E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	4 Core, 32-Bit
Speed	800MHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-FBGA, FCBGA
Supplier Device Package	624-FCBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6q7cvt08ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

The i.MX 6Dual/6Quad processors use dedicated hardware accelerators to meet the targeted multimedia performance. The use of hardware accelerators is a key factor in obtaining high performance at low power consumption numbers, while having the CPU core relatively free for performing other tasks.

The i.MX 6Dual/6Quad processors incorporate the following hardware accelerators:

- VPU—Video Processing Unit
- IPUv3H—Image Processing Unit version 3H (2 IPUs)
- GPU3Dv4—3D Graphics Processing Unit (OpenGL ES 2.0) version 4
- GPU2Dv2—2D Graphics Processing Unit (BitBlt)
- GPUVG—OpenVG 1.1 Graphics Processing Unit
- ASRC—Asynchronous Sample Rate Converter

Security functions are enabled and accelerated by the following hardware:

- ARM TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.)
- SJC—System JTAG Controller. Protecting JTAG from debug port attacks by regulating or blocking the access to the system debug features.
- CAAM—Cryptographic Acceleration and Assurance Module, containing 16 KB secure RAM and True and Pseudo Random Number Generator (NIST certified)
- SNVS—Secure Non-Volatile Storage, including Secure Real Time Clock
- CSU—Central Security Unit. Enhancement for the IC Identification Module (IIM). Will be configured during boot and by eFUSEs and will determine the security level operation mode as well as the TZ policy.
- A-HAB—Advanced High Assurance Boot—HABv4 with the new embedded enhancements: SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization.

1.3 Updated Signal Naming Convention

The signal names of the i.MX 6 series of products have been standardized to better align the signal names within the family and across the documentation. Some of the benefits of these changes are as follows:

- The names are unique within the scope of an SoC and within the series of products
- Searches will return all occurrences of the named signal
- The names are consistent between i.MX 6 series products implementing the same modules
- The module instance is incorporated into the signal name

This change applies only to signal names. The original ball names have been preserved to prevent the need to change schematics, BSDL models, IBIS models, etc.

Throughout this document, the updated signal names are used except where referenced as a ball name (such as the Functional Contact Assignments table, Ball Map table, and so on). A master list of the signal name changes is in the document, *IMX 6 Series Signal Name Mapping* (EB792). This list can be used to map the signal names used in older documentation to the new standardized naming conventions.

4.1.10 HDMI Maximum Power Consumption

Table 13 provides HDMI PHY currents for both Active 3D Tx with LFSR15 data pattern and Power-down modes.

Mode	Test Conditions	Supply	Max Current	Unit
Active	Bit rate 251.75 Mbps	HDMI_VPH	14	mA
		HDMI_VP	4.1	mA
	Bit rate 279.27 Mbps	HDMI_VPH	14	mA
		HDMI_VP	4.2	mA
	Bit rate 742.5 Mbps	HDMI_VPH	17	mA
		HDMI_VP	7.5	mA
	Bit rate 1.485 Gbps	HDMI_VPH	17	mA
		HDMI_VP	12	mA
	Bit rate 2.275 Gbps	HDMI_VPH	16	mA
		HDMI_VP	17	mA
	Bit rate 2.97 Gbps	HDMI_VPH	19	mA
		HDMI_VP	22	mA
Power-down	—	HDMI_VPH	49	μA
		HDMI_VP	1100	μA

Table 13. HDMI PHY Current Drain

Table 23. DDR3/DDR3L I/O DC Electrical Parameters ((continued)
---	-------------

Parameters	Symbol	Test Conditions	Min	Мах	Unit
Input current (no pull-up/down)	lin	Vin = 0 or OVDD	-2.9	2.9	μA
Pull-up/pull-down impedance mismatch	MMpupd	—	-10	10	%
240 Ω unit calibration resolution	Rres	_	—	10	Ω
Keeper circuit resistance	Rkeep	_	105	175	kΩ

¹ OVDD – I/O power supply (1.425 V–1.575 V for DDR3 and 1.283 V–1.45 V for DDR3L).

² Vref – DDR3/DDR3L external reference voltage.

³ The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot (see Table 28).

4.6.4 LVDS I/O DC Parameters

The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits" for details.

Table 24 shows the Low Voltage Differential Signalling (LVDS) I/O DC parameters.

Table 24. LVDS I/O DC Parameters

Parameter	Symbol	Test Conditions	Min	Мах	Unit
Output Differential Voltage	V _{OD}	Rload=100 Ω between padP and padN	250	450	mV
Output High Voltage	V _{OH}	I _{OH} = 0 mA	1.25	1.6	
Output Low Voltage	V _{OL}	I _{OL} = 0 mA	0.9	1.25	V
Offset Voltage	V _{OS}	—	1.125	1.375	

4.7 I/O AC Parameters

This section includes the AC parameters of the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
- LVDS I/O

The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and Figure 5.

CL includes package, probe and fixture capacitance

Figure 4. Load Circuit for Output

4.8 Output Buffer Impedance Parameters

This section defines the I/O impedance parameters of the i.MX 6Dual/6Quad processors for the following I/O types:

- General Purpose I/O (GPIO)
- Double Data Rate I/O (DDR) for LPDDR2, and DDR3 modes
- LVDS I/O

NOTE

GPIO and DDR I/O output driver impedance is measured with "long" transmission line of impedance Ztl attached to I/O pad and incident wave launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that defines specific voltage of incident wave relative to OVDD. Output driver impedance is calculated from this voltage divider (see Figure 7).

4.8.2 DDR I/O Output Buffer Impedance

The LPDDR2 interface fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009. The DDR3 interface fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008.

Table 32 shows DDR I/O output buffer impedance of i.MX 6Dual/6Quad processors.

			Тур		
Parameter	Symbol	Test Conditions	NVCC_DRAM=1.5 V (DDR3) DDR_SEL=11	NVCC_DRAM=1.2 V (LPDDR2) DDR_SEL=10	Unit
Output Driver Impedance	Rdrv	Drive Strength (DSE) = 000 001 010 011 100 101 110 111	Hi-Z 240 120 80 60 48 40 34	Hi-Z 240 120 80 60 48 40 34	Ω

Table 32. DDR I/O Output Buffer Impedance

Note:

1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.

2. Calibration is done against 240 W external reference resistor.

3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.

4.8.3 LVDS I/O Output Buffer Impedance

The LVDS interface complies with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits" for details.

4.9 System Modules Timing

This section contains the timing and electrical parameters for the modules in each i.MX 6Dual/6Quad processor.

4.9.1 Reset Timing Parameters

Figure 8 shows the reset timing and Table 33 lists the timing parameters.

Figure 8. Reset Timing Diagram

	Parametav ^{1,2}	Symbol	CK = 53	l lmit	
	Farameter		Min	Мах	Onit
DDR4	DRAM_CSx_B, DRAM_RAS_B, DRAM_CAS_B, DRAM_SDCKEx, DRAM_SDWE_B, DRAM_ODTx setup time	tis	500	_	ps
DDR5	DRAM_CSx_B, DRAM_RAS_B, DRAM_CAS_B, DRAM_SDCKEx, DRAM_SDWE_B, DRAM_ODTx hold time	tıн	400	_	ps
DDR6	Address output setup time	tis	500	—	ps
DDR7	Address output hold time	tıн	400	—	ps

Table 38. DDR3/DDR3L Timing Parameter (continued)

¹ All measurements are in reference to Vref level.

² Measurements were done using balanced load and 25 Ω resistor from outputs to DRAM_VREF.

Figure 23 shows the DDR3/DDR3L write timing diagram. The timing parameters for this diagram appear in Table 39.

Figure 23. DDR3/DDR3L Write Cycle

Table 39. DDR3/DDR3L Write Cycle

п	Barametar ^{1,2,3}	Symbol	CK = 532 MHz		Unit
	Falameter	Symbol	Min	Max	Unit
DDR17	DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P (differential strobe)	tDS	125 ⁴	_	ps
DDR18	DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P (differential strobe)	tDH	150 ⁴	_	ps
DDR21	DRAM_SDQSx_P latching rising transitions to associated clock edges	tDQSS	-0.25	+0.25	tCK
DDR22	DRAM_SDQSx_P high level width	t DQSH	0.45	0.55	tCK
DDR23	DRAM_SDQSx_P low level width	tDQSL	0.45	0.55	tCK

¹ To receive the reported setup and hold values, write calibration should be performed to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window.

² All measurements are in reference to Vref level.

 3 Measurements were taken using balanced load and 25 Ω resistor from outputs to DRAM_VREF

ID	Parameter ^{1,2}	Symbol	CK = 53	Unit	
			Min	Мах	Unit
LP1	DRAM_SDCLKx_P clock high-level width	tсн	0.45	0.55	tск
LP2	DRAM_SDCLKx_P clock low-level width	tCL	0.45	0.55	tск
LP3	DRAM_CSx_B, DRAM_ADDRxx setup time	tis	270	—	ps
LP4	DRAM_CSx_B, DRAM_ADDRxx hold time	tıн	270	—	ps
LP3	DRAM_ADDRxx setup time	tis	230	—	ps
LP4	DRAM_ADDRxx hold time	tін	230	_	ps

Table 41. LPDDR2 Timing Parameter

¹ All measurements are in reference to Vref level.

 $^2\,$ Measurements were completed using balanced load and a 25 Ω resistor from outputs to DRAM_VREF.

Figure 26 shows the LPDDR2 write timing diagram. The timing parameters for this diagram appear in Table 42.

Figure 26. LPDDR2 Write Cycle

Table 42. LPDDR2 Write Cycle

П	Parameter ^{1,2,3}	Symbol	CK = 53	Unit	
	Falameter	Symbol	Min	Max	Onic
LP17	DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P (differential strobe)	tDS	235	—	ps
LP18	DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P (differential strobe)	tdн	235	—	ps
LP21	DRAM_SDQSx_P latching rising transitions to associated clock edges	tDQSS	0.75	1.25	tCK
LP22	DRAM_SDQSx_P high level width	t DQSH	0.4	—	tCK
LP23	DRAM_SDQSx_P low level width	tDQSL	0.4	—	tCK

1

Electrical Characteristics

Table 44. Asynchronous Mode Timing Parameters¹ (continued)

ID	ID Parameter		Timing T = GPMI Clock Cycle		
			Min	Мах	
NF16	Data setup on read	tDSR	_	(DS \times T -0.67)/18.38 [see ^{5,6}]	ns
NF17	Data hold on read	tDHR	0.82/11.83 [see ^{5,6}]	_	ns

The GPMI asynchronous mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.

² AS minimum value can be 0, while DS/DH minimum value is 1.

³ T = GPMI clock period -0.075ns (half of maximum p-p jitter).

⁴ NF12 is met automatically by the design.

⁵ Non-EDO mode.

⁶ EDO mode, GPMI clock ≈ 100 MHz (AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).

In EDO mode (Figure 32), NF16/NF17 are different from the definition in non-EDO mode (Figure 31). They are called tREA/tRHOH (NAND_RE_B access time/NAND_RE_B HIGH to output hold). The typical value for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM)). The typical value of this control register is 0x8 at 50 MT/s EDO mode. However, if the board delay is large enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.11.4.3 SDR50/SDR104 AC Timing

Figure 45 depicts the timing of SDR50/SDR104, and Table 52 lists the SDR50/SDR104 timing characteristics.

Figure 45. SDR50/SDR104 Timing

ID	Parameter	Symbols	Min	Мах	Unit		
Card Input Clock							
SD1	Clock Frequency Period	t _{CLK}	4.8	_	ns		
SD2	Clock Low Time	t _{CL}	$0.3 imes t_{CLK}$	$0.7 imes t_{CLK}$	ns		
SD2	Clock High Time	t _{CH}	$0.3 imes t_{CLK}$	$0.7 imes t_{CLK}$	ns		
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to SDx_CLK)							
SD4	uSDHC Output Delay	t _{OD}	-3	1	ns		
	uSDHC Output/Card Inputs SD_CMD,	SDx_DATAx in S	DR104 (Refer	ence to SDx_C	LK)		
SD5	uSDHC Output Delay	t _{OD}	-1.6	1	ns		
	uSDHC Input/Card Outputs SD_CMD,	SDx_DATAx in S	SDR50 (Refere	ence to SDx_Cl	_K)		
SD6	uSDHC Input Setup Time	t _{ISU}	2.5	—	ns		
SD7	uSDHC Input Hold Time	t _{IH}	1.5	—	ns		
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to SDx_CLK) ¹							
SD8	Card Output Data Window	t _{ODW}	$0.5 imes t_{CLK}$	_	ns		

Table 52. SDR50/SDR104 Interface Timing Specification

¹Data window in SDR100 mode is variable.

4.11.4.4 Bus Operation Condition for 3.3 V and 1.8 V Signaling

Signalling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signalling level of SDR104/SDR50 mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2, and NVCC_SD3 supplies are identical to those shown in Table 21, "GPIO I/O DC Parameters," on page 38.

4.11.5 Ethernet Controller (ENET) AC Electrical Specifications

4.11.5.1 ENET MII Mode Timing

This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal timings.

4.11.5.1.1 MII Receive Signal Timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER, and ENET_RX_CLK)

The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_RX_CLK frequency.

Figure 46 shows MII receive signal timings. Table 53 describes the timing parameters (M1–M4) shown in the figure.

Figure 46. MII Receive Signal Timing Diagram

Table	53.	MII	Receive	Signal	Timing
-------	-----	-----	---------	--------	--------

ID	Characteristic ¹	Min	Max	Unit
M1	ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to ENET_RX_CLK setup	5	—	ns
M2	ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER hold	5	—	ns
МЗ	ENET_RX_CLK pulse width high	35%	65%	ENET_RX_CLK period
M4	ENET_RX_CLK pulse width low	35%	65%	ENET_RX_CLK period

¹ ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.

- ² The MSB bits are duplicated on LSB bits implementing color extension.
- ³ The two MSB bits are duplicated on LSB bits implementing color extension.
- ⁴ YCbCr, 8 bits—Supported within the BT.656 protocol (sync embedded within the data stream).
- ⁵ RGB, 16 bits—Supported in two ways: (1) As a "generic data" input—with no on-the-fly processing; (2) With on-the-fly processing, but only under some restrictions on the control protocol.
- ⁶ YCbCr, 16 bits—Supported as a "generic-data" input—with no on-the-fly processing.
- ⁷ YCbCr, 16 bits—Supported as a sub-case of the YCbCr, 20 bits, under the same conditions (BT.1120 protocol).
- ⁸ YCbCr, 20 bits—Supported only within the BT.1120 protocol (syncs embedded within the data stream).

4.11.10.2 Sensor Interface Timings

There are three camera timing modes supported by the IPU.

4.11.10.2.1 BT.656 and BT.1120 Video Mode

Smart camera sensors, which include imaging processing, usually support video mode transfer. They use an embedded timing syntax to replace the IPU2_CSIx_VSYNC and IPU2_CSIx_HSYNC signals. The timing syntax is defined by the BT.656/BT.1120 standards.

This operation mode follows the recommendations of ITU BT.656/ ITU BT.1120 specifications. The only control signal used is IPU2_CSIx_PIX_CLK. Start-of-frame and active-line signals are embedded in the data stream. An active line starts with a SAV code and ends with a EAV code. In some cases, digital blanking is inserted in between EAV and SAV code. The CSI decodes and filters out the timing-coding from the data stream, thus recovering IPU2_CSIx_VSYNC and IPU2_CSIx_HSYNC signals for internal use. On BT.656 one component per cycle is received over the IPU2_CSIx_DATA_EN bus. On BT.1120 two components per cycle are received over the IPU2_CSIx_DATA_EN bus.

4.11.10.2.2 Gated Clock Mode

The IPU2_CSIx_VSYNC, IPU2_CSIx_HSYNC, and IPU2_CSIx_PIX_CLK signals are used in this mode. See Figure 63.

Figure 63. Gated Clock Mode Timing Diagram

A frame starts with a rising edge on IPU2_CSIx_VSYNC (all the timings correspond to straight polarity of the corresponding signals). Then IPU2_CSIx_HSYNC goes to high and hold for the entire line. Pixel clock is valid as long as IPU2_CSIx_HSYNC is high. Data is latched at the rising edge of the valid pixel clocks. IPU2_CSIx_HSYNC goes to low at the end of line. Pixel clocks then become invalid and the CSI

³ Display interface clock up time where CEIL(X) rounds the elements of X to the nearest integers towards infinity.

```
Tdicu = \frac{1}{2} \left( T_{diclk} \times ceil \left[ \frac{2 \times DISP\_CLK\_UP}{DI\_CLK\_PERIOD} \right] \right)
```

4.11.11 LVDS Display Bridge (LDB) Module Parameters

The LVDS interface complies with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits."

Parameter	Symbol	Test Condition	Min	Max	Units
Differential Voltage Output Voltage	V _{OD}	100 Ω Differential load	250	450	mV
Output Voltage High	Voh	100 Ω differential load (0 V Diff—Output High Voltage static)	1.25	1.6	V
Output Voltage Low	Vol	100 Ω differential load (0 V Diff—Output Low Voltage static)	0.9	1.25	V
Offset Static Voltage	V _{OS}	Two 49.9 Ω resistors in series between N-P terminal, with output in either Zero or One state, the voltage measured between the 2 resistors.	1.15	1.375	V
VOS Differential	V _{OSDIFF}	Difference in V_{OS} between a One and a Zero state	-50	50	mV
Output short-circuited to GND	ISA ISB	With the output common shorted to GND	-24	24	mA
VT Full Load Test	VTLoad	100 Ω Differential load with a 3.74 k Ω load between GND and I/O supply voltage	247	454	mV

Table 67. LVDS Display Bridge (LDB) Electrical Specification

4.11.12 MIPI D-PHY Timing Parameters

This section describes MIPI D-PHY electrical specifications, compliant with MIPI CSI-2 version 1.0, D-PHY specification Rev. 1.0 (for MIPI sensor port x4 lanes) and MIPI DSI Version 1.01, and D-PHY specification Rev. 1.0 (and also DPI version 2.0, DBI version 2.0, DSC version 1.0a at protocol layer) (for MIPI display port x2 lanes).

4.11.12.1 Electrical and Timing Information

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit							
Input DC Specifications—Apply to DSI_CLK_P/_N and DSI_DATA_P/_N Inputs													
VI	Input signal voltage range	Transient voltage range is limited from -300 mV to 1600 mV	-50	—	1350	mV							

Table 68. Electrical and Timing Information

i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 4, 07/2015

Freescale Semiconductor Inc.

4.11.12.2 D-PHY Signaling Levels

The signal levels are different for differential HS mode and single-ended LP mode. Figure 70 shows both the HS and LP signal levels on the left and right sides, respectively. The HS signalling levels are below the LP low-level input threshold such that LP receiver always detects low on HS signals.

Figure 70. D-PHY Signaling Levels

4.11.12.3 HS Line Driver Characteristics

Figure 71. Ideal Single-ended and Resulting Differential HS Signals

4.11.13.3 Receiver Real-Time Data Flow

Figure 80. Synchronized Data Flow Transmission with WAKE

4.11.13.5 Stream Transmission Mode Frame Transfer

4.11.13.6 Frame Transmission Mode (Synchronized Data Flow)

Figure 82. Frame Transmission Mode Transfer of Two Frames (Synchronized Data Flow)

4.11.13.7 Frame Transmission Mode (Pipelined Data Flow)

Figure 83. Frame Transmission Mode Transfer of Two Frames (Pipelined Data Flow)

4.11.13.8 DATA and FLAG Signal Timing Requirement for a 15 pF Load

Table 70. DATA and FLAG Timing

Parameter	Description	1 Mbit/s	100 Mbit/s
t _{Bit, nom}	Nominal bit time	1000 ns	10 ns
$t_{\text{Rise, min}}$ and $t_{\text{Fall, min}}$	Minimum allowed rise and fall time	2 ns	2 ns
t _{TxToRxSkew} , maxfq	Maximum skew between transmitter and receiver package pins	50 ns	0.5 ns
t _{EageSepTx} , min	Minimum allowed separation of signal transitions at transmitter package pins, including all timing defects, for example, jitter and skew, inside the transmitter.	400 ns	4 ns
t _{EageSepRx,} min	Minimum separation of signal transitions, measured at the receiver package pins, including all timing defects, for example, jitter and skew, inside the receiver.	350 ns	3.5 ns

חו	Paramatar ^{1,2}	All Freq	Unit		
ID		Min	Мах	Unit	
SJ9	JTAG_TMS, JTAG_TDI data hold time	25	_	ns	
SJ10	JTAG_TCK low to JTAG_TDO data valid	_	44	ns	
SJ11	JTAG_TCK low to JTAG_TDO high impedance	_	44	ns	
SJ12	JTAG_TRST_B assert time	100	—	ns	
SJ13	JTAG_TRST_B set-up time to JTAG_TCK low	40		ns	

Table 74. JTAG Timing (continued)

¹ T_{DC} = target frequency of SJC

² V_{M} = mid-point voltage

4.11.18 SPDIF Timing Parameters

The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.

Table 75 and Figure 90 and Figure 91 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.

Barameter	Symbol	Timing Para	meter Range	Unit	
Falameter	Symbol	Min	Мах		
SPDIF_IN Skew: asynchronous inputs, no specs apply	—	—	0.7	ns	
SPDIF_OUT output (Load = 50pf) • Skew • Transition rising • Transition falling			1.5 24.2 31.3	ns	
SPDIF_OUT output (Load = 30pf) • Skew • Transition rising • Transition falling			1.5 13.6 18.0	ns	
Modulating Rx clock (SPDIF_SR_CLK) period	srckp	40.0	_	ns	
SPDIF_SR_CLK high period	srckph	16.0	—	ns	
SPDIF_SR_CLK low period	srckpl	16.0	—	ns	
Modulating Tx clock (SPDIF_ST_CLK) period	stclkp	40.0	_	ns	
SPDIF_ST_CLK high period	stclkph	16.0	_	ns	
SPDIF_ST_CLK low period	stclkpl	16.0		ns	

Table 75. SPDIF Timing Parameters

ID	Parameter	Min	Мах	Unit
	External Clock Operation	on		
SS22	AUDx_TXC/AUDx_RXC clock period	81.4	_	ns
SS23	AUDx_TXC/AUDx_RXC clock high period	36	_	ns
SS24	AUDx_TXC/AUDx_RXC clock rise time	_	6.0	ns
SS25	AUDx_TXC/AUDx_RXC clock low period	36	_	ns
SS26	AUDx_TXC/AUDx_RXC clock fall time	_	6.0	ns
SS28	AUDx_RXC high to AUDx_TXFS (bl) high	-10	15.0	ns
SS30	AUDx_RXC high to AUDx_TXFS (bl) low	10	_	ns
SS32	AUDx_RXC high to AUDx_TXFS (wl) high	-10	15.0	ns
SS34	AUDx_RXC high to AUDx_TXFS (wI) low	10	_	ns
SS35	AUDx_TXC/AUDx_RXC External AUDx_TXFS rise time	_	6.0	ns
SS36	AUDx_TXC/AUDx_RXC External AUDx_TXFS fall time	_	6.0	ns
SS40	AUDx_RXD setup time before AUDx_RXC low	10		ns
SS41	AUDx_RXD hold time after AUDx_RXC low	2		ns

Table 80. SSI Receiver Timing with External Clock

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal AUDx_TXC/AUDx_RXC and/or the frame sync AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- AUDx_TXC and AUDx_RXC refer to the Transmit and Receive sections of the SSI.
- The terms, WL and BL, refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the frame sync timing is same as that of transmit data (for example, during AC97 mode of operation).

					Out of Reset Con	dition ¹		
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function (Signal Name)	Input/Output	Value ²	
DISP0_DAT18	V25	NVCC_LCD	GPIO	ALT5	GPIO5_IO12	Input	PU (100K)	
DISP0_DAT19	U23	NVCC_LCD	GPIO	ALT5	GPIO5_IO13	Input	PU (100K)	
DISP0_DAT2	P23	NVCC_LCD	GPIO	ALT5	GPIO4_I023	Input	PU (100K)	
DISP0_DAT20	U22	NVCC_LCD	GPIO	ALT5	GPI05_I014	Input	PU (100K)	
DISP0_DAT21	T20	NVCC_LCD	GPIO	ALT5	GPIO5_IO15	Input	PU (100K)	
DISP0_DAT22	V24	NVCC_LCD	GPIO	ALT5	GPIO5_IO16	Input	PU (100K)	
DISP0_DAT23	W24	NVCC_LCD	GPIO	ALT5	GPI05_I017	Input	PU (100K)	
DISP0_DAT3	P21	NVCC_LCD	GPIO	ALT5	GPIO4_IO24	Input	PU (100K)	
DISP0_DAT4	P20	NVCC_LCD	GPIO	ALT5	GPIO4_I025	Input	PU (100K)	
DISP0_DAT5	R25	NVCC_LCD	GPIO	ALT5	GPIO4_IO26	Input	PU (100K)	
DISP0_DAT6	R23	NVCC_LCD	GPIO	ALT5	GPIO4_I027	Input	PU (100K)	
DISP0_DAT7	R24	NVCC_LCD	GPIO	ALT5	GPIO4_IO28	Input	PU (100K)	
DISP0_DAT8	R22	NVCC_LCD	GPIO	ALT5	GPIO4_IO29	Input	PU (100K)	
DISP0_DAT9	T25	NVCC_LCD	GPIO	ALT5	GPIO4_IO30	Input	PU (100K)	
DRAM_A0	AC14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR00	Output	0	
DRAM_A1	AB14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR01	Output	0	
DRAM_A10	AA15	NVCC_DRAM	DDR	ALT0	DRAM_ADDR10	Output	0	
DRAM_A11	AC12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR11	Output	0	
DRAM_A12	AD12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR12	Output	0	
DRAM_A13	AC17	NVCC_DRAM	DDR	ALT0	DRAM_ADDR13	Output	0	
DRAM_A14	AA12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR14	Output	0	
DRAM_A15	Y12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR15	Output	0	
DRAM_A2	AA14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR02	Output	0	
DRAM_A3	Y14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR03	Output	0	
DRAM_A4	W14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR04	Output	0	
DRAM_A5	AE13	NVCC_DRAM	DDR	ALT0	DRAM_ADDR05	Output	0	
DRAM_A6	AC13	NVCC_DRAM	DDR	ALT0	DRAM_ADDR06	Output	0	
DRAM_A7	Y13	NVCC_DRAM	DDR	ALT0	DRAM_ADDR07	Output	0	
DRAM_A8	AB13	NVCC_DRAM	DDR	ALT0	DRAM_ADDR08	Output	0	
DRAM_A9	AE12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR09	Output	0	
DRAM_CAS	AE16	NVCC_DRAM	DDR	ALT0	DRAM_CAS_B	Output	0	
DRAM_CS0	Y16	NVCC_DRAM	DDR	ALT0	DRAM_CS0_B	Output	0	
DRAM_CS1	AD17	NVCC_DRAM	DDR	ALT0	DRAM_CS1_B	Output	0	
DRAM_D0	AD2	NVCC_DRAM	DDR	ALT0	DRAM_DATA00	Input	PU (100K)	
DRAM_D1	AE2	NVCC_DRAM	DDR	ALT0	DRAM_DATA01	Input	PU (100K)	
DRAM_D10	AA6	NVCC_DRAM	DDR	ALT0	DRAM_DATA10	Input	PU (100K)	

Table 91. 21 x 21 mm Functional Contact Assignments (continued)

					Out of Reset Con	dition ¹	
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function (Signal Name)	Input/Output	Value ²
RGMII_RD0	C24	NVCC_RGMII	DDR	ALT5	GPIO6_IO25	Input	PU (100K)
RGMII_RD1	B23	NVCC_RGMII	DDR	ALT5	GPIO6_I027	Input	PU (100K)
RGMII_RD2	B24	NVCC_RGMII	DDR	ALT5	GPIO6_IO28	Input	PU (100K)
RGMII_RD3	D23	NVCC_RGMII	DDR	ALT5	GPIO6_IO29	Input	PU (100K)
RGMII_RX_CTL	D22	NVCC_RGMII	DDR	ALT5	GPIO6_IO24	Input	PD (100K)
RGMII_RXC	B25	NVCC_RGMII	DDR	ALT5	GPIO6_IO30	Input	PD (100K)
RGMII_TD0	C22	NVCC_RGMII	DDR	ALT5	GPIO6_IO20	Input	PU (100K)
RGMII_TD1	F20	NVCC_RGMII	DDR	ALT5	GPIO6_IO21	Input	PU (100K)
RGMII_TD2	E21	NVCC_RGMII	DDR	ALT5	GPIO6_IO22	Input	PU (100K)
RGMII_TD3	A24	NVCC_RGMII	DDR	ALT5	GPIO6_IO23	Input	PU (100K)
RGMII_TX_CTL	C23	NVCC_RGMII	DDR	ALT5	GPIO6_IO26	Input	PD (100K)
RGMII_TXC	D21	NVCC_RGMII	DDR	ALT5	GPIO6_IO19	Input	PD (100K)
RTC_XTALI	D9	VDD_SNVS_CAP	—	—	RTC_XTALI	—	—
RTC_XTALO	C9	VDD_SNVS_CAP	—	—	RTC_XTALO	—	—
SATA_RXM	A14	SATA_VPH	—	—	SATA_PHY_RX_N	—	—
SATA_RXP	B14	SATA_VPH	—	—	SATA_PHY_RX_P	—	—
SATA_TXM	B12	SATA_VPH	—	—	SATA_PHY_TX_N	—	—
SATA_TXP	A12	SATA_VPH	—	—	SATA_PHY_TX_P	—	—
SD1_CLK	D20	NVCC_SD1	GPIO	ALT5	GPIO1_IO20	Input	PU (100K)
SD1_CMD	B21	NVCC_SD1	GPIO	ALT5	GPIO1_IO18	Input	PU (100K)
SD1_DAT0	A21	NVCC_SD1	GPIO	ALT5	GPIO1_IO16	Input	PU (100K)
SD1_DAT1	C20	NVCC_SD1	GPIO	ALT5	GPIO1_IO17	Input	PU (100K)
SD1_DAT2	E19	NVCC_SD1	GPIO	ALT5	GPIO1_IO19	Input	PU (100K)
SD1_DAT3	F18	NVCC_SD1	GPIO	ALT5	GPIO1_IO21	Input	PU (100K)
SD2_CLK	C21	NVCC_SD2	GPIO	ALT5	GPIO1_IO10	Input	PU (100K)
SD2_CMD	F19	NVCC_SD2	GPIO	ALT5	GPIO1_IO11	Input	PU (100K)
SD2_DAT0	A22	NVCC_SD2	GPIO	ALT5	GPIO1_IO15	Input	PU (100K)
SD2_DAT1	E20	NVCC_SD2	GPIO	ALT5	GPIO1_IO14	Input	PU (100K)
SD2_DAT2	A23	NVCC_SD2	GPIO	ALT5	GPIO1_IO13	Input	PU (100K)
SD2_DAT3	B22	NVCC_SD2	GPIO	ALT5	GPIO1_IO12	Input	PU (100K)
SD3_CLK	D14	NVCC_SD3	GPIO	ALT5	GPI07_I003	Input	PU (100K)
SD3_CMD	B13	NVCC_SD3	GPIO	ALT5	GPI07_I002	Input	PU (100K)
SD3_DAT0	E14	NVCC_SD3	GPIO	ALT5	GPIO7_IO04	Input	PU (100K)
SD3_DAT1	F14	NVCC_SD3	GPIO	ALT5	GPIO7_IO05	Input	PU (100K)
SD3_DAT2	A15	NVCC_SD3	GPIO	ALT5	GPIO7_IO06	Input	PU (100K)
SD3_DAT3	B15	NVCC_SD3	GPIO	ALT5	GPIO7_IO07	Input	PU (100K)

Table 91. 21 x 21 mm Functional Contact Assignments (continued)

Package Information and Contact Assignments

	1	2	3	4	5	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
٧V	LVDS1_TX1_P	LVDS1_TX1_N	LVDS1_TX3_N	LVDS1_TX3_P	DRAM_D3	DRAM_D10	GND	DRAM_D17	DRAM_D23	GND	DRAM_SDCKE1	DRAM_A14	GND	DRAM_A2	DRAM_A10	GND	DRAM_D32	DRAM_D33	GND	DRAM_D45	DRAM_D57	GND	DRAM_D61	DRAM_SDQS7_B	DRAM_SDQS7
ЯВ	LVDS1_TX2_N	LVDS1_TX2_P	GND	DRAM_D6	DRAM_D12	DRAM_D14	DRAM_D16	DRAM_DQM2	DRAM_D18	DRAM_SDQS3_B	DRAM_D27	DRAM_SDBA2	DRAM_A8	DRAM_A1	DRAM_RAS	DRAM_SDWE	DRAM_SDODT1	DRAM_DQM4	DRAM_D38	DRAM_D41	DRAM_D42	DRAM_D52	DRAM_D60	GND	DRAM_D56
AC	DRAM_D4	DRAM_VREF	DRAM_DQM0	DRAM_D2	DRAM_D13	DRAM_DQM1	DRAM_D15	DRAM_D22	DRAM_D28	DRAM_SDQS3	DRAM_D31	DRAM_A11	DRAM_A6	DRAM_A0	DRAM_SDBA0	DRAM_SDODT0	DRAM_A13	DRAM_D34	DRAM_D39	DRAM_DQM5	DRAM_D47	DRAM_D48	DRAM_D53	DRAM_D51	DRAM_D55
AD	DRAM_D5	DRAM_D0	DRAM_SDQS0_B	GND	DRAM_D8	DRAM_SDQS1	GND	DRAM_SDQS2	DRAM_D29	GND	DRAM_D30	DRAM_A12	GND	DRAM_SDCLK_1	DRAM_SDCLK_0	GND	DRAM_CS1	DRAM_SDQS4	GND	DRAM_SDQS5	DRAM_D43	GND	DRAM_SDQS6	DRAM_DQM6	DRAM_D54
AE	GND	DRAM_D1	DRAM_SDQS0	DRAM_D7	DRAM_D9	DRAM_SDQS1_B	DRAM_D11	DRAM_SDQS2_B	DRAM_D24	DRAM_DQM3	DRAM_D26	DRAM_A9	DRAM_A5	DRAM_SDCLK_1_B	DRAM_SDCLK_0_B	DRAM_CAS	ZQPAD	DRAM_SDQS4_B	DRAM_D35	DRAM_SDQS5_B	DRAM_D46	DRAM_D49	DRAM_SDQS6_B	DRAM_D50	GND

Table 93. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)

MLB is only supported in automotive and consumer graded parts. These balls are not connected in industrial graded parts.

i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 4, 07/2015

1