The prog	gram or erase ope	ration complete	d normally			
bit 2	0	am/Erase Enable					
		rogram/erase cyc		-1			
		programming/eras	ing of program i	lash			
bit 1	WR: Write Co		rogrom/orogo o	noration			
		a program Flash p ration is self-timed			re once operatio	on is complete	
		bit can only be se					
	0 = Program	/erase operation t	to the Flash is co	omplete and inact	ive		
bit 0	RD: Read Co						
		a program Flash r	ead. Read takes	s one cycle. RD is	cleared in hard	ware. The RD bit	can only be se
		red) in software. t initiate a progran	n Flash read				
Note 1:	Unimplemented bit,						
NOLE 1. 2.	The WRERR hit is		w bardwara wh	on a program mor	nony write or or	no operation is at	artad (MD = 1

- 2: The WRERR bit is automatically set by hardware when a program memory write or erase operation is started (WR = 1).
- **3:** The LWLO bit is ignored during a program memory erase operation (FREE = 1).

11.1 PORTA Registers

11.1.1 DATA REGISTER

PORTA is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 11-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 11-1 shows how to initialize PORTA.

Reading the PORTA register (Register 11-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

11.1.2 DIRECTION CONTROL

The TRISA register (Register 11-2) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

11.1.3 OPEN-DRAIN CONTROL

The ODCONA register (Register 11-6) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONA bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONA bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

11.1.4 SLEW RATE CONTROL

The SLRCONA register (Register 11-7) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONA bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONA bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

11.1.5 INPUT THRESHOLD CONTROL

The INLVLA register (Register 11-8) controls the input voltage threshold for each of the available PORTA input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTA register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 34-4: I/O Ports for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

11.1.6 ANALOG CONTROL

The ANSELA register (Register 11-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

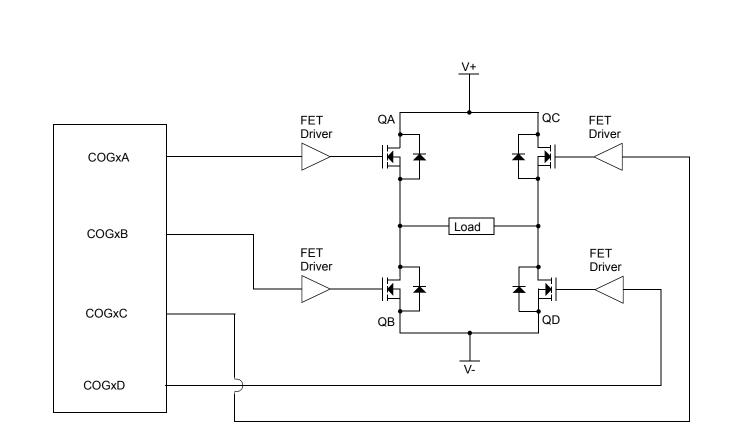
Note: The ANSELA bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

EXAMPLE 11-1: INITIALIZING PORTA

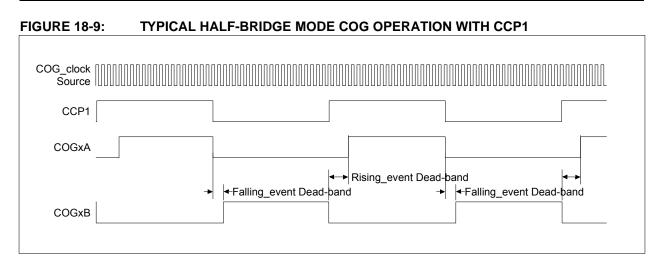
<pre>; This code example illustrates ; initializing the PORTA register. The ; other ports are initialized in the same ; manner. BANKSEL PORTA ; CLRF PORTA ; Init PORTA BANKSEL LATA ; Data Latch CLRF LATA ; BANKSEL ANSELA ; CLRF ANSELA ;digital I/O BANKSEL TRISA ; MOVLW B'00111000' ;Set RA<5:3> as inputs MOVWF TRISA ; and set RA<2:0> as ;outputs</pre>			
CLRF PORTA ; Init PORTA BANKSEL LATA ; Data Latch CLRF LATA ; BANKSEL ANSELA ; CLRF ANSELA ; CLRF ANSELA ;digital I/O BANKSEL TRISA ; MOVLW B'00111000' ;Set RA<5:3> as inputs MOVWF TRISA ;and set RA<2:0> as	; initia ; other	alizing the P ports are in	ORTA register. The
	CLRF BANKSEL CLRF BANKSEL CLRF BANKSEL MOVLW	PORTA LATA LATA ANSELA ANSELA TRISA B'00111000'	<pre>;Init PORTA ;Data Latch ; ; ;digital I/O ; ;Set RA<5:3> as inputs ;and set RA<2:0> as</pre>

