

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1716t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

					Comparator			Timers		900	3		DIMM			900			MSSP		FIISART			ر د				
RC4	15	12	AN16																SDI SDA							IOC	Υ	
RC5	16	13	AN17																							IOC	Υ	
RC6	17	14	AN18																		Ck					IOC	Υ	
RC7	18	15	AN19																		R۷	< ⁽³⁾				IOC	Υ	
RE3	1	26																								IOC	Y	MCLR Vpp
Vdd	20	17																										Vdd
Vss	8	5																										Vss
100	19	16																										
OUT ⁽⁴⁾				C10UT	C20UT					CCP1	CCP2	NCO10UT	PWM30UT	PWM40UT	COG1A	COG1B	COG1D	SDA ⁽³⁾	SCK/SCL ⁽³⁾	SDO	TX/CK	DT(3)	CLC40UT	CLC30UT	CLC2OUT			
IN ⁽⁵⁾							116	T1CKI	TOCKI	CCP1	CCP2					COG1IN		SDI	SCK/SCL ⁽³⁾	SS	RX(3)	СК	CLCINO	CLCIN1	CLCIN2	INT		

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.

2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: Alternate outputs are excluded from solid shaded areas.

5: Alternate inputs are excluded from dot shaded areas.

1.0 DEVICE OVERVIEW

The PIC16(L)F1713/6 are described within this data sheet. They are available in 28-pin SPDIP, SSOP, SOIC, QFN, and UQFN packages. Figure 1-1 shows a block diagram of the PIC16(L)F1713/6 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1: DEVICE PERIPHERAL SUMMARY

Peripheral		PIC16(L)F1713	PIC16(L)F1716
Analog-to-Digital Converter	(ADC)	٠	•
Complementary Output Gene	erator (COG)	•	•
Fixed Voltage Reference (FV	/R)	•	•
Zero-Cross Detection (ZCD)		•	•
Temperature Indicator		•	•
Numerically Controlled Osci	llator (NCO)	•	•
Digital-to-Analog Converter	(DAC)		
	DAC1	•	•
	DAC2	•	•
Capture/Compare/PWM (CC	P/ECCP) Mod	ules	
	CCP1	٠	•
	CCP2	•	•
Comparators			
	C1	٠	•
	C2	٠	•
Configurable Logic Cell (CL	C)	0	
	CLC1	•	•
	CLC2	•	•
	CLC3	•	•
	CLC4	•	•
Enhanced Universal Synchro Receiver/Transmitter (EUSA		nous	
	EUSART	٠	•
Master Synchronous Serial	Ports		
	MSSP	٠	•
Op Amp			
	Op Amp 1	•	•
	Op Amp 2	•	•
Pulse Width Modulator (PW	-		
	PWM3	•	•
	PWM4	•	•
Timers	· · · · · · · · · · · · · · · · · · ·		
	Timer0	•	•
	Timer1	٠	٠
	Timer2	•	•

6.4 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC internal oscillator block as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT or HS modes. The Oscillator Start-up Timer (OST) is enabled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the oscillator module is configured for any mode other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.

If the OST count reaches 1024 before the device enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the external oscillator. However, the system may never operate from the external oscillator if the time spent awake is very short.

Note:	Executing a SLEEP instruction will abort
	the oscillator start-up time and will cause
	the OSTS bit of the OSCSTAT register to
	remain clear.

6.4.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Words) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Words configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- Wake-up from Sleep.

TABLE 6-1:	OSCILLATOR SWITCHING DELAYS
------------	-----------------------------

Switch From	Switch To	Frequency	Oscillator Delay
Sleep	LFINTOSC ⁽¹⁾ MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	Oscillator Warm-up Delay (TLFOSC ST) ⁽²⁾ Oscillator Warm-up Delay (Tlosc ST) ⁽²⁾
Sleep/POR	EC, RC ⁽¹⁾	DC – 32 MHz	2 cycles
LFINTOSC	EC, RC ⁽¹⁾	DC – 32 MHz	1 cycle of each
Sleep/POR	Secondary Oscillator LP, XT, HS ⁽¹⁾	32 kHz-20 MHz	1024 Clock Cycles (OST)
Any clock source	MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 μs (approx.)
Any clock source	LFINTOSC ⁽¹⁾	31 kHz	1 cycle of each
Any clock source	Secondary Oscillator	32 kHz	1024 Clock Cycles (OST)
PLL inactive	PLL active	16-32 MHz	2 ms (approx.)

