

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

-XF

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 32MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                   |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                       |
| Number of I/O              | 25                                                                          |
| Program Memory Size        | 14KB (8K x 14)                                                              |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | -                                                                           |
| RAM Size                   | 1K x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                 |
| Data Converters            | A/D 17x10b; D/A 1x5b, 1x8b                                                  |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 28-UFQFN Exposed Pad                                                        |
| Supplier Device Package    | 28-UQFN (4x4)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1716t-i-mv |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Value on all Value on Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Addr Name other POR, BOR Resets Bank 10 50Ch Unimplemented 510h OPA1SP 511h **OPA1CON** OPA1EN OPA1UG OPA1PCH<1:0> 00-0 --00 00-0 --00 512h Unimplemented 514h 515h OPA2CON OPA2EN OPA2SP OPA2UG \_ OPA2PCH<1:0> 00-0 --00 00-0 --00 516h Unimplemented 51Fh Bank 11 58Ch Unimplemented to 59Fh Bank 12 60Ch to Unimplemented 616h 617h PWM3DCL PWM3DC<1:0> \_ xx--\_\_\_\_ uu--\_\_\_ **PWM3DCH** 618h PWM3DCH<7:0> XXXX XXXX uuuu uuuu 619h PWM3CON **PWM3EN** PWM3OUT PWM3POL 0-x0 ----11-1111 ----61Ah PWM4DCL PWM4DCL<1:0> xx--\_\_\_\_ uu--\_\_\_ 61Bh PWM4DCH PWM4DCH<7:0> XXXX XXXX uuuu uuuu 61Ch PWM4CON PWM4EN PWM4OUT PWM4POL 0-x0 ---u-uu ---61Dh Unimplemented 61Fh Bank 13 68Ch Unimplemented to 690h 691h COG1PHR COG Rising Edge Phase Delay Count Register \_ \_ --xx xxxx -uu uuuu 692h COG1PHF COG Falling Edge Phase Delay Count Register -uu uuuu --xx xxxx 693h COG1BLKR COG Rising Edge Blanking Count Register --xx xxxx -uu uuuu COG1BLKF 694h COG Falling Edge Blanking Count Register --uu uuuu --xx xxxx 695h COG1DBR \_ \_ COG Rising Edge Dead-band Count Register --xx xxxx -uu uuuu 696h COG1DBF COG Falling Edge Dead-band Count Register -xx xxxx -uu uuuu 697h COG1CON0 G1EN G1LD G1CS<1:0> G1MD<2:0> 00-0 0000 00-0 0000 698h COG1CON1 G1RDBS G1FDBS \_ G1POLD G1POLC G1POLB G1POLA 00--00--0000 \_ 0000 699h COG1RIS G1RIS7 G1RIS6 G1RIS5 G1RIS4 G1RIS3 G1RIS2 G1RIS1 G1RIS0 0000 0000 -000 0000 69Ah COG1RSIM G1RSIM7 0000 0000 -000 0000 G1RSIM6 G1RSIM5 G1RSIM4 G1RSIM3 G1RSIM2 G1RSIM1 G1RSIM0 69Bh COG1FIS G1FIS7 G1FIS6 0000 0000 -000 0000 G1FIS5 G1FIS4 G1FIS3 G1FIS2 G1FIS1 G1FIS0 COG1FSIM 69Ch G1FSIM7 G1FSIM6 G1FSIM5 G1FSIM4 G1FSIM3 G1FSIM2 G1FSIM1 G1FSIM0 0000 0000 -000 0000 69Dh COG1ASD0 G1ASE G1ARSEN G1ASDBD<1:0> G1ASDAC<1:0> 0001 01--0001 01-COG1ASD1 G1AS1E 69Eh \_ G1AS3E G1AS2E G1AS0E \_\_\_\_ 0000 0000 69Fh COG1STR 0000 0001 0000 0001 G1SDATD G1SDATC G1SDATB G1SDATA G1STRD G1STRC G1STRB G1STRA

#### SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-11:**

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved Shaded locations are unimplemented, read as '0'. Note

1: Unimplemented, read as '1'

2: Unimplemented on PIC16(L)F1713/6.

### 5.0 RESETS

There are multiple ways to reset this device:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Low-Power Brown-out Reset (LPBOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- Stack Overflow
- Stack Underflow
- · Programming mode exit

To allow VDD to stabilize, an optional power-up timer can be enabled to extend the Reset time after a BOR or POR event.

#### FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT



A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 5-1.



| R-1/q                                                                                                           | R-0/q                                                                                                                                                                           | R-q/q                                                | R-0/q                                               | R-0/q                         | R-q/q                    | R-0/0            | R-0/q        |  |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|-------------------------------|--------------------------|------------------|--------------|--|
| SOSCR                                                                                                           | PLLR                                                                                                                                                                            | OSTS                                                 | HFIOFR                                              | HFIOFL                        | MFIOFR                   | LFIOFR           | HFIOFS       |  |
| bit 7                                                                                                           |                                                                                                                                                                                 |                                                      |                                                     | -                             | •                        | •                | bit 0        |  |
|                                                                                                                 |                                                                                                                                                                                 |                                                      |                                                     |                               |                          |                  |              |  |
| Legend:                                                                                                         |                                                                                                                                                                                 |                                                      |                                                     |                               |                          |                  |              |  |
| R = Readable                                                                                                    | bit                                                                                                                                                                             | W = Writable                                         | bit                                                 | U = Unimpler                  | mented bit, read         | d as '0'         |              |  |
| u = Bit is unch                                                                                                 | anged                                                                                                                                                                           | x = Bit is unkr                                      | nown                                                | -n/n = Value a                | at POR and BO            | R/Value at all o | other Resets |  |
| '1' = Bit is set                                                                                                |                                                                                                                                                                                 | '0' = Bit is clea                                    | ared                                                | q = Condition                 | al                       |                  |              |  |
| bit 7                                                                                                           | bit 7 SOSCR: Secondary Oscillator Ready bit<br><u>If T1OSCEN = 1</u> :<br>1 = Secondary oscillator is ready<br>0 = Secondary oscillator is not ready<br><u>If T1OSCEN = 0</u> : |                                                      |                                                     |                               |                          |                  |              |  |
| bit 6                                                                                                           | <b>PLLR</b> 4x PLL<br>1 = 4x PLL i<br>0 = 4x PLL i                                                                                                                              | . Ready bit<br>s ready<br>s not ready                |                                                     |                               |                          |                  |              |  |
| bit 5                                                                                                           | <b>OSTS:</b> Oscilla<br>1 = Running<br>0 = Running                                                                                                                              | ator Start-up Ti<br>from the clock<br>from an intern | mer Status bit<br>defined by th<br>al oscillator (F | e FOSC<2:0> k<br>OSC<2:0> = 1 | oits of the Confi<br>00) | guration Word    | s            |  |
| bit 4                                                                                                           | HFIOFR: High<br>1 = HFINTOS<br>0 = HFINTOS                                                                                                                                      | h-Frequency Ir<br>SC is ready<br>SC is not ready     | ternal Oscillat                                     | or Ready bit                  |                          |                  |              |  |
| bit 3                                                                                                           | HFIOFL: High<br>1 = HFINTOS<br>0 = HFINTOS                                                                                                                                      | n-Frequency In<br>SC is at least 2<br>SC is not 2% a | ternal Oscillat<br>% accurate<br>ccurate            | or Locked bit                 |                          |                  |              |  |
| bit 2                                                                                                           | bit 2 MFIOFR: Medium Frequency Internal Oscillator Ready bit<br>1 = MFINTOSC is ready<br>0 = MFINTOSC is not ready                                                              |                                                      |                                                     |                               |                          |                  |              |  |
| bit 1 LFIOFR: Low-Frequency Internal Oscillator Ready bit<br>1 = LFINTOSC is ready<br>0 = LFINTOSC is not ready |                                                                                                                                                                                 |                                                      |                                                     |                               |                          |                  |              |  |
| bit 0                                                                                                           | <b>HFIOFS:</b> High<br>1 = HFINTOS<br>0 = HFINTOS                                                                                                                               | h-Frequency In<br>SC is at least 0<br>SC is not 0.5% | ternal Oscillat<br>.5% accurate<br>accurate         | or Stable bit                 |                          |                  |              |  |

#### REGISTER 6-2: OSCSTAT: OSCILLATOR STATUS REGISTER

#### 8.3 Register Definitions: Voltage Regulator Control

#### REGISTER 8-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER<sup>(1)</sup>

| r                                 |     |     |     |                                    |     |         |          |  |  |
|-----------------------------------|-----|-----|-----|------------------------------------|-----|---------|----------|--|--|
| U-0                               | U-0 | U-0 | U-0 | U-0                                | U-0 | R/W-0/0 | R/W-1/1  |  |  |
| _                                 | —   | —   | —   | —                                  |     | VREGPM  | Reserved |  |  |
| bit 7                             |     |     |     |                                    |     |         | bit 0    |  |  |
|                                   |     |     |     |                                    |     |         |          |  |  |
| Legend:                           |     |     |     |                                    |     |         |          |  |  |
| R = Readable bit W = Writable bit |     |     | t   | U = Unimplemented bit, read as '0' |     |         |          |  |  |

-n/n = Value at POR and BOR/Value at all other Resets

| bit 7-2 | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 1   | <ul> <li>VREGPM: Voltage Regulator Power Mode Selection bit</li> <li>1 = Low-Power Sleep mode enabled in Sleep<sup>(2)</sup><br/>Draws lowest current in Sleep, slower wake-up</li> <li>0 = Normal-Power mode enabled in Sleep<sup>(2)</sup><br/>Draws higher current in Sleep, faster wake-up</li> </ul> |

x = Bit is unknown

'0' = Bit is cleared

bit 0 Reserved: Read as '1'. Maintain this bit set.

Note 1: PIC16F1713/6 only.

u = Bit is unchanged

'1' = Bit is set

2: See Section 34.0 "Electrical Specifications".

#### TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

| Name                   | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2  | Bit 1  | Bit 0    | Register on<br>Page |
|------------------------|-------|-------|-------|-------|-------|--------|--------|----------|---------------------|
| STATUS                 | _     | —     | _     | TO    | PD    | Z      | DC     | С        | 19                  |
| VREGCON <sup>(1)</sup> | -     | —     | -     | —     | —     | —      | VREGPM | Reserved | 94                  |
| WDTCON                 | _     | _     |       |       |       | SWDTEN | 98     |          |                     |

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

Note 1: PIC16F1713/6 only.

#### 11.2 Register Definitions: PORTA

#### REGISTER 11-1: PORTA: PORTA REGISTER

| R/W-x/u | R/W-x/u | R/W-x/u | R/W-x/u | R-x/u | R/W-x/u | R/W-x/u | R/W-x/u |
|---------|---------|---------|---------|-------|---------|---------|---------|
| RA7     | RA6     | RA5     | RA4     | RA3   | RA2     | RA1     | RA0     |
| bit 7   |         |         |         |       |         |         | bit 0   |
|         |         |         |         |       |         |         |         |
| Legend: |         |         |         |       |         |         |         |

| Legena.              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 RA<7:0>: PORTA I/O Value bits<sup>(1)</sup> 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

**Note 1:** Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

#### REGISTER 11-2: TRISA: PORTA TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISA7  | TRISA6  | TRISA5  | TRISA4  | TRISA3  | TRISA2  | TRISA1  | TRISA0  |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 TRISA<7:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

#### REGISTER 11-3: LATA: PORTA DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATA7   | LATA6   | LATA5   | LATA4   | LATA3   | LATA2   | LATA1   | LATA0   |
| bit 7   |         |         |         |         |         |         | bit 0   |
|         |         |         |         |         |         |         |         |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 LATA<7:0>: RA<7:0> Output Latch Value bits<sup>(1)</sup>

**Note 1:** Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

#### REGISTER 11-4: ANSELA: PORTA ANALOG SELECT REGISTER

| U-0   | U-0 | R/W-1/1 | R/W-1/1 | R/W-1/1 | R/W-1/1 | R/W-1/1 | R/W-1/1 |
|-------|-----|---------|---------|---------|---------|---------|---------|
| —     | —   | ANSA5   | ANSA4   | ANSA3   | ANSA2   | ANSA1   | ANSA0   |
| bit 7 |     |         |         |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

#### bit 7-6 Unimplemented: Read as '0'

bit 5-0

ANSA<5:0>: Analog Select between Analog or Digital Function on pins RA<2:0>, respectively

- 1 = Analog input. Pin is assigned as analog input<sup>(1)</sup>. Digital input buffer disabled.
- 0 = Digital I/O. Pin is assigned to port or digital special function.
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

| REGISTER 11-14: | ODCONB: PORTB | <b>OPEN-DRAIN CONTROL REGISTER</b> |
|-----------------|---------------|------------------------------------|
|-----------------|---------------|------------------------------------|

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ODB7    | ODB6    | ODB5    | ODB4    | ODB3    | ODB2    | ODB1    | ODB0    |
| bit 7   |         |         |         |         |         |         | bit 0   |
|         |         |         |         |         |         |         |         |
| Legend: |         |         |         |         |         |         |         |

| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
|----------------------|----------------------|-------------------------------------------------------|
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0

ODB<7:0>: PORTB Open-Drain Enable bits

For RB<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

#### REGISTER 11-15: SLRCONB: PORTB SLEW RATE CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRB7   | SLRB6   | SLRB5   | SLRB4   | SLRB3   | SLRB2   | SLRB1   | SLRB0   |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 SLRB<7:0>: PORTB Slew Rate Enable bits

For RB<7:0> pins, respectively

1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

#### REGISTER 11-16: INLVLB: PORTB INPUT LEVEL CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLB7 | INLVLB6 | INLVLB5 | INLVLB4 | INLVLB3 | INLVLB2 | INLVLB1 | INLVLB0 |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 INLVLB<7:0>: PORTB Input Level Select bits

For RB<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

#### 18.2 Clock Sources

The COG\_clock is used as the reference clock to the various timers in the peripheral. Timers that use the COG\_clock include:

- Rising and falling dead-band time
- Rising and falling blanking time
- · Rising and falling event phase delay

Clock sources available for selection include:

- 8 MHz HFINTOSC (active during Sleep)
- Instruction clock (Fosc/4)
- System clock (Fosc)

The clock source is selected with the GxCS<1:0> bits of the COGxCON0 register (Register 18-1).

#### 18.3 Selectable Event Sources

The COG uses any combination of independently selectable event sources to generate the complementary waveform. Sources fall into two categories:

- · Rising event sources
- Falling event sources

The rising event sources are selected by setting bits in the COGxRIS register (Register 18-3). The falling event sources are selected by setting bits in the COGxFIS register (Register 18-5). All selected sources are 'OR'd together to generate the corresponding event signal. Refer to Figure 18-7.

#### 18.3.1 EDGE VS. LEVEL SENSING

Event input detection may be selected as level or edge sensitive. The detection mode is individually selectable for every source. Rising source detection modes are selected with the COGxRSIM register (Register 18-4). Falling source detection modes are selected with the COGxFSIM register (Register 18-6). A set bit enables edge detection for the corresponding event source. A cleared bit enables level detection.

In general, events that are driven from a periodic source should be edge detected and events that are derived from voltage thresholds at the target circuit should be level sensitive. Consider the following two examples:

1. The first example is an application in which the period is determined by a 50% duty cycle clock and the COG output duty cycle is determined by a voltage level fed back through a comparator. If the clock input is level sensitive, duty cycles less than 50% will exhibit erratic operation.

2. The second example is similar to the first except that the duty cycle is close to 100%. The feedback comparator high-to-low transition trips the COG drive off, but almost immediately the period source turns the drive back on. If the off cycle is short enough, the comparator input may not reach the low side of the hysteresis band precluding an output change. The comparator output stays low and without a high-to-low transition to trigger the edge sense, the drive of the COG output will be stuck in a constant drive-on condition. See Figure 18-14.

#### FIGURE 18-14: EDGE VS LEVEL SENSE

| Rising (CCP1)   |
|-----------------|
| Falling (C1OUT) |
| C1IN- hyst I    |
| COGOUT          |
| Edge Sensitive  |
| Rising (CCP1)   |
| Falling (C1OUT) |
| C1IN- hyst [    |
| COGOUT          |
| Level Sensitive |

#### 18.3.2 RISING EVENT

The rising event starts the PWM output active duty cycle period. The rising event is the low-to-high transition of the rising\_event output. When the rising event phase delay and dead-band time values are zero, the primary output starts immediately. Otherwise, the primary output is delayed. The rising event source causes all the following actions:

- · Start rising event phase delay counter (if enabled).
- · Clear complementary output after phase delay.
- Start falling event input blanking (if enabled).
- · Start dead-band delay (if enabled).
- · Set primary output after dead-band delay expires.

#### 18.3.3 FALLING EVENT

The falling event terminates the PWM output active duty cycle period. The falling event is the high-to-low transition of the falling\_event output. When the falling event phase delay and dead-band time values are zero, the complementary output starts immediately. Otherwise, the complementary output is delayed. The falling event source causes all the following actions:

- Start falling event phase delay counter (if enabled).
- · Clear primary output.
- · Start rising event input blanking (if enabled).
- · Start falling event dead-band delay (if enabled).
- Set complementary output after dead-band delay expires.

| R/W-0/0          | R/W-0/0                                                                                                      | R/W-0/0                                                                         | R/W-0/0                                                              | R/W-0/0                                              | R/W-0/0                       | R/W-0/0            | R/W-0/0    |
|------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|-------------------------------|--------------------|------------|
| GxRSIM7          | GxRSIM6                                                                                                      | GxRSIM5                                                                         | GxRSIM4                                                              | GxRSIM3                                              | GxRSIM2                       | GxRSIM1            | GxRSIM0    |
| bit 7            |                                                                                                              | 1                                                                               | 1                                                                    |                                                      |                               | 1                  | bit 0      |
|                  |                                                                                                              |                                                                                 |                                                                      |                                                      |                               |                    |            |
| Legend:          |                                                                                                              |                                                                                 |                                                                      |                                                      |                               |                    |            |
| R = Readable b   | bit                                                                                                          | W = Writable I                                                                  | oit                                                                  | U = Unimplem                                         | nented bit, read              | as '0'             |            |
| u = Bit is uncha | anged                                                                                                        | x = Bit is unkn                                                                 | own                                                                  | -n/n = Value a                                       | t POR and BOF                 | R/Value at all oth | ner Resets |
| '1' = Bit is set |                                                                                                              | '0' = Bit is clea                                                               | ared                                                                 | q = Value dep                                        | ends on condition             | on                 |            |
| bit 7            | <b>GxRSIM7:</b> CC<br><u>GxRIS7 = 1:</u><br>1 = NCO1_0<br>0 = NCO1_0<br><u>GxRIS7 = 0:</u><br>NCO1 out ha    | DGx Rising Eve<br>ut low-to-high tr<br>ut high level will<br>is no effect on ri | nt Input Sourc<br>ansition will ca<br>cause an imr                   | e 7 Mode bit<br>ause a rising ev<br>nediate rising e | ent after rising e<br>vent    | event phase del    | ау         |
| bit 6            | GxRSIM6: CO                                                                                                  | OGx Rising Eve                                                                  | nt Input Sourc                                                       | e 6 Mode bit                                         |                               |                    |            |
|                  | GxRIS6 = 1: 1 = PWM3 of 0 = PWM3 of GxRIS6 = 0: PWM3 output                                                  | utput low-to-higl<br>utput high level<br>has no effect o                        | h transition wi<br>will cause an<br>n rising event                   | l cause a rising<br>immediate risin                  | event after risin<br>g event  | g event phase      | delay      |
| bit 5            | GxRSIM5: CO                                                                                                  | OGx Rising Eve                                                                  | nt Input Sourc                                                       | e 5 Mode bit                                         |                               |                    |            |
|                  | <u>GxRIS5 = 1:</u><br>1 = CCP2 ou<br>0 = CCP2 ou<br><u>GxRIS5 = 0:</u><br>CCP2 output                        | tput low-to-high<br>tput high level v<br>has no effect or                       | transition will<br>vill cause an in<br>rising event                  | cause a rising<br>nmediate rising                    | event after rising<br>i event | g event phase c    | lelay      |
| bit 4            | GxRSIM4: CO                                                                                                  | OGx Rising Eve                                                                  | nt Input Sourc                                                       | e 4 Mode bit                                         |                               |                    |            |
|                  | GxRIS4 = 1: $1 = CCP1 lov$ $0 = CCP1 hig$ $GxRIS4 = 0:$ $CCP1 has no$                                        | w-to-high transit<br>gh level will cau<br>effect on rising                      | ion will cause<br>se an immedia<br>event                             | a rising event a<br>ate rising event                 | after rising event            | phase delay        |            |
| bit 3            | GxRSIM3: CO                                                                                                  | OGx Rising Eve                                                                  | nt Input Sourc                                                       | e 3 Mode bit                                         |                               |                    |            |
|                  | $\frac{GxRIS3 = 1:}{1 = CLC1 \text{ ou}}$ $0 = CLC1 \text{ ou}$ $\frac{GxRIS3 = 0:}{CLC1 \text{ output}}$    | tput low-to-high<br>tput high level v<br>has no effect on                       | transition will<br>vill cause an ir<br>rising event                  | cause a rising on nmediate rising                    | event after rising<br>event   | g event phase d    | elay       |
| bit 2            | GxRSIM2: CO                                                                                                  | OGx Rising Eve                                                                  | nt Input Sourc                                                       | e 2 Mode bit                                         |                               |                    |            |
|                  | $\frac{GxRIS2 = 1}{1 = Compara}$ $0 = Compara$ $\frac{GxRIS2 = 0}{Comparator 2}$                             | ator 2 low-to-hig<br>ator 2 high level<br>has no effect o                       | h transition wi<br>will cause an<br>n rising event                   | ll cause a rising<br>immediate risin                 | event after risir<br>g event  | ng event phase     | delay      |
| bit 1            | <b>GxRSIM1:</b> CO<br><u>GxRIS1 = 1:</u><br>1 = Compara<br>0 = Compara<br><u>GxRIS1 = 0:</u><br>Comparator 1 | DGx Rising Eve<br>itor 1 low-to-hig<br>itor 1 high level<br>has no effect o     | nt Input Sourc<br>h transition wi<br>will cause an<br>n rising event | e 1 Mode bit<br>Il cause a rising<br>immediate risin | event after risir<br>g event  | ng event phase     | delay      |

#### REGISTER 18-4: COGxRSIM: COG RISING EVENT SOURCE INPUT MODE REGISTER

### 19.0 CONFIGURABLE LOGIC CELL (CLC)

The Configurable Logic Cell (CLCx) provides programmable logic that operates outside the speed limitations of software execution. The logic cell takes up to 32 input signals and, through the use of configurable gates, reduces the 32 inputs to four logic lines that drive one of eight selectable single-output logic functions.

Input sources are a combination of the following:

- · I/O pins
- Internal clocks
- · Peripherals
- · Register bits

The output can be directed internally to peripherals and to an output pin.

Refer to Figure 19-1 for a simplified diagram showing signal flow through the CLCx.

Possible configurations include:

- Combinatorial Logic
  - AND
  - NAND
  - AND-OR
  - AND-OR-INVERT
  - OR-XOR
  - OR-XNOR
- Latches
  - S-R
  - Clocked D with Set and Reset
  - Transparent D with Set and Reset
  - Clocked J-K with Reset



#### FIGURE 19-1: CLCx SIMPLIFIED BLOCK DIAGRAM

| R/W-x/u          | R/W-x/u                          | R/W-x/u            | R/W-x/u        | R/W-x/u        | R/W-x/u          | R/W-x/u          | R/W-x/u      |
|------------------|----------------------------------|--------------------|----------------|----------------|------------------|------------------|--------------|
| LCxG3D4T         | LCxG3D4N                         | LCxG3D3T           | LCxG3D3N       | LCxG3D2T       | LCxG3D2N         | LCxG3D1T         | LCxG3D1N     |
| bit 7            |                                  |                    |                |                |                  |                  | bit 0        |
|                  |                                  |                    |                |                |                  |                  |              |
| Legend:          |                                  |                    |                |                |                  |                  |              |
| R = Readable     | bit                              | W = Writable       | bit            | U = Unimpler   | nented bit, read | d as '0'         |              |
| u = Bit is uncha | anged                            | x = Bit is unkr    | nown           | -n/n = Value a | at POR and BO    | R/Value at all c | other Resets |
| '1' = Bit is set |                                  | '0' = Bit is clea  | ared           |                |                  |                  |              |
|                  |                                  |                    |                |                |                  |                  |              |
| bit 7            | LCxG3D4T: O                      | Gate 3 Data 4 1    | rue (non-inve  | rted) bit      |                  |                  |              |
|                  | 1 = Icxd4T is                    | gated into lcxg    | 13             |                |                  |                  |              |
|                  | 0 = lcxd4T is                    | not gated into     | lcxg3          |                |                  |                  |              |
| bit 6            | LCxG3D4N: (                      | Gate 3 Data 4      | Negated (inve  | rted) bit      |                  |                  |              |
|                  | 1 = Icxd4N is                    | gated into Icx     | ]3<br>Jeva3    |                |                  |                  |              |
| bit 5            |                                  | Choi galed into    | True (non inve | rtod) bit      |                  |                  |              |
| bit 5            | $1 = \log d3T$ is                | dated into love    | 13             | neu) bit       |                  |                  |              |
|                  | 0 = lcxd3T is                    | not gated into     | lcxg3          |                |                  |                  |              |
| bit 4            | LCxG3D3N:                        | Gate 3 Data 3      | Negated (inve  | rted) bit      |                  |                  |              |
|                  | 1 = Icxd3N is                    | gated into Icx     | g3             |                |                  |                  |              |
|                  | 0 = Icxd3N is                    | not gated into     | lcxg3          |                |                  |                  |              |
| bit 3            | LCxG3D2T: O                      | Gate 3 Data 2 1    | rue (non-inve  | rted) bit      |                  |                  |              |
|                  | 1 = lcxd2T is                    | gated into lcxg    | 13             |                |                  |                  |              |
|                  | 0 = 100021 is                    | not gated into     | ICXg3          |                |                  |                  |              |
| bit 2            | LCxG3D2N: (                      | Gate 3 Data 2      | Negated (inve  | rted) bit      |                  |                  |              |
|                  | 1 = 10002 N is<br>0 = 10002 N is | not gated into icx | js<br>Icxa3    |                |                  |                  |              |
| bit 1            | I CxG3D1T: (                     | Fate 3 Data 1 1    | rue (non-inve  | rted) bit      |                  |                  |              |
| Sit              | 1 = lcxd1T is                    | gated into Icxo    | 13             |                |                  |                  |              |
|                  | 0 = lcxd1T is                    | not gated into     | lcxg3          |                |                  |                  |              |
| bit 0            | LCxG3D1N: (                      | Gate 3 Data 1      | Negated (inve  | rted) bit      |                  |                  |              |
|                  | 1 = Icxd1N is                    | gated into lcx     | g3             |                |                  |                  |              |
|                  | 0 = Icxd1N is                    | not gated into     | lcxg3          |                |                  |                  |              |
|                  |                                  |                    |                |                |                  |                  |              |

#### REGISTER 19-9: CLCxGLS2: GATE 3 LOGIC SELECT REGISTER

### 23.0 8-BIT DIGITAL-TO-ANALOG CONVERTER (DAC1) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 256 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- · ADC input channel
- DAC1OUT1 pin
- DAC1OUT2 pin

The Digital-to-Analog Converter (DAC) is enabled by setting the DAC1EN bit of the DAC1CON0 register.

#### EQUATION 23-1: DAC OUTPUT VOLTAGE

$$\frac{IF \ DACIEN = 1}{Vout}$$

$$Vout = \left( (Vsource+ - Vsource-) \times \frac{DACIR[7:0]}{2^8} \right) + Vsource-$$

$$Vsource+ = VDD, \ Vref, \ or \ FVR \ BUFFER \ 2$$

$$Vsource- = Vss$$

### 23.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in Table 34-19: 8-bit Digital-to-Analog Converter (DAC1) Specifications.

### 23.3 DAC Voltage Reference Output

The DAC voltage can be output to the DAC1OUT1 and DAC1OUT2 pins by setting the respective DAC1OE1 and DAC1OE2 pins of the DAC1CON0 register. Selecting the DAC reference voltage for output on either DAC1OUTx pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DAC1OUTx pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to either DAC10UTx pin. Figure 23-2 shows an example buffering technique.

### 23.1 Output Voltage Selection

The DAC has 256 voltage level ranges. The 256 levels are set with the DAC1R<7:0> bits of the DAC1CON1 register.

The DAC output voltage is determined by Equation 23-1:

### 30.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 30-33).
- b) SCL is sampled low before SDA is asserted low (Figure 30-34).

During a Start condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the Start condition is aborted,
- the BCLIF flag is set and
- the MSSP module is reset to its Idle state (Figure 30-33).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 30-35). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.



#### FIGURE 30-33: BUS COLLISION DURING START CONDITION (SDA ONLY)

#### 31.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VoL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 31-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

#### 31.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 31-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register.

#### 31.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

#### 31.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the Stop bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one TCY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREG.

#### 31.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 31.5.1.2 "Clock Polarity"**.

#### 31.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG.

#### **TABLE 34-8: OSCILLATOR PARAMETERS**

| Standard Operating Conditions (unless otherwise stated) |       |                                                          |                    |      |      |      |       |                                    |
|---------------------------------------------------------|-------|----------------------------------------------------------|--------------------|------|------|------|-------|------------------------------------|
| Param<br>No.                                            | Sym.  | Characteristic                                           | Freq.<br>Tolerance | Min. | Тур† | Max. | Units | Conditions                         |
| OS08                                                    | HFosc | Internal Calibrated HFINTOSC<br>Frequency <sup>(1)</sup> | ±2%                |      | 16.0 | —    | MHz   | VDD = 3.0V, TA = 25°C,<br>(Note 2) |
| OS08A                                                   | MFosc | Internal Calibrated MFINTOSC<br>Frequency <sup>(1)</sup> | ±2%                | _    | 500  | —    | kHz   | VDD = 3.0V, TA = 25°C,<br>(Note 2) |
| OS09                                                    | LFosc | Internal LFINTOSC Frequency                              | -                  |      | 31   | —    | kHz   | -40°C ≤ TA ≤ +125°C<br>(Note 3)    |
| OS10*                                                   | Twarm | HFINTOSC<br>Wake-up from Sleep Start-up<br>Time          | -                  |      | 3.2  | 8    | μS    |                                    |
|                                                         |       | MFINTOSC<br>Wake-up from Sleep Start-up<br>Time          | _                  | _    | 24   | 35   | μS    |                                    |
|                                                         |       | LFINTOSC<br>Wake-up from Sleep Start-up<br>Time          | _                  |      | 0.5  | —    | ms    |                                    |

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1  $\mu F$  and 0.01  $\mu F$  values in parallel are recommended.

2: See Figure 34-6.

3: See Figure 35-57: LFINTOSC Frequency, PIC16LF1713/6 Only., and Figure 35-58: LFINTOSC Frequency, PIC16F1713/6 Only.

#### HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE **FIGURE 34-6:**



### TABLE 34-15: ANALOG-TO-DIGITAL CONVERTER (ADC) CHARACTERISTICS<sup>(1,2,3,4)</sup>:

| <b>Operating Conditions (unless otherwise stated)</b><br>VDD = 3.0V, TA = 25°C, Single-ended, 2 μs TAD, VREF+ = 3V, VREF- = VSS |      |                                                   |      |      |      |       |                                                                           |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------|------|------|------|-------|---------------------------------------------------------------------------|--|--|--|
| Param<br>No.                                                                                                                    | Sym. | Characteristic                                    | Min. | Тур† | Max. | Units | Conditions                                                                |  |  |  |
| AD01                                                                                                                            | NR   | Resolution                                        | _    |      | 10   | bit   |                                                                           |  |  |  |
| AD02                                                                                                                            | EIL  | Integral Error                                    | —    |      | ±1.7 | LSb   | VREF = 3.0V                                                               |  |  |  |
| AD03                                                                                                                            | Edl  | Differential Error                                | _    |      | ±1   | LSb   | No missing codes, VREF = 3.0V                                             |  |  |  |
| AD04                                                                                                                            | EOFF | Offset Error                                      | _    | _    | ±2.5 | LSb   | VREF = 3.0V                                                               |  |  |  |
| AD05                                                                                                                            | Egn  | Gain Error                                        | —    |      | ±2.0 | LSb   | VREF = 3.0V                                                               |  |  |  |
| AD06                                                                                                                            | Vref | Reference Voltage                                 | 1.8  |      | VDD  | V     | VREF = (VREF+ minus VREF-)                                                |  |  |  |
| AD07                                                                                                                            | VAIN | Full-Scale Range                                  | Vss  |      | VREF | V     |                                                                           |  |  |  |
| AD08                                                                                                                            | ZAIN | Recommended Impedance of<br>Analog Voltage Source |      | _    | 10   | kΩ    | Can go higher if external 0.01 $\mu F$ capacitor is present on input pin. |  |  |  |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.

- 3: ADC VREF is from external VREF+ pin, VDD pin or FVR, whichever is selected as reference input.
- 4: See Section 35.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

#### TABLE 34-16: ADC CONVERSION REQUIREMENTS

| Standard Operating Conditions (unless otherwise stated) |      |                                                                    |      |                |      |       |                                           |  |  |
|---------------------------------------------------------|------|--------------------------------------------------------------------|------|----------------|------|-------|-------------------------------------------|--|--|
| Param<br>No.                                            | Sym. | Characteristic                                                     | Min. | Тур†           | Max. | Units | Conditions                                |  |  |
| AD130*                                                  | TAD  | ADC Clock Period (TADC)                                            | 1.0  | —              | 9.0  | μS    | Fosc-based                                |  |  |
|                                                         |      | ADC Internal FRC Oscillator Period (TFRC)                          | 1.0  | 2              | 6.0  | μS    | ADCS<1:0> = 11 (ADC FRC mode)             |  |  |
| AD131                                                   | TCNV | Conversion Time (not including<br>Acquisition Time) <sup>(1)</sup> | —    | 11             | —    | Tad   | Set GO/DONE bit to conversion<br>complete |  |  |
| AD132*                                                  | TACQ | Acquisition Time                                                   | _    | 5.0            | _    | μS    |                                           |  |  |
| AD133*                                                  | THCD | Holding Capacitor Disconnect Time                                  |      | 1/2 Tad        | _    |       | ADCS<2:0> $\neq$ x11 (Fosc based)         |  |  |
|                                                         |      |                                                                    | —    | 1/2 TAD + 1TCY | _    |       | ADCS<2:0> = x11 (FRC based)               |  |  |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

#### TABLE 34-24: SPI MODE REQUIREMENTS

| Standard Operating Conditions (unless otherwise stated) |                       |                                                                       |              |      |      |       |                                  |  |
|---------------------------------------------------------|-----------------------|-----------------------------------------------------------------------|--------------|------|------|-------|----------------------------------|--|
| Param<br>No.                                            | Symbol                | Characteristic                                                        | Min.         | Тур† | Max. | Units | Conditions                       |  |
| SP70*                                                   | TssL2scH,<br>TssL2scL | $\overline{SS}\downarrow$ to SCK $\downarrow$ or SCK $\uparrow$ input | 2.25 TCY     | _    | —    | ns    |                                  |  |
| SP71*                                                   | TscH                  | SCK input high time (Slave mode)                                      | Tcy + 20     | —    | _    | ns    |                                  |  |
| SP72*                                                   | TscL                  | SCK input low time (Slave mode)                                       | Tcy + 20     | —    | —    | ns    |                                  |  |
| SP73*                                                   | TDIV2scH,<br>TDIV2scL | Setup time of SDI data input to SCK edge                              | 100          | _    | —    | ns    |                                  |  |
| SP74*                                                   | TscH2diL,<br>TscL2diL | Hold time of SDI data input to SCK edge                               | 100          | _    | _    | ns    |                                  |  |
| SP75*                                                   | TDOR                  | SDO data output rise time                                             | —            | 10   | 25   | ns    | $3.0V \leq V\text{DD} \leq 5.5V$ |  |
|                                                         |                       |                                                                       | —            | 25   | 50   | ns    | $1.8V \leq V\text{DD} \leq 5.5V$ |  |
| SP76*                                                   | TDOF                  | SDO data output fall time                                             | —            | 10   | 25   | ns    |                                  |  |
| SP77*                                                   | TssH2doZ              | $\overline{SS}^{\uparrow}$ to SDO output high-impedance               | 10           | —    | 50   | ns    |                                  |  |
| SP78*                                                   | TscR                  | SCK output rise time<br>(Master mode)                                 | —            | 10   | 25   | ns    | $3.0V \leq V\text{DD} \leq 5.5V$ |  |
|                                                         |                       |                                                                       | —            | 25   | 50   | ns    | $1.8V \leq V\text{DD} \leq 5.5V$ |  |
| SP79*                                                   | TscF                  | SCK output fall time (Master mode)                                    | —            | 10   | 25   | ns    |                                  |  |
| SP80*                                                   | TscH2doV,<br>TscL2doV | SDO data output valid after SCK                                       | —            | —    | 50   | ns    | $3.0V \le V\text{DD} \le 5.5V$   |  |
|                                                         |                       | edge                                                                  | —            | _    | 145  | ns    | $1.8V \leq V\text{DD} \leq 5.5V$ |  |
| SP81*                                                   | TDOV2scH,<br>TDOV2scL | SDO data output setup to SCK edge                                     | 1 Tcy        | —    | _    | ns    |                                  |  |
| SP82*                                                   | TssL2doV              | SDO data output valid after $\overline{SS}\downarrow$ edge            | —            | —    | 50   | ns    |                                  |  |
| SP83*                                                   | TscH2ssH,<br>TscL2ssH | SS ↑ after SCK edge                                                   | 1.5 Tcy + 40 | _    |      | ns    |                                  |  |

These parameters are characterized but not tested. \*

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1  $\mu$ F, TA = 25°C.



**FIGURE 35-97:** Op Amp, Offset Over Common Mode Voltage, VDD = 5.0V, Temp. = 25°C, PIC16F1713/6 Only.



FIGURE 35-98: Op Amp, Output Slew Rate, Rising Edge, PIC16F1713/6 Only.



FIGURE 35-99: Op Amp, Output Slew Rate, Falling Edge, PIC16F1713/6 Only.



**FIGURE 35-100:** Comparator Hysteresis, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values.



**FIGURE 35-102:** Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values From -40°C to 125°C.



**FIGURE 35-101:** Comparator Offset, NP Mode (CxSP = 1), VDD = 3.0V, Typical Measured Values at 25°C.

#### 36.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM<sup>™</sup> and dsPICDEM<sup>™</sup> demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ<sup>®</sup> security ICs, CAN, IrDA<sup>®</sup>, PowerSmart battery management, SEEVAL<sup>®</sup> evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

#### 36.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent<sup>®</sup> and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika<sup>®</sup>