17.1.9 SETUP FOR PWM OPERATION USING PWMx PINS

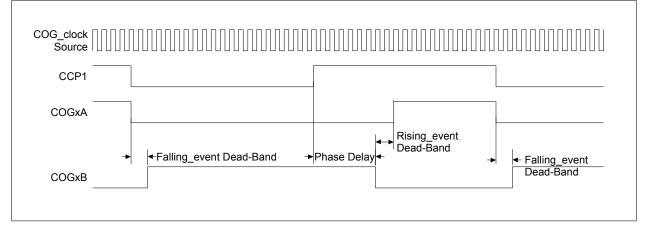
The following steps should be taken when configuring the module for PWM operation using the PWMx pins:


- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Clear the PWMxCON register.
- 3. Load the PR2 register with the PWM period value.
- Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register. See Note below.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- Enable PWM output pin and wait until Timer2 overflows, TMR2IF bit of the PIR1 register is set. See Note below.
- 7. Enable the PWMx pin output driver(s) by clearing the associated TRIS bit(s) and setting the desired pin PPS control bits.
- 8. Configure the PWM module by loading the PWMxCON register with the appropriate values.
 - Note 1: In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then move Step 8 to replace Step 4.
 - **2:** For operation with other peripherals only, disable PWMx pin outputs.

17.1.10 SETUP FOR PWM OPERATION TO OTHER DEVICE PERIPHERALS


The following steps should be taken when configuring the module for PWM operation to be used by other device peripherals:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Clear the PWMxCON register.
- 3. Load the PR2 register with the PWM period value.
- 4. Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register. See Note below.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Enable PWM output pin:
- Wait until Timer2 overflows, TMR2IF bit of the PIR1 register is set. See Note below.
- 7. Configure the PWM module by loading the PWMxCON register with the appropriate values.
- **Note:** In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.


FIGURE 18-1: EXAMPLE OF FULL-BRIDGE APPLICATION

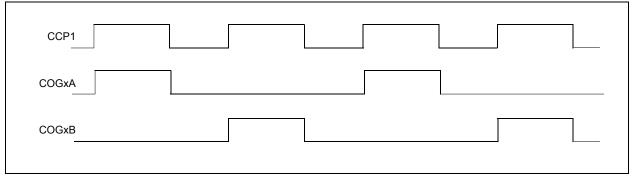

DS40001726C-page 170

FIGURE 18-10: HALF-BRIDGE MODE COG OPERATION WITH CCP1 AND PHASE DELAY

FIGURE 18-11: PUSH-PULL MODE COG OPERATION WITH CCP1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0
GxASE	GxARSEN	GxASD	3D<1:0>	GxASD	AC<1:0>	—	—
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpleme	ented bit, read a	ıs '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value at	POR and BOR/	Value at all oth	ner Resets
'1' = Bit is se	et	'0' = Bit is clea	ared	q = Value depe	ends on conditio	n	
bit 7	GxASE: Auto	o-Shutdown Eve	ent Status bit				
		in the shutdown					
	0 = COG is e	either not in the	shutdown stat	te or will exit the	shutdown state	on the next ris	sing event
bit 6		Auto-Restart En	able bit				
		tart is enabled					
		tart is disabled					
bit 5-4				to-shutdown Ov			
				COGxD when s			
	•			COGxD when sl /hen shutdown is		е	
				ig polarity, is pla		and COGxD w	hen shutdown
	is activ			.g p =,, , . = p			
bit 3-2	GxASDAC<1	1:0>: COGxA a	nd COGxC Au	to-shutdown Ov	erride Level Sel	ect bits	
	11 = A logic	'1' is placed or	COGxA and	COGxC when sh	nutdown is active	e	
	0			COGxC when sh		e	
				hen shutdown is			
	00 = The ina is activ		ie pin, includin	g polarity, is pla	cea on COGxA	and COGxC w	nen shutdown
bit 1-0	Unimplemen	ted: Read as '	n'				

REGISTER 18-7: COGxASD0: COG AUTO-SHUTDOWN CONTROL REGISTER 0

bit 1-0 Unimplemented: Read as '0'

REGISTER 18-14: COGxPHR: COG RISING EDGE PHASE DELAY COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	_			GxPH	R<5:0>		
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 5-0

bit 5-0

GxPHR<5:0>: Rising Edge Phase Delay Count Value bits

= Number of COGx clock periods to delay rising edge event

REGISTER 18-15: COGxPHF: COG FALLING EDGE PHASE DELAY COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	_			GxPH	F<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'

GxPHF<5:0>: Falling Edge Phase Delay Count Value bits

= Number of COGx clock periods to delay falling edge event

26.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 26-1 displays the Timer1 enable selections.