Note 1: PLL inactive.

2: See Section 34.0 "Electrical Specifications".

TABLE 9-2: WDT CLEARING CONDITIONS

Conditions	WDT		
WDTE<1:0> = 00			
WDTE<1:0> = 01 and SWDTEN = 0			
WDTE<1:0> = 10 and enter Sleep	Cleared		
CLRWDT Command	Cleared		
Oscillator Fail Detected			
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK			
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST		
Change INTOSC divider (IRCF bits)	Unaffected		

10.3 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

MEMORY MODIFY FLOWCHART Start Modify Operation **Read Operation** Figure 10-1 An image of the entire row read must be stored in RAM Modify Image The words to be modified are changed in the RAM image Erase Operation Figure 10-4 Write Operation use RAM image Figure 10-6 End Modify Operation

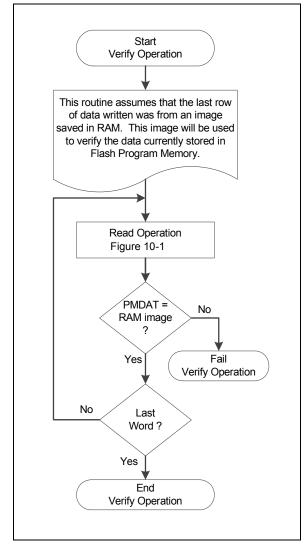

FLASH PROGRAM

FIGURE 10-7:

10.5 Write Verify

It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full page then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 10-8: FLASH PROGRAM MEMORY VERIFY FLOWCHART

'1' = Bit is set

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1			
SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0			
bit 7 bit 0										
Logondy										
Legend:										
R = Readable	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all						other Resets				

REGISTER 11-7: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

bit 7-0 SLRA<7:0>: PORTA Slew Rate Enable bits For RA<7:0> pins, respectively 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate

REGISTER 11-8: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

'0' = Bit is cleared

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLA7 | INLVLA6 | INLVLA5 | INLVLA4 | INLVLA3 | INLVLA2 | INLVLA1 | INLVLA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 75-0 INLVLA<7:0>: PORTA Input Level Select bits For RA<7:0> pins, respectively 1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

11.6 Register Definitions: PORTC

REGISTER 11-17: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u				
RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0				
bit 7							bit 0				
Legend:											
R = Readable bi	it	W = Writable bi	it	U = Unimplemented bit, read as '0'							
u = Bit is unchar	nged	x = Bit is unkno	wn	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clear	red								

 bit 7-0
 RC<7:0>: PORTC General Purpose I/O Pin bits⁽¹⁾

 1 = Port pin is
 VIH

 0 = Port pin is
 VIL

REGISTER 11-18: TRISC: PORTC TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

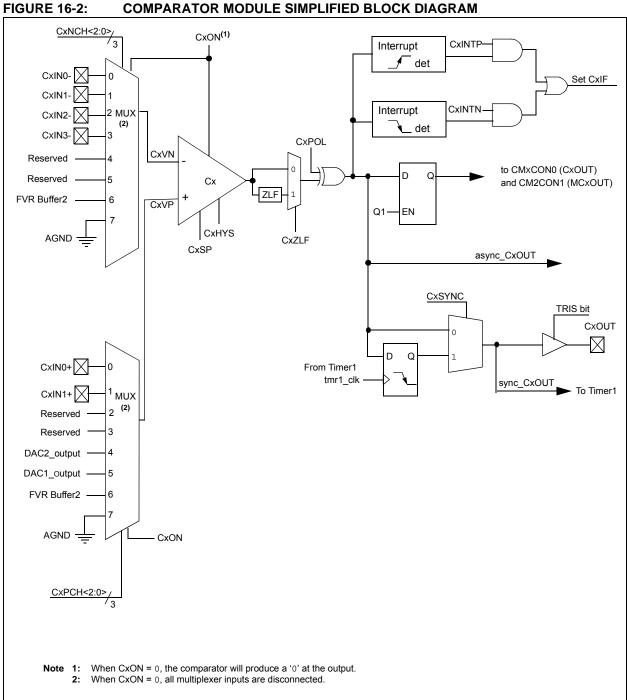
Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISC<7:0>: PORTC Tri-State Control bits

1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output


REGISTER 11-19: LATC: PORTC DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATC7 | LATC6 | LATC5 | LATC4 | LATC3 | LATC2 | LATC1 | LATC0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

© 2013-2016 Microchip Technology Inc.

