

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1716-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-6: PIC16(L)F1716 MEMORY MAP, BANK 8-23

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	Core Registers (Table 3-2)	480h	Core Registers (Table 3-2)	500h	Core Registers (Table 3-2)	580h	Core Registers (Table 3-2)	600h	Core Registers (Table 3-2)	680h	Core Registers (Table 3-2)	700h	Core Registers (Table 3-2)	780h	Core Registers (Table 3-2)
40Bh	(/	48Bh	(50Bh	(,	58Bh	(,	60Bh	(/	68Bh	(,	70Bh	(/	78Bh	(/
40Ch	_	48Ch		50Ch		58Ch		60Ch		68Ch		70Ch		78Ch	
40Dh	_	48Dh	_	50Dh	_	58Dh	_	60Dh	_	68Dh	_	70Dh	_	78Dh	_
40Eh	_	48Eh	_	50Eh	_	58Eh	_	60Eh	_	68Eh	_	70Eh	_	78Eh	_
40Fh	_	48Fh	_	50Fh	_	58Fh	_	60Fh	_	68Fh	_	70Fh	_	78Fh	_
410h	_	490h	_	510h	—	590h	—	610h	_	690h	—	710h	_	790h	—
411h	_	491h	—	511h	OPA1CON	591h	_	611h	_	691h	COG1PHR	711h	—	791h	_
412h	_	492h	—	512h	-	592h		612h	_	692h	COG1PHF	712h	_	792h	-
413h	—	493h	—	513h	—	593h	—	613h	—	693h	COG1BLKR	713h	—	793h	—
414h	_	494h	_	514h		594h		614h	_	694h	COG1BLKF	714h	_	794h	
415h	TMR4	495h	_	515h	OPA2CON	595h	_	615h	—	695h	COG1DBR	715h	—	795h	_
416h	PR4	496h	—	516h	—	596h	—	616h	—	696h	COG1DBF	716h	—	796h	—
417h	T4CON	497h		517h		597h	_	617h	PWM3DCL	697h	COG1CON0	717h	_	797h	
418h	_	498h	NCO1ACCL	518h		598h	_	618h	PWM3DCH	698h	COG1CON1	718h	_	798h	
419h	_	499h	NCO1ACCH	519h	—	599h	—	619h	PWM3CON	699h	COG1RIS	719h	_	799h	—
41Ah	_	49Ah	NCO1ACCU	51Ah		59Ah		61Ah	PWM4DCL	69Ah		71Ah	_	79Ah	
41Bh	—	49Bh	NCOTINCL	51Bh	—	59Bh	—	61Bh	PWM4DCH	69Bh	COGIFIS	71Bh	—	79Bh	—
41Ch	TMR6	49Ch	NCOTINCH	51Ch	—	59Ch	—	61Ch	PWM4CON	69Ch		71Ch	—	79Ch	—
41Dh	PR6	49Dh	NCOTINCU	51Dh	—	59Dh	—	61Dh	—	69Dh		/1Dh	—	79Dh	—
41Eh	16CON	49Eh	NCO1CON	51Eh	—	59Eh	—	61Eh	—	69Eh	COGIASDI	/1Eh	—	79Eh	—
41Fn 420h	—	49Fn 440h	NCOTCLK	51FN 520h	—	59Fn 5∆0h	—	620h		69FN	COGISTR	71FN 720h	_	79⊢n 7∆0h	
42011	. .	7/1011	. .	02011	a .	0/1011	a .	02011	General Purpose	0/1011		72011		77,011	
	General		General		General		General		48 Bytes		Unimplemented		Linimalamented		Unimplemented
	Puipose Register		Pagister		Pagister		Pagister	64Fh	10 2 3 100		Dhimplemented Read as '∩'				Dhimplemented Read as '∩'
	80 Bytes		80 Bytes		80 Bytes		80 Bytes	•	Unimplemented		Redu do 0		itedu do 0		Redu do 0
46 C h	00 29,000	455h	00 29100	FOL	00 29,000	FFFh	00 29100	COLP	Read as '0'	6C.C.h		7656		7556	
40F11 470b		4EF11 4E0b		570h				670h		6E0b		70FII 770h		7E0h	
47011		41 011		57011		51 011		07011	•	01 011	•	77011	A	71 011	A
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	7011 - 7711		7011-7711		7011 - 7711		7011 - 7711		7011 - 7711		7011 - 7711		7011 - 7711		7011 - 7711
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	
-	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h		880h		900h		980h		A00h		A80h		B00h		B80h	
	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
	(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)
80Bh		88Bh		90Bh		98Bh		A0Bh		A8Bh		B0Bh		B8Bh	
80Ch		88Ch		90Ch		98Ch		A0Ch		A8Ch		B0Ch		B8Ch	
	Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented
	Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
870h		8F0h		970h		9F0h		A70h		AF0h		B70h		BF0h	
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
87Fh		8FFh		97Fh		9FFh		A7Fh		AFFh		B7Fh		BFFh	

Legend: = Unimplemented data memory locations, read as '0'.

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banl	k 14-27										
x0Ch/ x8Ch 	_	Unimplement	ted							_	_
Banl	k 28										
E0Ch											
 E0Eh	—	Unimplement	ted							—	—
E0Fh	PPSLOCK	—	—	_	—	—	—	—	PPSLOCKED	0	0
E10h	INTPPS	—	_	_			INTPPS<4:0	>		0 1000	u uuuu
E11h	T0CKIPPS	—	—	—			T0CKIPPS<4:	0>		0 0100	u uuuu
E12h	T1CKIPPS	—	—	—			T1CKIPPS<4:	0>		1 0000	u uuuu
E13h	T1GPPS	—	—	_			T1GPPS<4:0	>		0 1101	u uuuu
E14h	CCP1PPS	—	—	—			CCP1PPS<4:)>		1 0010	u uuuu
E15h	CCP2PPS	—	—	_			CCP2PPS<4:)>		1 0001	u uuuu
E16h	_	Unimplement	ted								—
E17h	COGINPPS	—	—	_		(COGINPPS<4	:0>		0 1000	u uuuu
E18h	—	Unimplement	ted								—
E19h	—	Unimplement	ted							—	—
E1Ah E1FH	_	Unimplement	ted							_	-
E20h	SSPCLKPPS	_	—	—		S	SPCLKPPS<4	4:0>		1 0011	u uuuu
E21h	SSPDATPPS	_	—	_		S	SPDATPPS<4	1:0>		1 0100	u uuuu
E22h	SSPSSPPS	—	—	-		5	SSPSSPPS<4	:0>		0 0101	u uuuu
E23h	_	Unimplement	ted							_	—
E24h	RXPPS	—	—	—			RXPPS<4:0	>		1 0111	u uuuu
E25h	CKPPS	—	—	—			CKPPS<4:0	>		1 0110	u uuuu
E26h		Unimplement	ted							_	
E27h	—	Unimplement	ted							_	—
E28h	CLCIN0PPS	—	—	_		(CLCIN0PPS<4	:0>		0 0000	u uuuu
E29h	CLCIN1PPS	—	—	—		(CLCIN1PPS<4	:0>		0 0001	u uuuu
E2Ah	CLCIN2PPS	-	—	_		(CLCIN2PPS<4	:0>		0 1110	u uuuu
E2Bh	CLCIN3PPS	_	—	-		(CLCIN3PPS<4	:0>		0 1111	u uuuu
E2Ch to E6Fh	_	Unimplement	ted							_	_

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: Unimplemented on PIC16(L)F1713/6.

								,			
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banl	k 29										
E8Ch											
E8Fh	—	Unimplemen	ted							_	_
E90h	RA0PPS	_	_	—			RA0PPS<4:0	>		0 0000	u uuuu
E91h	RA1PPS	—	_	—			RA1PPS<4:0	>		0 0000	u uuuu
E92h	RA2PPS	_	_	_			RA2PPS<4:0	>		0 0000	u uuuu
E93h	RA3PPS	_	_	_			RA3PPS4:0	>		0 0000	u uuuu
E94h	RA4PPS	_	_	_			RA4PPS<4:0	>		0 0000	u uuuu
E95h	RA5PPS	_	_	_			RA5PPS<4:0	>		0 0000	u uuuu
E96h	RA6PPS	_	_	_			RA6PPS<4:0	>		0 0000	u uuuu
E97h	RA7PPS	_	—	—			RA7PPS<4:0	>		0 0000	u uuuu
E98h	RB0PPS	—	—	—			RB0PPS<4:0	>		0 0000	u uuuu
E99h	RB1PPS	—	—	—			RB1PPS<4:0	>		0 0000	u uuuu
E9Ah	RB2PPS	—	—	—			RB2PPS<4:0	>		0 0000	u uuuu
E9Bh	RB3PPS	—	—	—			RB3PPS<4:0	>		0 0000	u uuuu
E9Ch	RB4PPS	—	—	—			RB4PPS<4:0	>		0 0000	u uuuu
E9Dh	RB5PPS	—	_	—			RB5PPS<4:0	>		0 0000	u uuuu
E9Eh	RB6PPS	_	_	_			RB6PPS<4:0	>		0 0000	u uuuu
E9Fh	RB7PPS	_	_	—			RB7PPS<4:0	>		0 0000	u uuuu
EA0h	RC0PPS	_	_	_			RC0PPS<4:0	>		0 0000	u uuuu
EA1h	RC1PPS	_	_	_			RC1PPS<4:0	>		0 0000	u uuuu
EA2h	RC2PPS	_	_	_			RC2PPS<4:0	>		0 0000	u uuuu
EA3h	RC3PPS	_	_	_			RC3PPS<4:0	>		0 0000	u uuuu
EA4h	RC4PPS	_	_	_			RC4PPS<4:0	>		0 0000	u uuuu
EA5h	RC5PPS	—	_	—			RC5PPS<4:0	>		0 0000	u uuuu
EA6h	RC6PPS	_	_	—			RC6PPS<4:0	>		0 0000	u uuuu
EA7h	RC7PPS	—	_	—			RC7PPS<4:0	>		0 0000	u uuuu
EA8h			•	•	•						
— 	—	Unimplemen	ted							—	—

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: Note 1

Shaded locations are unimplemented, read as '0'. 1: Unimplemented, read as '1'.

2: Unimplemented on PIC16(L)F1713/6.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	_			TUN	<5:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set	t	'0' = Bit is clea	ared				
bit 7-6	Unimplemer	nted: Read as '	0'				
bit 5-0	TUN<5:0>: F	requency Tunir	ng bits				
	100000 = N	linimum frequer	ncy				
	•						
	•						
	•						
	111111 =						
	0000000 = O	scillator module	e is running at	the factory-call	brated frequen	су	
	000001 =						
	•						
	011110 =						
	011111 = N	laximum freque	ncv				

REGISTER 6-3: OSCTUNE: OSCILLATOR TUNING REGISTER

TABLE 6-2:	SUMMARY OF REGISTERS	ASSOCIATED WITH CLOCK SOURCES	;
------------	----------------------	-------------------------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF	-<3:0>		_	SCS	<1:0>	75
OSCSTAT	SOSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	76
OSCTUNE	_	-			TUN	<5:0>			77
PIR2	OSFIF	C2IF	C1IF	—	BCL1IF	TMR6IF	TMR4IF	CCP2IF	88
PIE2	OSFIE	C2IE	C1IE	—	BCL1IE	TMR6IE	TMR4IE	CCP2IE	85
T1CON	TMR1C	:S<1:0>	T1CKP	S<1:0>	T10SCEN	T1SYNC		TMR10N	265

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 6-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8	—	_	FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	—	47
	7:0	CP	MCLRE	PWRTE	WD1	TE<1:0>		FOSC<2:0>		47

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

8.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared

- If the interrupt occurs **during or after** the execution of a SLEEP instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

CLKIN ⁽¹⁾ CLKOUT ⁽²⁾	Q1 Q2 Q3 Q4 ////////////////////////////////////	Q1 Q2 Q3 Q4	Q1 	Tost(3)	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 	Q1 Q2 Q3 Q4 ~~~~~~ /
Interrupt flag	1 	1 F	/		Interrupt Laten	CV(4)	· · ·	
	1	I	-	-			· •	
GIE bit		1	Processor in		1	<u> </u>	1 I	
(INTCON reg.),	ı	Sleen		I.	ı	1 1	
	¦	¦		— —	!	¦_	! !	
Instruction Flow	,1	1	1		1	ı	1 1	
PC	X PC	X PC + 1	X PC	+ 2	X PC + 2	(PC + 2	X 0004h	0005h
Instruction { Fetched	Inst(PC) = Sleep	Inst(PC + 1)	1 1 1		Inst(PC + 2)	1 1 1	Inst(0004h)	Inst(0005h)
Instruction { Executed {	Inst(PC - 1)	Sleep	1 1 1		Inst(PC + 1)	Forced NOP	Forced NOP	Inst(0004h)
Note 1: 2: 3:	External clock. Hig CLKOUT is shown Tost = 1024 Tosc. "Two-Speed Cloc	h, Medium, Low n here for timing re This delay does r k Start-up Mode "	node assumed ference. not apply to E	d. C, RC ar	nd INTOSC Oscilla	tor modes or Two	-Speed Start-up (s	ee Section 6.4
Note 1: 2: 3:	External clock. Hig CLKOUT is shown Tost = 1024 Tosc. "Two-Speed Cloc GIE = 1 assumed	h, Medium, Low n here for timing re This delay does r k Start-up Mode " In this case after :	node assumed ference. not apply to Er	d. C, RC ar	nd INTOSC Oscilla	tor modes or Two	-Speed Start-up (s	ee Section (

FIGURE 8-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT

DS40001726C-page 92

12.0 PERIPHERAL PIN SELECT (PPS) MODULE

The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs remain fixed to their assigned pins. Input and output selections are independent as shown in the simplified block diagram Figure 12-1.

12.1 **PPS** Inputs

Each peripheral has a PPS register with which the inputs to the peripheral are selected. Inputs include the device pins.

Multiple peripherals can operate from the same source simultaneously. Port reads always return the pin level regardless of peripheral PPS selection. If a pin also has associated analog functions, the ANSEL bit for that pin must be cleared to enable the digital input buffer.

Although every peripheral has its own PPS input selection register, the selections are identical for every peripheral as shown in Register 12-1.

Note:	The notation "xxx" in the register name is
	a place holder for the peripheral identifier.
	For example, CLC1PPS.

12.2 **PPS** Outputs

Each I/O pin has a PPS register with which the pin output source is selected. With few exceptions, the port TRIS control associated with that pin retains control over the pin output driver. Peripherals that control the pin output driver as part of the peripheral operation will override the TRIS control as needed. These peripherals include:

- EUSART (synchronous operation)
- MSSP (I²C)
- COG (auto-shutdown)

Although every pin has its own PPS peripheral selection register, the selections are identical for every pin as shown in Register 12-2.

Note: The notation "Rxy" is a place holder for the pin identifier. For example, RA0PPS.

FIGURE 12-1: SIMPLIFIED PPS BLOCK DIAGRAM **PPS** Outputs **RA0PPS PPS** Inputs abcPPS 🛛 RA0 RA0 🖂 Peripheral abc **RxyPPS** 🛛 Rxy Peripheral xyz RC7PPS RC7 xyzPPS -X RC7

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0
GxASE	GxARSEN	GxASDE	3D<1:0>	GxASDA	AC<1:0>	_	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpleme	ented bit, read a	as 'O'	
u = Bit is uncl	hanged	x = Bit is unkr	iown	-n/n = Value at	POR and BOR	/Value at all oth	ner Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value depe	nds on conditio	n	
bit 7	GxASE: Auto	-Shutdown Eve	ent Status bit				
	1 = COG is in	n the shutdown	state				
	0 = COG is e	either not in the	shutdown stat	te or will exit the	shutdown state	on the next ris	sing event
bit 6	GxARSEN: A	uto-Restart En	able bit				
	1 = Auto-rest	art is enabled					
	0 = Auto-rest	art is disabled					
bit 5-4	GxASDBD<1	:0>: COGxB a	nd COGxD Au	to-shutdown Ov	erride Level Se	lect bits	
	$11 = A \log ic$	'1' is placed or	COGxB and	COGxD when sl	nutdown is activ	e	
	$10 = A \log C$	¹ 0 ¹ Is placed of and COCyD a	I COGXB and	COGXD when si	nutdown is active	/e	
	01 = COGAL 00 = The ina	active state of th	ne pin, includir	ng polarity, is pla	ced on COGxB	and COGxD w	hen shutdown
	is activ	e	·• p…, …•.•	.g p =,, , :e p			
bit 3-2	GxASDAC<1	:0>: COGxA a	nd COGxC Au	to-shutdown Ov	erride Level Se	lect bits	
	11 = A logic	'1' is placed on	COGxA and	COGxC when sh	utdown is activ	е	
	10 = A logic	'0' is placed on	COGxA and	COGxC when sh	utdown is activ	e	
	01 = COGxA	and COGxC a	re tri-stated w	hen shutdown is	active		
	00 = The ina	ctive state of th	ie pin, includin	ig polarity, is plac	cea on COGxA	and COGxC w	nen shutdown
	10 00000		. 1				

REGISTER 18-7: COGxASD0: COG AUTO-SHUTDOWN CONTROL REGISTER 0

bit 1-0 Unimplemented: Read as '0'

REGISTER 18-14: COGxPHR: COG RISING EDGE PHASE DELAY COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	_			GxPH	R<5:0>		
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6	Unimplemented: Read as '0'
---------	----------------------------

bit 5-0

bit 5-0

GxPHR<5:0>: Rising Edge Phase Delay Count Value bits

= Number of COGx clock periods to delay rising edge event

REGISTER 18-15: COGxPHF: COG FALLING EDGE PHASE DELAY COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			GxPH	F<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'

GxPHF<5:0>: Falling Edge Phase Delay Count Value bits

= Number of COGx clock periods to delay falling edge event

19.1.5 CLCx SETUP STEPS

The following steps should be followed when setting up the CLCx:

- Disable CLCx by clearing the LCxEN bit.
- Select desired inputs using CLCxSEL0 through CLCxSEL3 registers (See Table 19-1).
- · Clear any associated ANSEL bits.
- Set all TRIS bits associated with inputs.
- · Clear all TRIS bits associated with outputs.
- Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers.
- Select the gate output polarities with the LCxPOLy bits of the CLCxPOL register.
- Select the desired logic function with the LCxMODE<2:0> bits of the CLCxCON register.
- Select the desired polarity of the logic output with the LCxPOL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired pin PPS control register and also clear the TRIS bit corresponding to that output.
- If interrupts are desired, configure the following bits:
 - Set the LCxINTP bit in the CLCxCON register for rising event.
 - Set the LCxINTN bit in the CLCxCON register for falling event.
 - Set the CLCxIE bit of the associated PIE registers.
 - Set the GIE and PEIE bits of the INTCON register.
- Enable the CLCx by setting the LCxEN bit of the CLCxCON register.

19.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR registers will be set when either edge detector is triggered and its associated enable bit is set. The LCxINTP enables rising edge interrupts and the LCxINTN bit enables falling edge interrupts. Both are located in the CLCxCON register.

To fully enable the interrupt, set the following bits:

- · LCxON bit of the CLCxCON register
- · CLCxIE bit of the associated PIE registers
- LCxINTP bit of the CLCxCON register (for a rising edge detection)
- LCxINTN bit of the CLCxCON register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The CLCxIF bit of the associated PIR registers, must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

19.3 Output Mirror Copies

Mirror copies of all LCxCON output bits are contained in the CLCxDATA register. Reading this register reads the outputs of all CLCs simultaneously. This prevents any reading skew introduced by testing or reading the CLCxOUT bits in the individual CLCxCON registers.

19.4 Effects of a Reset

The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.

19.5 Operation During Sleep

The CLC module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the CLC module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

19.6 Register Definitions: CLC Control

R/W-0/0	U-0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
LCxEN	—	LCxOUT	LCxINTP	LCxINTN	L	.CxMODE<2:0>	>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplen	nented bit, read	1 as '0'	
u = Bit is uncha	anged	x = Bit is unkr	x = Bit is unknown -n/n = Value at POR ar		at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxEN: Conf	igurable Logic	Cell Enable b	it			
	1 = Configura	able logic cell is	s enabled and	mixing input s	ignals		
		able logic cell is	s disabled and	has logic zero	output		
bit 6	Unimplemen	ted: Read as	0'				
bit 5	LCxOUT: Cor	nfigurable Logi	c Cell Data Oເ	utput bit			
	Read-only: lo	gic cell output o	data, after LC	xPOL; sampled	from LCx_out	wire.	
bit 4	LCxINTP: Co	nfigurable Log	ic Cell Positive	e Edge Going I	nterrupt Enable	e bit	
1 = CLCxIF will be set when a rising edge occurs on LCx_out							
0 = CLCxIF will not be set							
bit 3 LCxINTN: Configurable Logic Cell Negative Edge Going Interrupt Enable bit							
1 = CLCxIF will be set when a falling edge occurs on LCx_out							
hit 2.0			hla Lagia Call	Functional Ma	da hita		
DIL 2-0		1 input trapan	bie Logic Cell		de bits		
	111 = Cell is	I-Input transpa	th R	n S anu R			
	101 = Cell is	2-input D flip-f	lop with R				
	100 = Cell is	1-input D flip-f	lop with S and	IR			
011 = Cell is S-R latch							
	010 = Cell is	4-input AND					
	001 = Cell is	OR-XOR					
		AND-UK					

REGISTER 19-1: CLCxCON: CONFIGURABLE LOGIC CELL CONTROL REGISTER

21.2.6 ADC CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
 - Disable weak pull-ups either globally (Refer to the OPTION_REG register) or individually (Refer to the appropriate WPUx register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - · Configure voltage reference
 - Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - · Enable ADC interrupt
 - · Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 21.4 "ADC Acquisition Requirements".

EXAMPLE 21-1: ADC CONVERSION

;This code block configures the ADC ; for polling, Vdd and Vss references, FRC ;oscillator and ANO input. ;Conversion start & polling for completion ; are included. BANKSEL ADCON1 ; B'11110000' ;Right justify, FRC MOVLW ;oscillator MOVWF ADCON1 ;Vdd and Vss Vref BANKSEL TRISA ; BSF TRISA,0 ;Set RA0 to input BANKSEL ANSEL ; BSF ANSEL,0 ;Set RA0 to analog BANKSEL WPUA BCF wpua,0 ;Disable weak ;pull-up on RA0 BANKSEL ADCON0 B'00000001' ;Select channel AN0 MOVLW MOVWF ADCON0 ; Turn ADC On CALL SampleTime ;Acquisiton delay BSF ADCON0, ADGO ;Start conversion ADCON0, ADGO ; Is conversion done? BTFSC GOTO \$-1 ;No, test again BANKSEL ADRESH ; ADRESH,W ;Read upper 2 bits MOVF RESULTHI ;store in GPR space MOVWE BANKSEL ADRESL ; MOVF ADRESL,W ;Read lower 8 bits MOVWF RESULTLO ;Store in GPR space

29.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (FOSC/4), or by an external clock source.

When Timer1 is clocked by FOSC/4, Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

Capture mode will operate during Sleep when Timer1 is clocked by an external clock source.

29.2 Compare Mode

The Compare mode function described in this section is available and identical for all CCP modules.

Compare mode makes use of the 16-bit Timer1 resource. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMR1H:TMR1L register pair. When a match occurs, one of the following events can occur:

- · Toggle the CCPx output
- Set the CCPx output
- Clear the CCPx output
- Generate an Auto-conversion Trigger
- Generate a Software Interrupt

The action on the pin is based on the value of the CCPxM<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set.

All Compare modes can generate an interrupt.

Figure 29-2 shows a simplified diagram of the compare operation.

FIGURE 29-2: COMPARE MODE OPERATION BLOCK DIAGRAM

29.2.1 CCPX PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Note:	Clearing the CCPxCON register will force
	the CCPx compare output latch to the
	default low level. This is not the PORT I/O
	data latch.

29.2.2 TIMER1 MODE RESOURCE

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

See Section 26.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

Note:	Clocking Timer1 from the system clock
	(Fosc) should not be used in Compare
	mode. In order for Compare mode to
	recognize the trigger event on the CCPx
	pin, TImer1 must be clocked from the
	instruction clock (Fosc/4) or from an
	external clock source.

29.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the CCPx module does not assert control of the CCPx pin (see the CCPxCON register).

29.2.4 AUTO-CONVERSION TRIGGER

When Auto-conversion Trigger mode is chosen (CCPxM<3:0> = 1011), the CCPx module does the following:

- · Resets Timer1
- Starts an ADC conversion if ADC is enabled

The CCPx module does not assert control of the CCPx pin in this mode.

The Auto-conversion Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPRxH, CCPRxL register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. The Auto-conversion Trigger output starts an ADC conversion (if the ADC module is enabled). This allows the CCPRxH, CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1.

FIGURE 33-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file regist	terop 76	erat	ions	0
OPCODE	d		f (FILE #)	
d = 0 for destination d = 1 for destination f = 7-bit file register	n W n f addre	ess]
Bit-oriented file registe	r oper	atio	ons	0
OPCODE b	(BIT :	#)	f (FILE #)	
b = 3-bit bit address f = 7-bit file register	addre	ess		
Literal and control oper	ation	s		
General				
13	8 7			0
OPCODE			k (literal)	
k = 8-bit immediate	value			
CALL and GOTO instruction	ons on	ly		
13 11 10				0
OPCODE		k (lit	eral)	
MOVLP instruction only	7	6		0
OPCODE			k (literal)	
k = 7-bit immediate	value			
13		5	4	0
OPCODE			k (literal)	
k = 5-bit immediate	value			
BRA instruction only	Q			0
OPCODE			k (literal)	
k = 9-bit immediate	value	!		
FSR Offset instructions				
13	7 6	5	L. (114 1)	0
OPCODE	n		k (literal)	
n = appropriate FS k = 6-bit immediate	R value	•		
FSR Increment instruction	ns		321	0
OPCODE			n m (m	ode)
n = appropriate FS m = 2-bit mode val	R Ue			
OPCODE only 13				0
OF	CODI	Ξ		

33.2 Instruction Descriptions

ADDFSR	Add Literal to FSRn
Syntax:	[label]ADDFSR FSRn, k
Operands:	$-32 \le k \le 31$ n \in [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.

ADDLW	Add literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.

wrap-around.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ADDWF	Add W and f		
Syntax:	[label] ADDWF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	(W) + (f) \rightarrow (destination)		
Status Affected:	C, DC, Z		
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.		

ASRF	Arithmetic Right Shift		
Syntax:	[label]ASRF f{,d}		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,		
Status Affected:	C, Z		
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.		

ADDWFC ADD W and CARRY bit to t

Syntax:	[<i>label</i>] ADDWFC f {,d}			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	$(W) + (f) + (C) \rightarrow dest$			
Status Affected:	C, DC, Z			
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.			

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 35-115: ZCD Pin Voltage, Typical Measured Values

FIGURE 35-116: ZCD Response Time Over Voltage, Typical Measured Values.

FIGURE 35-117: ZCD Pin Current Over ZCD Pin Voltage, Typical Measured Values From -40°C to 125°C.

FIGURE 35-119: COG Deadband Delay, DBR/DBF = 32, Typical Measured Values

FIGURE 35-118: ZCD Pin Response Time Over Current, Typical Measured Values From -40°C to 125°C.

FIGURE 35-120: COG Deadband DBR/DBF Delay Per Step, Typical Measured Values.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ X /XX T T T Tape and Reel Temperature Package Option Range	XXX Pattern	Examples: a) PIC16LF1713- I/P Industrial temperature
Device:	PIC16F1713, PIC16LF1713, PIC16F1716, PIC16LF1716		PDIP package b) PIC16F1716- E/SS Extended temperature, SSOP package
Tape and Reel Option:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾		
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)		
Package: ⁽²⁾	$\begin{array}{rcl} SP &= SPDIP\\ SO &= SOIC\\ SS &= SSOP\\ MV &= UQFN\\ ML &= QFN \end{array}$		Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)		 Reel option. Small form-factor packaging options may be available. Please check <u>www.microchip.com/packaging</u> for small-form factor package availability, or contact your local Sales Office.