TABLE 26-1:	TIMER1 ENABLE
	SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

26.2 Clock Source Selection

The TMR1CS<1:0> and T1OSCEN bits of the T1CON register are used to select the clock source for Timer1. Table 26-2 displays the clock source selections.

26.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the T1G pin to Timer1 gate
- C1 or C2 comparator input to Timer1 gate

26.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI, which can be synchronized to the microcontroller system clock or can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated internal oscillator circuit.

- Note: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:
 - Timer1 enabled after POR
 - Write to TMR1H or TMR1L
 - Timer1 is disabled
 - Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TABLE 26-2: CLOCK SOURCE SELECTIONS

TMR1CS<1:0>	T10SCEN	Clock Source
11	х	LFINTOSC
10	0	External Clocking on T1CKI Pin
01	x	System Clock (Fosc)
00	x	Instruction Clock (Fosc/4)

29.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (FOSC/4), or by an external clock source.

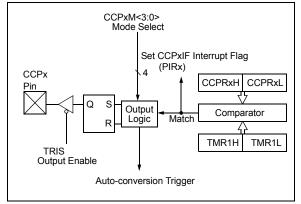
When Timer1 is clocked by FOSC/4, Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

Capture mode will operate during Sleep when Timer1 is clocked by an external clock source.

29.2 Compare Mode

The Compare mode function described in this section is available and identical for all CCP modules.

Compare mode makes use of the 16-bit Timer1 resource. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMR1H:TMR1L register pair. When a match occurs, one of the following events can occur:


- · Toggle the CCPx output
- Set the CCPx output
- Clear the CCPx output
- Generate an Auto-conversion Trigger
- Generate a Software Interrupt

The action on the pin is based on the value of the CCPxM<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set.

All Compare modes can generate an interrupt.

Figure 29-2 shows a simplified diagram of the compare operation.

FIGURE 29-2: COMPARE MODE OPERATION BLOCK DIAGRAM

29.2.1 CCPX PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Note:	Clearing the CCPxCON register will force
	the CCPx compare output latch to the
	default low level. This is not the PORT I/O
	data latch.

29.2.2 TIMER1 MODE RESOURCE

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

See Section 26.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

Note:	Clocking Timer1 from the system clock
	(Fosc) should not be used in Compare
	mode. In order for Compare mode to
	recognize the trigger event on the CCPx
	pin, TImer1 must be clocked from the
	instruction clock (Fosc/4) or from an
	external clock source.

29.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the CCPx module does not assert control of the CCPx pin (see the CCPxCON register).

29.2.4 AUTO-CONVERSION TRIGGER

When Auto-conversion Trigger mode is chosen (CCPxM<3:0> = 1011), the CCPx module does the following:

- · Resets Timer1
- Starts an ADC conversion if ADC is enabled

The CCPx module does not assert control of the CCPx pin in this mode.

The Auto-conversion Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPRxH, CCPRxL register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. The Auto-conversion Trigger output starts an ADC conversion (if the ADC module is enabled). This allows the CCPRxH, CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1.

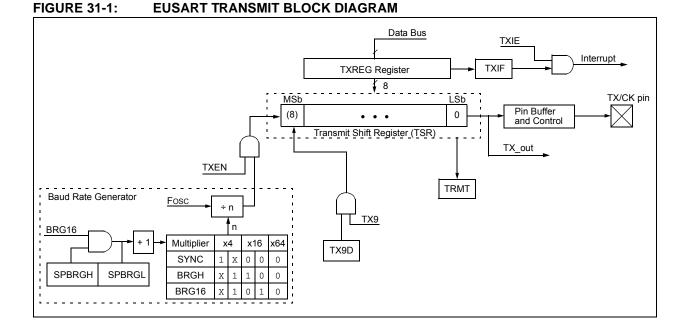
31.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

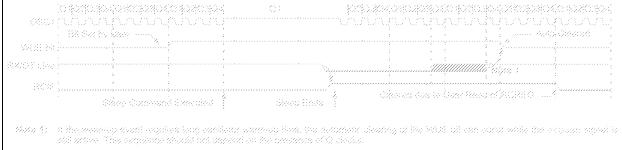
· Full-duplex asynchronous transmit and receive

- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- Address detection in 9-bit mode
- · Input buffer overrun error detection
- · Received character framing error detection
- · Half-duplex synchronous master
- · Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- Sleep operation