17.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 17-4.

EQUATION 17-4: PWM RESOLUTION

Resolution = $\frac{\log[4(PR2 + 1)]}{\log(2)}$ bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 17-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 M
--

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

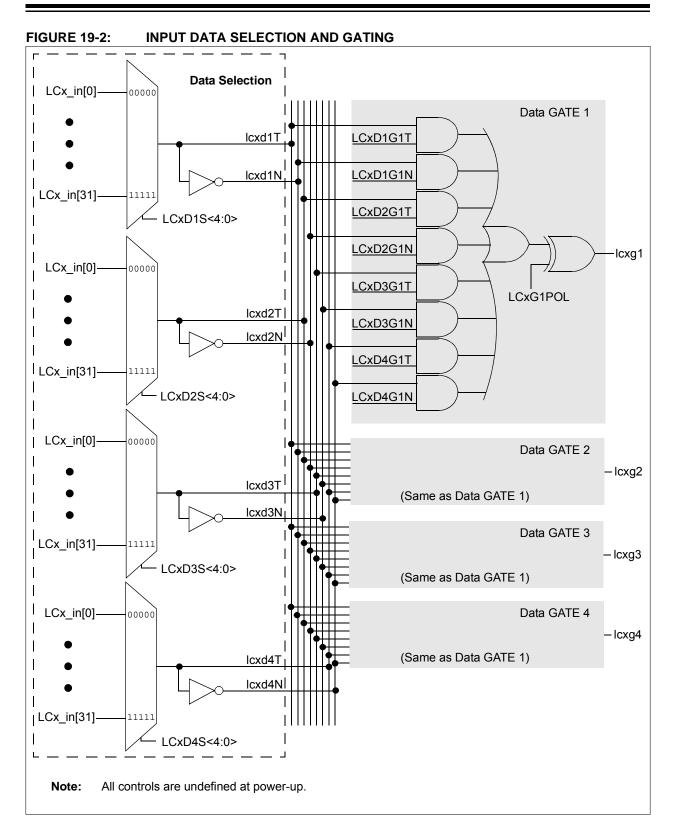
TABLE 17-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

17.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

17.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY


The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

17.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
GxDATD	GxDATC	GxDATB	GxDATA	GxSTRD	GxSTRC	GxSTRB	GxSTRA
bit 7	- -			• 	•		bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value at	POR and BOF	R/Value at all ot	her Resets
'1' = Bit is se	et	'0' = Bit is clea	ared	q = Value depe	ends on conditi	on	
bit 7		COGxD Static C	•				
		static data is hi static data is lo	0				
bit 6		COGxC Static C					
		static data is hi					
		static data is lo					
bit 5	GxSDATB:	COGxB Static C	Output Data bit				
		static data is hi	•				
		static data is lo					
bit 4		COGxA Static C	•				
		static data is hi static data is lo					
bit 3		OGxD Steering					
		-		orm with polarity	control from C	SxPOLD bit	
				letermined by th			
bit 2	GxSTRC: C	OGxC Steering	Control bit				
				orm with polarity			
		•		letermined by th	ie GxSDATC b	it	
bit 1		OGxB Steering			, a a ratural frame. C		
				orm with polarity letermined by th			
bit 0		OGxA Steering				-	
				orm with polarity	control from G	xPOLA bit	
	0 = COGxA						

REGISTER 18-9: COGxSTR: COG STEERING CONTROL REGISTER 1

REGISTER 20-3: NCOxACCL: NCOx ACCUMULATOR REGISTER – LOW BYTE

Logondi									
bit 7							bit 0		
NCOxACC<7:0>									
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxACC<7:0>: NCOx Accumulator, Low Byte

REGISTER 20-4: NCOxACCH: NCOx ACCUMULATOR REGISTER – HIGH BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
NCOxACC<15:8>								
bit 7							bit 0	
Legend:								

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxACC<15:8>: NCOx Accumulator, High Byte

REGISTER 20-5: NCOxACCU: NCOx ACCUMULATOR REGISTER – UPPER BYTE

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—	—	—	NCOxACC<19:16>				
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 NCOxACC<19:16>: NCOx Accumulator, Upper Byte

