

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1716-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

					Comparator			Timers		a J J	555					000			MSSP			EUSAKI		0	CLC				
RC4	15	12	AN16																SI SI) ⁽¹⁾)A ⁽¹⁾							IOC	Υ	
RC5	16	13	AN17																								IOC	Y	
RC6	17	14	AN18																		С	K ⁽³⁾					IOC	Υ	
RC7	18	15	AN19																		R	X ⁽³⁾					IOC	Y	
RE3	1	26																									IOC	Υ	MCLR Vpp
Vdd	20	17																											Vdd
Vec	8	5																											Vss
V 55	19	16																											
OUT ⁽⁴⁾				CIOUT	C2OUT					CCP1	CCP2	NCO1OUT	PWM30UT	PWM40UT	COG1A	COG1B	C0G1C	COG1D	SUA'SCI (3)	SDO	TX/CK	DT(3)	CLC4OUT	CLC3OUT	CLC2OUT	CLC1OUT			
IN ⁽⁵⁾							T1G	T1CKI	TOCKI	CCP1	CCP2					COG1IN			201 SCK/SCI (3)	SS	RX(3)	ск	CLCINO	CLCIN1	CLCIN2	CLCIN3	INT		

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.

2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: Alternate outputs are excluded from solid shaded areas.

5: Alternate inputs are excluded from dot shaded areas.

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banl	k 14-27										
x0Ch/ x8Ch 	_	Unimplement	ted							_	_
Banl	k 28										
E0Ch											
 E0Eh	—	Unimplement	ted							—	—
E0Fh	PPSLOCK	—	—	—	—	—	—	—	PPSLOCKED	0	0
E10h	INTPPS	—	_	_			INTPPS<4:0	>		0 1000	u uuuu
E11h	T0CKIPPS	—	—	—			T0CKIPPS<4:	0>		0 0100	u uuuu
E12h	T1CKIPPS	—	—	—			T1CKIPPS<4:	0>		1 0000	u uuuu
E13h	T1GPPS	—	—	_			T1GPPS<4:0	>		0 1101	u uuuu
E14h	CCP1PPS	—	—	—			CCP1PPS<4:)>		1 0010	u uuuu
E15h	CCP2PPS	—	CCP2PPS<4:0>							1 0001	u uuuu
E16h	_	Unimplemented									—
E17h	COGINPPS	— — — COGINPPS<4:0>						0 1000	u uuuu		
E18h	—	Unimplement	ted								—
E19h	—	Unimplement	ted							—	—
E1Ah E1FH	_	Unimplement	ted							_	-
E20h	SSPCLKPPS	_	—	—		S	SPCLKPPS<4	4:0>		1 0011	u uuuu
E21h	SSPDATPPS	_	—	_		S	SPDATPPS<4	1:0>		1 0100	u uuuu
E22h	SSPSSPPS	—	—	-		5	SSPSSPPS<4	:0>		0 0101	u uuuu
E23h	_	Unimplement	ted							_	—
E24h	RXPPS	—	—	—			RXPPS<4:0	>		1 0111	u uuuu
E25h	CKPPS	—	—	—			CKPPS<4:0	>		1 0110	u uuuu
E26h		Unimplement	ted							_	
E27h	—	Unimplement	ted							_	—
E28h	CLCIN0PPS	—	—	_		(CLCIN0PPS<4	:0>		0 0000	u uuuu
E29h	CLCIN1PPS	—	—	—		(CLCIN1PPS<4	:0>		0 0001	u uuuu
E2Ah	CLCIN2PPS	-	—	_		(CLCIN2PPS<4	:0>		0 1110	u uuuu
E2Bh	CLCIN3PPS	_	—	-		(CLCIN3PPS<4	:0>		0 1111	u uuuu
E2Ch to E6Fh	_	Unimplement	ted							_	_

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: Unimplemented on PIC16(L)F1713/6.

5.13 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

5.14 Register Definitions: Power Control

REGISTER 5-2: PCON: POWER CONTROL REGISTER

Legend:		
HC = Bit is cleared by hardwa	are	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	STKOVF: Stack Overflow Flag bit
	1 = A Stack Overflow occurred
	0 = A Stack Overflow has not occurred or cleared by firmware
bit 6	STKUNF: Stack Underflow Flag bit
	1 = A Stack Underflow occurred
	0 = A Stack Underflow has not occurred or cleared by firmware
bit 5	Unimplemented: Read as '0'
bit 4	RWDT: Watchdog Timer Reset Flag bit
	1 = A Watchdog Timer Reset has not occurred or set to '1' by firmware
	0 = A Watchdog Timer Reset has occurred (cleared by hardware)
bit 3	RMCLR: MCLR Reset Flag bit
	1 = A $\overline{\text{MCLR}}$ Reset has not occurred or set to '1' by firmware
	0 = A MCLR Reset has occurred (cleared by hardware)
bit 2	RI: RESET Instruction Flag bit
	1 = A RESET instruction has not been executed or set to '1' by firmware
	0 = A RESET instruction has been executed (cleared by hardware)
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	1 = No Brown-out Reset occurred
	0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset
	occurs)

The PCON register bits are shown in Register 5-2.

10.0 FLASH PROGRAM MEMORY CONTROL

The Flash program memory is readable and writable during normal operation over the full VDD range. Program memory is indirectly addressed using Special Function Registers (SFRs). The SFRs used to access program memory are:

- PMCON1
- PMCON2
- PMDATL
- PMDATH
- PMADRL
- PMADRH

When accessing the program memory, the PMDATH:PMDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the PMADRH:PMADRL register pair forms a 2-byte word that holds the 15-bit address of the program memory location being read.

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the operating voltage range of the device.

The Flash program memory can be protected in two ways; by code protection (CP bit in Configuration Words) and write protection (WRT<1:0> bits in Configuration Words).

Code protection $(\overline{CP} = 0)^{(1)}$, disables access, reading and writing, to the Flash program memory via external device programmers. Code protection does not affect the self-write and erase functionality. Code protection can only be reset by a device programmer performing a Bulk Erase to the device, clearing all Flash program memory, Configuration bits and User IDs.

Write protection prohibits self-write and erase to a portion or all of the Flash program memory as defined by the bits WRT<1:0>. Write protection does not affect a device programmers ability to read, write or erase the device.

Note 1:	Code	protection	of	the	entire	Flash
	progra	m m <u>em</u> ory	ar	ray i	s enab	led by
	clearin	g the CP bit	of C	Config	uration	Words.

10.1 PMADRL and PMADRH Registers

The PMADRH:PMADRL register pair can address up to a maximum of 32K words of program memory. When selecting a program address value, the MSB of the address is written to the PMADRH register and the LSB is written to the PMADRL register.

10.1.1 PMCON1 AND PMCON2 REGISTERS

PMCON1 is the control register for Flash program memory accesses.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared by hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine.

The PMCON2 register is a write-only register. Attempting to read the PMCON2 register will return all '0's.

To enable writes to the program memory, a specific pattern (the unlock sequence), must be written to the PMCON2 register. The required unlock sequence prevents inadvertent writes to the program memory write latches and Flash program memory.

10.2 Flash Program Memory Overview

It is important to understand the Flash program memory structure for erase and programming operations. Flash program memory is arranged in rows. A row consists of a fixed number of 14-bit program memory words. A row is the minimum size that can be erased by user software.

After a row has been erased, the user can reprogram all or a portion of this row. Data to be written into the program memory row is written to 14-bit wide data write latches. These write latches are not directly accessible to the user, but may be loaded via sequential writes to the PMDATH:PMDATL register pair.

See Table 10-1 for Erase Row size and the number of write latches for Flash program memory.

Note: If the user wants to modify only a portion of a previously programmed row, then the contents of the entire row must be read and saved in RAM prior to the erase. Then, new data and retained data can be written into the write latches to reprogram the row of Flash program memory. However, any unprogrammed locations can be written without first erasing the row. In this case, it is not necessary to save and rewrite the other previously programmed locations.