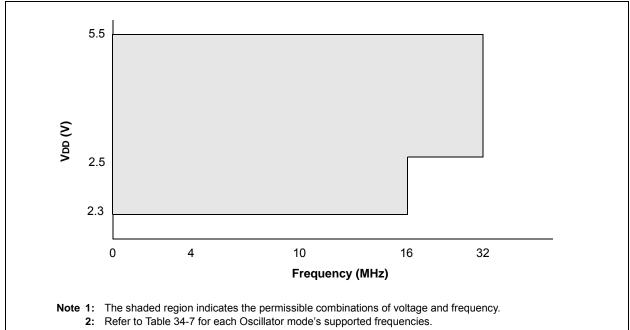

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- · Wake-up on Break reception
- 13-bit Break character transmit

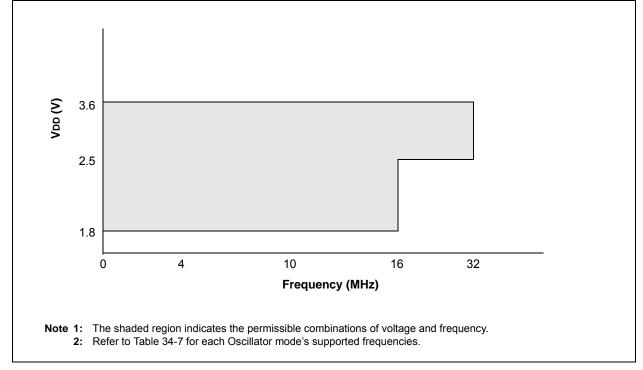
Block diagrams of the EUSART transmitter and receiver are shown in Figure 31-1 and Figure 31-2.


The EUSART transmit output (TX_out) is available to the TX/CK pin and internally to the following peripherals:

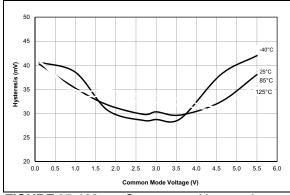
Configurable Logic Cell (CLC)

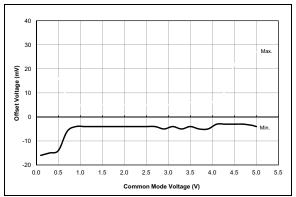

FIGURE 31-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

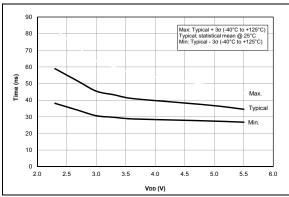
ana 31 - Xee	838887	reconside in Sc	te white the t	Ador: 68 is ex	99. 					
1222/12222	///////////////////////////////////////				7777777777					
200,001	······				····: :				ad of Şicteres	9
2000				,			; ; 		~~~ , 	
6073366 juur			'/ <i>///////////////////////////////////</i>							,
- waxes bee l	·····	·····		·/····· · · · ·	······	•	· · · · · · · · · · · · · · · · · · ·	······ · · · ·	, L.	·····
i chacki e B	्या व्या व्या संबद्ध विष्ठारक	na a a a XX ming	in na na na na T	n internet internet. A second second	an an a	t has not have n t				- Asto-Oleanad - Asto-Oleanad

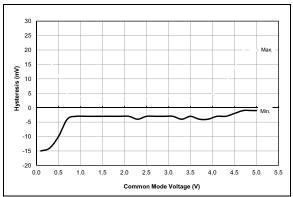


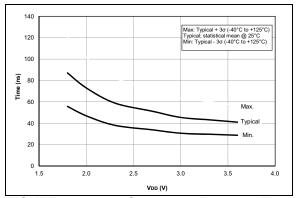
(i) The SUSSARY remains in His while the Vicili hit is ad






Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.


FIGURE 35-103: Comparator Hysteresis, NP Mode (CxSP = 1), VDD = 5.5V, Typical Measured Values, PIC16F1713/6 Only.


FIGURE 35-105: Comparator Offset, NP Mode (CxSP = 1), VDD = 5.5V, Typical Measured Values From -40°C to 125°C, PIC16F1713/6 Only.

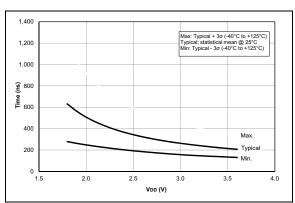

FIGURE 35-107: Comparator Response Time Over Voltage, NP Mode (CxSP = 1), Typical Measured Values, PIC16F1713/6 Only.

FIGURE 35-104: Comparator Offset, NP Mode (CxSP = 1), VDD = 5.0V, Typical Measured Values at 25°C, PIC16F1713/6 Only.

FIGURE 35-106: Comparator Response Time Over Voltage, NP Mode (CxSP = 1), Typical Measured Values, PIC16LF1713/6 Only.

FIGURE 35-108: Comparator Output Filter Delay Time Over Temp., NP Mode (CxSP = 1), Typical Measured Values, PIC16LF1713/6 Only.