23.6 Register Definitions: DAC Control

REGISTER	23-1: DAC10	CONU: VOLT	AGE REFER	ENCE CON	ROL REGIS	IERU			
R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0		
DAC1EN	—	DAC10E1	DAC10E2	DAC1P	2SS<1:0>	—	DAC1NSS		
bit 7		•					bit (
Legend:									
R = Readable I	bit	W = Writable b	it	U = Unimpleme	ented bit, read as	'0'			
u = Bit is uncha	anged	x = Bit is unkno	own	-n/n = Value at	POR and BOR/V	alue at all othe	r Resets		
'1' = Bit is set		'0' = Bit is clear	red						
bit 6 bit 5	1 = DAC volta	sabled	an output on the	•					
bit 4	1 = DAC volta	C1 Voltage Outp ge level is also a ge level is disco	an output on the						
bit 3-2	DAC1PSS<1:0 11 = Reserve 10 = FVR Buf 01 = VREF+ p 00 = VDD	fer2 output	e Source Select	bits					
bit 1	Unimplemente	ed: Read as '0'							
bit 0	DAC1NSS: DA 1 = VREF- pin 0 = VSS	F Contraction of the second							

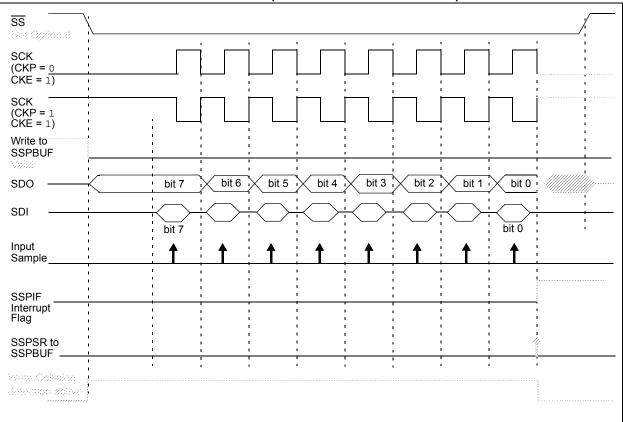
REGISTER 23-1: DAC1CON0: VOLTAGE REFERENCE CONTROL REGISTER 0

REGISTER 23-2: DAC1CON1: VOLTAGE REFERENCE CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
DAC1R<7:0>							
bit 7 bit							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 DAC1R<7:0>: DAC1 Voltage Output Select bits


TABLE 23-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC1 MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DAC1CON0	DAC1EN	_	DAC10E1	DAC10E2	DAC1PS	SS<1:0>		DAC1NSS	249
DAC1CON1	DAC1R<7:0>							249	

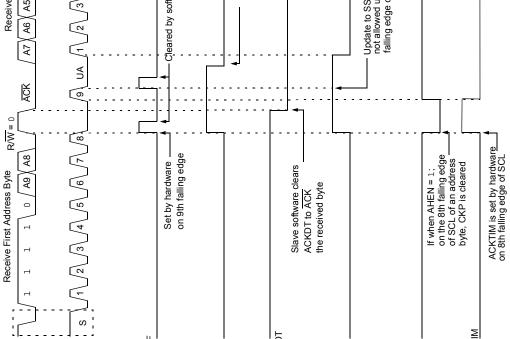

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

FIGURE 30-9:	SPI N	IODE W	AVEFO	RM (SL	AVE MC	DE WIT	HCKE	= 0)			
	×										, jaanna Je
	· · ·										: : : :
				· ·	, ,		4 4 		> > 		:
	: - - - -)) ; }	5 5 5 5	: : : :	; ; ;	9 9 9 8	« « «	e e o o o	: : : : :	· · ·
-3920		V 32.7	K 68.6	X 88 8 ,	X 338 4	X 88.3	X 338.2 ,	X. v			···t. • • • • • • • • • • • • • • • • • • •
- 5574	· · · ·			; ,,		,	; naa ///////// ; ;	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		//////////////////////////////////////	:
itapati Secregies	· · · · · · · · · · · · · · · · · · ·	. 40. 			40. 	. <i>14</i> ,	, 19. 		s , 2 2	%.	
SSPP Interrupt Plag	: : :		• 6 9 9	- 	• • • •		- - 	- - - 	e 2 2 2 4		
	· . 		2 6	, ; ; ,	, 5 5 		, 2 2 2,	5 7 7	· • : • :		
Virite Codisson Generation ective					*******						