REGISTER 10-5:	PMCON1: PROGRAM MEMORY	CONTROL 1 REGISTER
----------------	------------------------	---------------------------

U-1	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q ⁽²⁾	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
(1)	CFGS	LWLO ⁽³⁾	FREE	WRERR	WREN	WR	RD
bit 7		·					bit 0
Legend:							
R = Readable	bit	W = Writable bi	it	U = Unimpleme	ented bit, read as	ʻ0'	
S = Bit can on	ly be set	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/V	alue at all other F	Resets
'1' = Bit is set		'0' = Bit is clear	red	HC = Bit is clea	red by hardware		
bit 7	Unimpleme	ented: Read as '1'					
bit 6	CFGS: Con	figuration Select bit					
	1 = Access	s Configuration, Use	r ID and Device	e ID Registers			
bit 5		d Write Latches Onl	v bit(3)				
bit 5	1 = Only th	ne addressed progra	im memory write	e latch is loaded/	updated on the n	ext WR comman	d
	0 = The ad	dressed program me	emory write latc	h is loaded/updat	ed and a write of	all program memo	ory write latches
	will be	initiated on the next	WR command				
bit 4	FREE: Prog	ram Flash Erase Er	hable bit				
	\perp = Perform	ns an erase operation	on on the next WF	VR command (na R command	ardware cleared	upon completion)	
bit 3	WRERR: Pr	rogram/Erase Error	Flag bit				
2.1.0	1 = Condit	ion indicates an imp	proper program	or erase sequen	ce attempt or ter	mination (bit is s	et automatically
	on any	set attempt (write '1	L') of the WR bit	t).			
	0 = The pr	ogram or erase oper	ration complete	d normally			
bit 2	WREN: Pro	gram/Erase Enable	bit				
	0 = Inhibits	programming/erasi	ng of program I	-lash			
bit 1	WR: Write C	Control bit					
	1 = Initiate	s a program Flash p	orogram/erase o	peration.			
	The op	Provide the self-timed	and the bit is c	leared by hardwa	are once operatio	n is complete.	
	0 = Progra	m/erase operation to	o the Flash is co	omplete and inac	tive		
bit 0	RD: Read C	Control bit		•			
	1 = Initiate	s a program Flash re	ead. Read takes	s one cycle. RD i	s cleared in hard	ware. The RD bit	can only be set
	(not cle	eared) in software.	Elash road				
Note de Li		iot initiate a program	i Flash read				
Note 1: U	miniplemented b	π , read as \perp .					

- 2: The WRERR bit is automatically set by hardware when a program memory write or erase operation is started (WR = 1).
- **3:** The LWLO bit is ignored during a program memory erase operation (FREE = 1).

FIGURE 18-8: COG (RISING/FALLING) DEAD-BAND BLOCK

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	-	-	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	120
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	126
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	_	131
COG1PHR	_	—			G1PH	R<5:0>			201
COG1PHF	_	—			G1PH	F<5:0>			201
COG1BLKR	_	—			G1BLK	(R<5:0>			200
COG1BLKF	—	—			G1BLK	(F<5:0>			200
COG1DBR	_	—			G1DB	R<5:0>			199
COG1DBF	—	—			G1DB	F<5:0>			199
COG1RIS	G1RIS7	G1RIS6	G1RIS5	G1RIS4	G1RIS3	G1RIS2	G1RIS1	G1RIS0	190
COG1RSIM	G1RSIM7	G1RSIM6	G1RSIM5	G1RSIM4	G1RSIM3	G1RSIM2	G1RSIM1	G1RSIM0	191
COG1FIS	G1FIS7	G1FIS6	G1FIS5	G1FIS4	G1FIS3	G1FIS2	G1FIS1	G1FIS0	193
COG1FSIM	G1FSIM7	G1FSIM6	G1FSIM5	G1FSIM4	G1FSIM3	G1FSIM2	G1FSIM1	G1FSIM0	194
COG1CON0	G1EN	G1LD	—	G1C5	6<1:0>		G1MD<2:0>		188
COG1CON1	G1RDBS	G1FDBS	—	—	G1POLD	G1POLC	G1POLB	G1POLA	189
COG1ASD0	G1ASE	G1ARSEN	G1ASDI	BD<1:0>	G1ASD	AC<1:0>	—	—	196
COG1ASD1	—	—	—	—	G1AS3E	G1AS2E	G1AS1E	G1AS0E	197
COG1STR	G1SDATD	G1SDATC	G1SDATB	G1SDATA	G1STRD	G1STRC	G1STRB	G1STRA	198
INTCON	GIE	PEIE	T0IE	INTE	IOCIE	TOIF	INTF	IOCIF	83
COG1PPS	—	—				COG1PPS<4:0	>		136
PIE2	OSFIE	C2IE	C1IE	—	BCL1IE	TMR6IE	TMR4IE	CCP2IE	85
PIR2	OSFIF	C2IF	C1IF	_	BCL1IF	TMR6IF	TMR4IF	CCP2IF	88
RxyPPS	—	—	_			RxyPPS<4:0>			137

TABLE 18-2: SUMMARY OF REGISTERS ASSOCIATED WITH COG

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by COG

REGISTER 19-3: CLCxSEL0: GENERIC CLCx DATA 1 SELECT REGISTER

U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	_	—			LCxD1S<4:0>	•	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-5	Unimplemented: Read as '0	,

bit 4-0	LCxD1S<4:0>: CLCx Data1 Input Selection bits
	See Table 19-1.

REGISTER 19-4: CLCxSEL1: GENERIC CLCx DATA 2 SELECT REGISTER

U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—			LCxD2S<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 LCxD2S<4:0>: CLCx Data 2 Input Selection bits See Table 19-1.

REGISTER 19-5: CLCxSEL2: GENERIC CLCx DATA 3 SELECT REGISTER

U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—			LCxD3S<4:0>	>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 LCxD3S<4:0>: CLCx Data 3 Input Selection bits See Table 19-1.

R/W-0/	0 R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
	TRIGSE	L<3:0> ⁽¹⁾			—	—	—
bit 7					·	•	bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is u	unchanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is	set	'0' = Bit is cle	ared				
bit 7-4	TRIGSEL<3	:0>: Auto-Conv	ersion Triaaer	Selection bits ⁽¹)		
		auto convorsior	trigger soloct	od			
	0000 = 1000	2010-00110015101	i iliyyel seleci	eu			
		- 1					
		-2 	(2)				
)w ⁽⁻⁾				
		eri – Ti_ovenic	JW(-)				
	0101 = Time	$r^2 - 12_match$					
	0110 = Com	iparator C1 – sy					
	0111 = Com	iparator C2 – sy	/nc_C2OU1				
	1000 = CLC	$1 - LC1_out$					
	1001 = CLC	$2 - LC2_out$					
	1010 = CLC	3 – LC3_out					
	1011 = CLC	4 – LC4_out					
	1100 = Tim	er4 – T4_match	ו				
	1101 = Tim	er6 – T6_match	1				
	1110 = Res	erved					
	1111 = Res	erved					
bit 3-0	Unimpleme	nted: Read as '	0'				
Note 1:	This is a rising ec	lge sensitive inp	out for all sour	ces.			

REGISTER 21-3: ADCON2: ADC CONTROL REGISTER 2

- - 2: Signal also sets its corresponding interrupt flag.

24.6 Register Definitions: DAC2 Control

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
DAC2EN	—	DAC2OE1	DAC2OE2	DAC2F	PSS<1:0>	—	DAC2NSS
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable bi	t	U = Unimplem	ented bit, read as	'0'	
u = Bit is unchar	iged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/V	alue at all other f	Resets
'1' = Bit is set		'0' = Bit is clear	ed				
bit 7	DAC2EN: DAC	2 Enable bit					
	1 = DAC is en	abled					
h:4.0							
DIT 6	Unimplemente	ed: Read as '0'					
bit 5	DAC2OE1: DA	C2 Voltage Outp	ut Enable bit				
	0 = DAC voltage	ge level is also a ge level is discor	nnected from th	e DAC2OUT1 pil	in		
bit 4	DAC20E2: DA	C2 Voltage Outp	ut Enable bit				
	1 = DAC volta	ge level is also a	n output on the	DAC2OUT2 pir	ı		
	0 = DAC volta	ge level is discor	nnected from th	e DAC2OUT2 p	in		
bit 3-2	DAC2PSS<1:0	>: DAC2 Positive	e Source Select	t bits			
	11 = Reserve	d, do not use					
	10 = FVRBUI 01 = VPEE + pi	in					
	00 = VDD						
bit 1	Unimplemente	ed: Read as '0'					
bit 0	DAC2NSS: DA	C2 Negative Sou	urce Select bits				
	1 = VREF-						
	0 = Vss						

REGISTER 24-1: DAC2CON0: VOLTAGE REFERENCE CONTROL REGISTER 0

REGISTER 24-2: DAC2CON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_				DAC2R<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DAC2R<4:0>: DAC Voltage Output Select bits

TABLE 24-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC2 MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DAC2CON0	DAC2EN	—	DAC2OE1	DAC2OE2	DAC2PS	SS<1:0>	—	DAC2NSS	253
DAC2CON1	—		—	DAC2R<4:0>				253	

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

25.2 Register Definitions: Option Register

REGISTER 25-1: OPTION_REG: OPTION REGISTER

R/W-1/1	R/W-1/1	R/W-1/	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
WPUEN	INTEDG	TMR0C	5 TMR0SE	PSA		PS<2:0>			
bit 7							bit 0		
Legend:									
R = Readable b	bit	W = Writa	ole bit	U = Unimplei	mented bit, read	d as '0'			
u = Bit is uncha	inged	x = Bit is ι	nknown	-n/n = Value	at POR and BC	R/Value at all c	ther Resets		
'1' = Bit is set		'0' = Bit is	cleared						
bit 7	WPUEN: We 1 = All weak 0 = Weak pu	eak Pull-Up I pull-ups are Il-ups are er	Enable bit disabled (excep abled by individ	t MCLR, if it is ual WPUx latch	enabled) values				
bit 6	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of INT pin 0 = Interrupt on falling edge of INT pin								
bit 5	TMROCS: Timer0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (Eosc/4)								
bit 4	TMROSE: Tin 1 = Incremen 0 = Incremen	mer0 Source nt on high-to nt on low-to-	Edge Select bit low transition of high transition of	: n T0CKI pin n T0CKI pin					
bit 3	PSA: Prescale 1 = Prescale 0 = Prescale	ıler Assignm r is not assiç r is assignec	ent bit jned to the Time I to the Timer0 r	r0 module nodule					
bit 2-0	PS<2:0>: Pr	escaler Rate	Select bits						
	Bit	Value Tim	er0 Rate						
		000 1 001 1 010 1 011 1 100 1 101 1 110 1 111 1	: 2 : 4 : 8 : 16 : 32 : 64 : 128 : 256						
TABLE 25-1:	SUMMAR	Y OF REG	ISTERS ASSO	CIATED WIT	H TIMER0				

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	83
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS<2:0>			256
TMR0	Timer0 Module Register								254*
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	119

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

* Page provides register information.

FIGURE 26-6: T	IMER1 GATE SINGLE-	PULSE AND TOGGLE COME	BINED MODE
TMR1GE			
T1GPOL]		
T1GSPM			
T1GTM			
T1GG <u>O/</u> DONE	d Set by software Counting enabled or rising edge of T1G	1	Cleared by hardware on falling edge of T1GVAL
t1g_in			
т1СКІ			
T1GVAL			1
Timer1	N	<u>N+1</u> <u>N+2</u> <u>N+3</u> <u>N+</u>	4
TMR1GIF 4 (Cleared by software	Set by hardware on falling edge of T1GVAL —	Cleared by

The CCPRxH register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (see Figure 29-4).

29.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 29-4.

EQUATION 29-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 29-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (F	osc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 29-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

29.3.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

29.3.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

29.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

30.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select.

The SPI bus specifies four signal connections:

- · Serial Clock (SCK)
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Slave Select (SS)

Figure 30-1 shows the block diagram of the MSSP module when operating in SPI mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 30-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 30-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information out on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register. During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on its SDO pin) and the slave device is reading this bit and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

FIGURE 33-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register	r operations
OPCODE 0	d f (FILE #)
d = 0 for destination d = 1 for destination f f = 7-bit file register a	W ddress
Bit-oriented file register of 13 10 9	pperations 7 6 0
OPCODE b (BIT #) f (FILE #)
b = 3-bit bit address f = 7-bit file register a	ddress
Literal and control operation	tions
General	
13 8	3 7 0
OPCODE	k (literal)
k = 8-bit immediate v	alue
CALL and GOTO instruction	s only
13 11 10	0
OPCODE	k (literal)
K = 11-bit immediate N MOVLP instruction only	value
OFCODE	K (IIIerai)
K = 7-bit immediate va	alue
13	54 0
OPCODE	K (literal)
k = 5-bit immediate va	alue
13 9	8 0
OPCODE	k (literal)
k = 9-bit immediate v	alue
FSR Offset instructions	
	n k (literal)
n = appropriate FSR k = 6-bit immediate v	alue
FSR Increment instructions	3210
OPCODE	n m (mode)
n = appropriate FSR m = 2-bit mode value	9
OPCODE only 13	0
OPC	ODE

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A