FIGURE 30-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

I²C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0) **FIGURE 30-21:** Received data is read from SSPBUF 9 UA 11 2 3 4 5 6 7 8 6 7 8 clears UA and releases SCL Update of SSPADD, Set CKP with software releases SCL Cleared by software ACK A7 A6 A5 A4 A3 A2 A1 A0 9 UA 11 2 3 4 5 6 7 8 SSPBUF can be read anytime before the next received byte Receive Second Address Byte - Update to SSPADD is not allowed until 9th falling edge of SCL Cleared by software ACK R/W = 0

ACKDT

A

ВΓ

SSPIF

SCL

Ч

SDA

ACKTIM

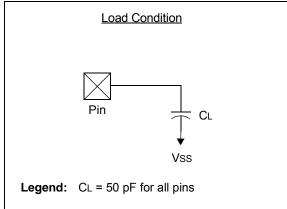
CКР

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
ANSELB	-		ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	126
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	—	131
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	83
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	84
PIE2	OSFIE	C2IE	C1IE	_	BCL1IE	TMR6IE	TMR4IE	CCP2IE	85
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	87
PIR2	OSFIF	C2IF	C1IF	_	BCL1IF	TMR6IF	TMR4IF	CCP2IF	88
RxyPPS	_	_	_	RxyPPS<4:0>					
SSPCLKPPS	_	_	_		SS	PCLKPPS<4	:0>		136
SSPDATPPS	_	_	_		SS	PDATPPS<4	:0>		136
SSP1ADD				ADD	<7:0>				336
SSP1BUF	Synchronous	s Serial Port F	Receive Buffe	r/Transmit Re	egister				289*
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		333
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	334
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	335
SSP1MSK	MSK<7:0>								336
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	332
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	125
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	130

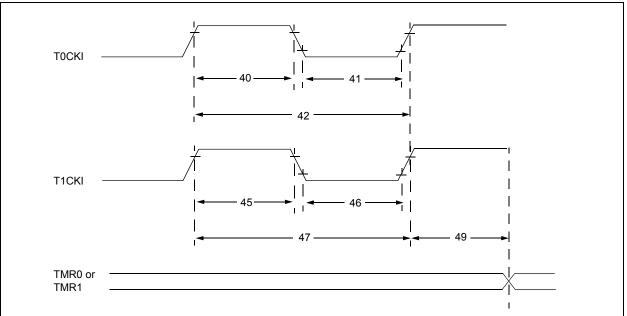
TABLE 30-3: SUMMARY OF REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the MSSP module in I^2C mode.

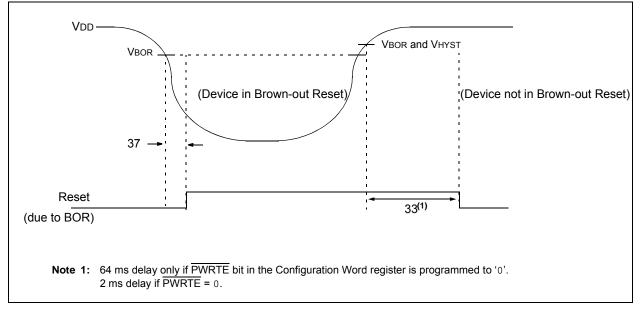
* Page provides register information.


34.4 AC Characteristics

Timing Parameter Symbology has been created with one of the following formats:


- 1. TppS2ppS
- 2. TppS

2. Tpp5		1						
Т								
F	Frequency	Т	Time					
Lowercase letters (pp) and their meanings:								
рр								
сс	CCP1	OSC	OSC1					
ck	CLKOUT	rd	RD					
cs	CS	rw	RD or WR					
di	SDI	sc	SCK					
do	SDO	SS	SS					
dt	Data in	tO	TOCKI					
io	I/O PORT	t1	T1CKI					
mc	MCLR	wr	WR					
Upperc	ase letters and their meanings:							
S								
F	Fall	Р	Period					
Н	High	R	Rise					
I	Invalid (High-impedance)	V	Valid					
L	Low	Z	High-impedance					


FIGURE 34-4: LOAD CONDITIONS

36.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

36.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

36.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

36.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility