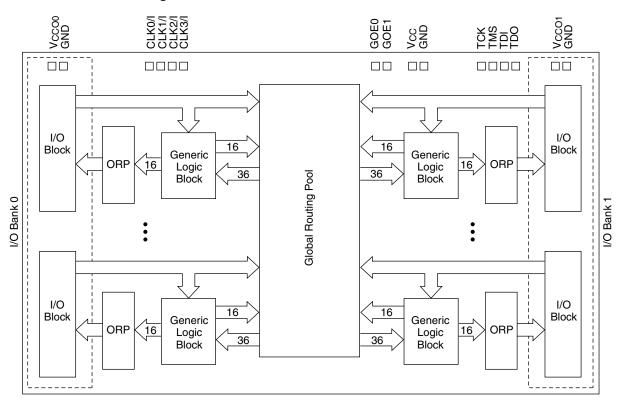


Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.


Applications of Embedded - CPLDs

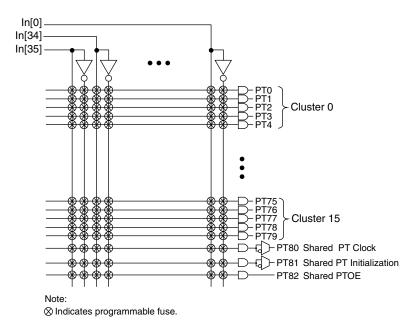
Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	2
Number of Macrocells	32
Number of Gates	-
Number of I/O	32
Operating Temperature	-40°C ~ 130°C (TJ)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4032v-75t48e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1. Functional Block Diagram

The I/Os in the ispMACH 4000 are split into two banks. Each bank has a separate I/O power supply. Inputs can support a variety of standards independent of the chip or bank power supply. Outputs support the standards compatible with the power supply provided to the bank. Support for a variety of standards helps designers implement designs in mixed voltage environments. In addition, 5V tolerant inputs are specified within an I/O bank that is connected to V_{CCO} of 3.0V to 3.6V for LVCMOS 3.3, LVTTL and PCI interfaces.


ispMACH 4000 Architecture

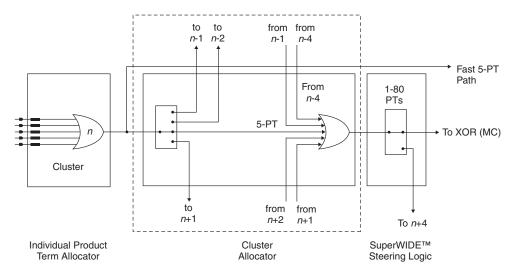
There are a total of two GLBs in the ispMACH 4032, increasing to 32 GLBs in the ispMACH 4512. Each GLB has 36 inputs. All GLB inputs come from the GRP and all outputs from the GLB are brought back into the GRP to be connected to the inputs of any other GLB on the device. Even if feedback signals return to the same GLB, they still must go through the GRP. This mechanism ensures that GLBs communicate with each other with consistent and predictable delays. The outputs from the GLB are also sent to the ORP. The ORP then sends them to the associated I/O cells in the I/O block.

Generic Logic Block

The ispMACH 4000 GLB consists of a programmable AND array, logic allocator, 16 macrocells and a GLB clock generator. Macrocells are decoupled from the product terms through the logic allocator and the I/O pins are decoupled from macrocells through the ORP. Figure 2 illustrates the GLB.

Figure 3. AND Array

Enhanced Logic Allocator


Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term cluster is associated with a macrocell. The cluster size for the ispMACH 4000 family is 4+1 (total 5) product terms. The software automatically considers the availability and distribution of product term clusters as it fits the functions within a GLB. The logic allocator is designed to provide three speed paths: 5-PT fast bypass path, 20-PT Speed Locking path and an up to 80-PT path. The availability of these three paths lets designers trade timing variability for increased performance.

The enhanced Logic Allocator of the ispMACH 4000 family consists of the following blocks:

- Product Term Allocator
- Cluster Allocator
- Wide Steering Logic

Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.

Figure 4. Macrocell Slice

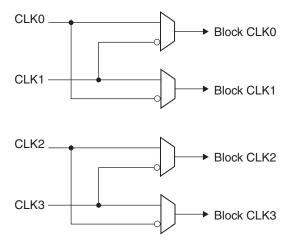
- Block CLK2
- Block CLK3
- PT Clock
- PT Clock Inverted
- Shared PT Clock
- Ground

Clock Enable Multiplexer

Each macrocell has a 4:1 clock enable multiplexer. This allows the clock enable signal to be selected from the following four sources:

- PT Initialization/CE
- PT Initialization/CE Inverted
- Shared PT Clock
- Logic High

Initialization Control


The ispMACH 4000 family architecture accommodates both block-level and macrocell-level set and reset capability. There is one block-level initialization term that is distributed to all macrocell registers in a GLB. At the macrocell level, two product terms can be "stolen" from the cluster associated with a macrocell to be used for set/reset functionality. A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, providing flexibility.

Note that the reset/preset swapping selection feature affects power-up reset as well. All flip-flops power up to a known state for predictable system initialization. If a macrocell is configured to SET on a signal from the block-level initialization, then that macrocell will be SET during device power-up. If a macrocell is configured to RESET on a signal from the block-level initialization or is not configured for set/reset, then that macrocell will RESET on power-up. To guarantee initialization values, the V_{CC} rise must be monotonic, and the clock must be inactive until the reset delay time has elapsed.

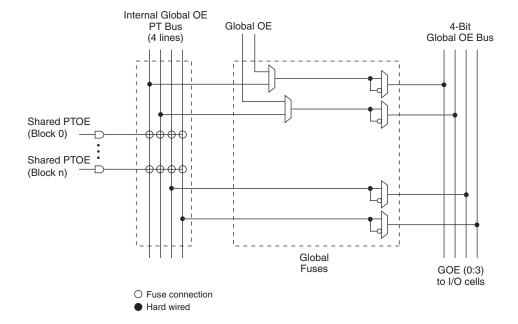
GLB Clock Generator

Each ispMACH 4000 device has up to four clock pins that are also routed to the GRP to be used as inputs. These pins drive a clock generator in each GLB, as shown in Figure 6. The clock generator provides four clock signals that can be used anywhere in the GLB. These four GLB clock signals can consist of a number of combinations of the true and complement edges of the global clock signals.

Figure 6. GLB Clock Generator

- LVTTL
- LVCMOS 1.8
- LVCMOS 3.3
- 3.3V PCI Compatible
- LVCMOS 2.5

All of the I/Os and dedicated inputs have the capability to provide a bus-keeper latch, Pull-up Resistor or Pull-down Resistor. A fourth option is to provide none of these. The selection is done on a global basis. The default in both hardware and software is such that when the device is erased or if the user does not specify, the input structure is configured to be a Pull-up Resistor.


Each ispMACH 4000 device I/O has an individually programmable output slew rate control bit. Each output can be individually configured for fast slew or slow slew. The typical edge rate difference between fast and slow slew setting is 20%. For high-speed designs with long, unterminated traces, the slow-slew rate will introduce fewer reflections, less noise and keep ground bounce to a minimum. For designs with short traces or well terminated lines, the fast slew rate can be used to achieve the highest speed.

Global OE Generation

Most ispMACH 4000 family devices have a 4-bit wide Global OE Bus, except the ispMACH 4032 device that has a 2-bit wide Global OE Bus. This bus is derived from a 4-bit internal global OE PT bus and two dual purpose I/O or GOE pins. Each signal that drives the bus can optionally be inverted.

Each GLB has a block-level OE PT that connects to all bits of the Global OE PT bus with four fuses. Hence, for a 256-macrocell device (with 16 blocks), each line of the bus is driven from 16 OE product terms. Figures 9 and 10 show a graphical representation of the global OE generation.

Figure 9. Global OE Generation for All Devices Except ispMACH 4032

I/O Recommended Operating Conditions

	V _{CCO} (V) ¹				
Standard	Min.	Max.			
LVTTL	3.0	3.6			
LVCMOS 3.3	3.0	3.6			
Extended LVCMOS 3.3 ²	2.7	3.6			
LVCMOS 2.5	2.3	2.7			
LVCMOS 1.8	1.65	1.95			
PCI 3.3	3.0	3.6			

^{1.} Typical values for $\rm V_{\rm CCO}$ are the average of the min. and max. values.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{IL} , I _{IH} ^{1, 4}	Input Leakage Current (ispMACH 4000Z)	$0 \le V_{IN} < V_{CCO}$	_	0.5	1	μΑ
I _{IH} ¹	Input High Leakage Current (isp-MACH 4000Z)	$V_{CCO} < V_{IN} \le 5.5V$	_	_	10	μΑ
I _{IL} , I _{IH} ¹	Input Leakage Current (ispMACH	$0 \le V_{IN} \le 3.6V, T_j = 105^{\circ}C$	_	_	10	μΑ
'IL', 'IH	4000V/B/C)	$0 \le V_{IN} \le 3.6V, T_j = 130^{\circ}C$	_	_	15	μΑ
I _{IH} ^{1,2}	Input High Leakage Current (isp-	$3.6V < V_{IN} \le 5.5V$, $T_j = 105^{\circ}C$ $3.0V \le V_{CCO} \le 3.6V$	_	_	20	μΑ
ЧH	MACH 4000V/B/C)	$3.6V < V_{IN} \le 5.5V$, $T_j = 130^{\circ}C$ $3.0V \le V_{CCO} \le 3.6V$	_	_	50	μΑ
I	I/O Weak Pull-up Resistor Current (ispMACH 4000Z)	$0 \le V_{IN} \le 0.7 V_{CCO}$	-30	_	-150	μΑ
I _{PU}	I/O Weak Pull-up Resistor Current (ispMACH 4000V/B/C)	$0 \le V_{IN} \le 0.7 V_{CCO}$	-30	_	-200	μΑ
I _{PD}	I/O Weak Pull-down Resistor Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{IH}$ (MIN)	30	_	150	μΑ
I _{BHLS}	Bus Hold Low Sustaining Current	$V_{IN} = V_{IL} (MAX)$	30		_	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCO}$	-30	_	_	μΑ
I _{BHLO}	Bus Hold Low Overdrive Current	$0V \le V_{IN} \le V_{BHT}$	_	_	150	μΑ
I _{BHHO}	Bus Hold High Overdrive Current	$V_{BHT} \le V_{IN} \le V_{CCO}$	_	_	-150	μΑ
V_{BHT}	Bus Hold Trip Points	_	V _{CCO} * 0.35	_	V _{CCO} * 0.65	V
C ₁	I/O Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V	_	8	_	pf
01	1/O Capacitance	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	_	U	_	рі
C_2	Clock Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V	_	6	_	pf
02	Clock Capacitarios	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	_	J	_	ρı
C ₃	Global Input Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V	_	6	_	pf
0 3	Global Input Gapasitario	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	_		_	Pi

^{1.} Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

^{2.} ispMACH 4000Z only.

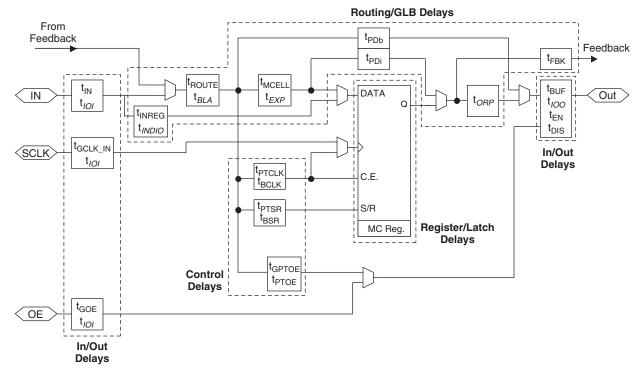
^{2. 5}V tolerant inputs and I/O should only be placed in banks where 3.0V \leq V $_{CCO} \leq$ 3.6V.

^{3.} $T_A = 25^{\circ}C$, f = 1.0MHz

^{4.} I_{II} excursions of up to 1.5μA maximum per pin above the spec limit may be observed for certain voltage conditions on no more than 10% of the device's I/O pins.

I/O DC Electrical Characteristics

Over Recommended Operating Conditions


		V _{IL}	V _{IH}		V _{OL}	V _{OH}	l _{OL} ¹	I _{OH} ¹
Standard	Min (V)	Max (V)	Min (V)	Max (V)	Max (V)	Min (V)	(mA)	(mA)
LVTTL	-0.3	0.80	2.0	5.5	0.40	V _{CCO} - 0.40	8.0	-4.0
LVIIL	-0.5	0.00	2.0	5.5	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 3.3	-0.3	0.80	2.0	5.5	0.40	V _{CCO} - 0.40	8.0	-4.0
EV OIVIOU 3.3	-0.5	0.00	2.0	5.5	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 2.5	-0.3	0.70	1.70	3.6	0.40	V _{CCO} - 0.40	8.0	-4.0
EVOIVIOU 2.5	-0.0	0.70	1.70	0.0	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 1.8	-0.3	0.63	1.17	3.6	0.40	V _{CCO} - 0.45	2.0	-2.0
(4000V/B)	-0.5	0.03	1.17	3.0	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 1.8	-0.3	0.35 * V _{CC}	0.65 * V _{CC}	3.6	0.40	V _{CCO} - 0.45	2.0	-2.0
(4000C/Z)	-0.5	0.55 V _{CC}	0.03 VCC	3.0	0.20	V _{CCO} - 0.20	0.1	-0.1
PCI 3.3 (4000V/B)	-0.3	1.08	1.5	5.5	0.1 V _{CCO}	0.9 V _{CCO}	1.5	-0.5
PCI 3.3 (4000C/Z)	-0.3	0.3 * 3.3 * (V _{CC} / 1.8)	0.5 * 3.3 * (V _{CC} / 1.8)	5.5	0.1 V _{CCO}	0.9 V _{CCO}	1.5	-0.5

^{1.} The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of the I/O bank, as shown in the logic signals connection table, shall not exceed *n**8mA. Where *n* is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank.

Timing Model

The task of determining the timing through the ispMACH 4000 family, like any CPLD, is relatively simple. The timing model provided in Figure 11 shows the specific delay paths. Once the implementation of a given function is determined either conceptually or from the software report file, the delay path of the function can easily be determined from the timing model. The Lattice design tools report the timing delays based on the same timing model for a particular design. Note that the internal timing parameters are given for reference only, and are not tested. The external timing parameters are tested and guaranteed for every device. For more information on the timing model and usage, refer to TN1004, ispMACH 4000 Timing Model Design and Usage Guidelines.

Figure 11. ispMACH 4000 Timing Model

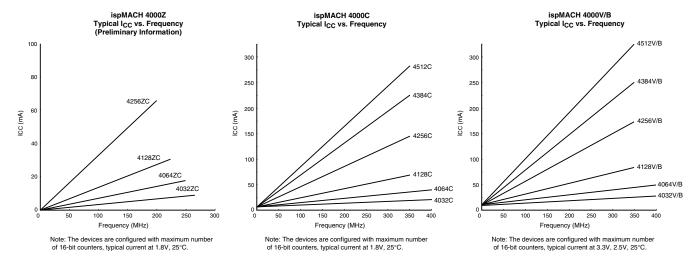
Note: Italicized items are optional delay adders.

ispMACH 4000V/B/C Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

			-5 -75		-10			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{GPTOE}	Global PT OE Delay	_	5.58		5.58	_	5.78	ns
t _{PTOE}	Macrocell PT OE Delay	_	3.58		4.28		4.28	ns

Timing v.3.2


Note: Internal Timing Parameters are not tested and are for reference only. Refer to the Timing Model in this data sheet for further details.

ispMACH 4000Z Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

		-4	15	-5		-75		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
In/Out Delay	/s		ı	ı	ı		ı	
t _{IN}	Input Buffer Delay	_	0.95	_	1.25	_	1.80	ns
t _{GOE}	Global OE Pin Delay	_	3.00	_	3.50	_	4.30	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay	_	1.95	_	2.05	_	2.15	ns
t _{BUF}	Delay through Output Buffer	_	1.10	_	1.00	_	1.30	ns
t _{EN}	Output Enable Time	_	2.50	_	2.50	_	2.70	ns
t _{DIS}	Output Disable Time	_	2.50	_	2.50	_	2.70	ns
Routing/GL	B Delays		ı	ı	ı		ı	
t _{ROUTE}	Delay through GRP	_	2.25	_	2.05	_	2.50	ns
t _{MCELL}	Macrocell Delay	_	0.65	_	0.65	_	1.00	ns
t _{INREG}	Input Buffer to Macrocell Register Delay	_	1.00	_	1.00	_	1.00	ns
t _{FBK}	Internal Feedback Delay	_	0.35	_	0.05	_	0.05	ns
t _{PDb}	5-PT Bypass Propagation Delay	_	0.20	_	0.70	_	1.90	ns
t _{PDi}	Macrocell Propagation Delay	_	0.45	_	0.65	_	1.00	ns
Register/La	tch Delays		ı	ı	ı			I
t _S	D-Register Setup Time (Global Clock)	1.00	_	1.10	_	1.35	_	ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	2.10	_	1.90	_	2.45	_	ns
t _{ST}	T-Register Setup Time (Global Clock)	1.20	_	1.30	_	1.55	_	ns
t _{ST_PT}	T-register Setup Time (Product Term Clock)	2.30	_	2.10	_	2.75	_	ns
t _H	D-Register Hold Time	1.90	_	1.90	_	3.15	_	ns
t _{HT}	T-Resister Hold Time	1.90	_	1.90	_	3.15	_	ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	1.30	_	1.10	_	0.75	_	ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45	_	1.45	_	ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.30	_	1.50	_	1.95	_	ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	1.00	_	1.00	_	1.18	_	ns
t _{COi}	Register Clock to Output/Feedback MUX Time	_	0.75	_	1.15	_	1.05	ns
t _{CES}	Clock Enable Setup Time	2.00	_	2.00	_	2.00	_	ns
t _{CEH}	Clock Enable Hold Time	0.00	_	0.00	_	0.00	_	ns
t _{SL}	Latch Setup Time (Global Clock)	1.00	_	1.00	_	1.65	_	ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	2.10	_	1.90	_	2.15	_	ns
t _{HL}	Latch Hold Time	2.00	_	2.00	_	1.17	_	ns
t _{GOi}	Latch Gate to Output/Feedback MUX Time	_	0.33	_	0.33	_	0.33	ns
t _{PDLi}	Propagation Delay through Transparent Latch to Output/ Feedback MUX		0.25	_	0.25	_	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	_	0.97	_	0.97	_	0.28	ns
t _{SRR}	Asynchronous Reset or Set Recovery Delay	_	1.80	_	1.80	_	1.67	ns
Control Dela	ays					1		1
t _{BCLK}	GLB PT Clock Delay	_	1.55	_	1.55	_	1.25	ns
t _{PTCLK}	Macrocell PT Clock Delay	_	1.55	_	1.55	_	1.25	ns
t _{BSR}	GLB PT Set/Reset Delay	_	1.83	_	1.83	_	1.83	ns
t _{PTSR}	Macrocell PT Set/Reset Delay	_	1.83	_	1.83	_	2.72	ns
t _{GPTOE}	Global PT OE Delay	_	4.30	_	4.20	_	3.50	ns

Power Consumption

Power Estimation Coefficients¹

Device	A	В
ispMACH 4032V/B	11.3	0.010
ispMACH 4032C	1.3	0.010
ispMACH 4064V/B	11.5	0.010
ispMACH 4064C	1.5	0.010
ispMACH 4128V/B	11.5	0.011
ispMACH 4128C	1.5	0.011
ispMACH 4256V/B	12	0.011
ispMACH 4256C	2	0.011
ispMACH 4384V/B	12.5	0.013
ispMACH 4384C	2.5	0.013
ispMACH 4512V/B	13	0.013
ispMACH 4512C	3	0.013
ispMACH 4032ZC	0.010	0.010
ispMACH 4064ZC	0.011	0.010
ispMACH 4128ZC	0.012	0.010
ispMACH 4256ZC	0.013	0.010

For further information about the use of these coefficients, refer to TN1005, <u>Power Esti-mation in ispMACH 4000V/B/C/Z Devices</u>.

ispMACH 4000V/B/C/Z Power Supply and NC Connections¹

Signal	44-pin TQFP ²	48-pin TQFP ²	56-ball csBGA ³	100-pin TQFP ²	128-pin TQFP ²
VCC	11, 33	12, 36	K2, A9	25, 40, 75, 90	32, 51, 96, 115
VCCO0 VCCO (Bank 0)	6	6	F3	13, 33, 95	3, 17, 30, 41, 122
VCCO1 VCCO (Bank 1)	28	30	E8	45, 63, 83	58, 67, 81, 94, 105
GND	12, 34	13, 37	H3, C8	1, 26, 51, 76	1, 33, 65, 97
GND (Bank 0)	5	5	D3	7, 18, 32, 96	10, 24, 40, 113, 123
GND (Bank 1)	27	29	G8	46, 57, 68, 82	49, 59, 74, 88, 104
NC	_	_	4032Z : A8, B10, E1, E3, F8, F10, J1, K3	_	_

^{1.} All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with the bank shown.

^{2.} Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

^{3.} Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.

ispMACH 4064V/B/C/Z, 4128V/B/C/Z, 4256V/B/C/Z Logic Signal Connections: 100-Pin TQFP (Cont.)

	Bank		64V/B/C/Z	ispMACH 41	28V/B/C/Z	ispMACH 4256V/B/C/Z		
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	
42	1	C1	C^1	E2	E^1	16	I^1	
43	1	C2	C^2	E4	E^2	I10	I^2	
44	1	C3	C^3	E6	E^3	l12	I^3	
45	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	
46	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	
47	1	C4	C^4	E8	E^4	J2	J^0	
48	1	C5	C^5	E10	E^5	J6	J^1	
49	1	C6	C^6	E12	E^6	J10	J^2	
50	1	C7	C^7	E14	E^7	J12	J^3	
51	-	GND	-	GND	-	GND	-	
52	-	TMS	-	TMS	-	TMS	-	
53	1	C8	C^8	F0	F^0	K12	K^3	
54	1	C9	C^9	F2	F^1	K10	K^2	
55	1	C10	C^10	F4	F^2	K6	K^1	
56	1	C11	C^11	F6	F^3	K2	K^0	
57	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	
58	1	C12	C^12	F8	F^4	L12	L^3	
59	1	C13	C^13	F10	F^5	L10	L^2	
60	1	C14	C^14	F12	F^6	L6	L^1	
61	1	C15	C^15	F13	F^7	L4	L^0	
62*	1	I	-	I	-	I	-	
63	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	
64	1	D15	D^15	G14	G^7	M4	M^0	
65	1	D14	D^14	G12	G^6	M6	M^1	
66	1	D13	D^13	G10	G^5	M10	M^2	
67	1	D12	D^12	G8	G^4	M12	M^3	
68	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	
69	1	D11	D^11	G6	G^3	N2	N^0	
70	1	D10	D^10	G5	G^2	N6	N^1	
71	1	D9	D^9	G4	G^1	N10	N^2	
72	1	D8	D^8	G2	G^0	N12	N^3	
73*	1	I	-	I	-	I	-	
74	-	TDO	-	TDO	-	TDO	-	
75	-	VCC	-	VCC	-	VCC	-	
76	-	GND	-	GND	-	GND	-	
77*	1	I	-	I	-	I	-	
78	1	D7	D^7	H13	H^7	O12	O^3	
79	1	D6	D^6	H12	H^6	O10	O^2	
80	1	D5	D^5	H10	H^5	O6	O^1	
81	1	D4	D^4	H8	H^4	02	O^0	
82	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	

ispMACH 4128V/B/C Logic Signal Connections: 128-Pin TQFP (Cont.)

		ispMACH 4	128V/B/C
Pin Number	Bank Number	GLB/MC/Pad	ORP
19	0	C13	C^10
20	0	C12	C^9
21	0	C10	C^8
22	0	C9	C^7
23	0	C8	C^6
24	0	GND (Bank 0)	-
25	0	C6	C^5
26	0	C5	C^4
27	0	C4	C^3
28	0	C2	C^2
29	0	C0	C^0
30	0	VCCO (Bank 0)	-
31	0	TCK	-
32	0	VCC	-
33	0	GND	-
34	0	D14	D^11
35	0	D13	D^10
36	0	D12	D^9
37	0	D10	D^8
38	0	D9	D^7
39	0	D8	D^6
40	0	GND (Bank 0)	-
41	0	VCCO (Bank 0)	-
42	0	D6	D^5
43	0	D5	D^4
44	0	D4	D^3
45	0	D2	D^2
46	0	D1	D^1
47	0	D0	D^0
48	0	CLK1/I	-
49	1	GND (Bank 1)	-
50	1	CLK2/I	-
51	1	VCC	-
52	1	E0	E^0
53	1	E1	E^1
54	1	E2	E^2
55	1	E4	E^3
56	1	E5	E^4
57	1	E6	E^5
58	1	VCCO (Bank 1)	-
59	1	GND (Bank 1)	-
60	1	E8	E^6
61	1	E9	E^7

ispMACH 4064Z, 4128Z and 4256Z Logic Signal Connections: 132-Ball csBGA (Cont.)

		ispMAC	H 4064Z	ispMAC	H 4128Z	ispMAC	H 4256Z
Ball Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
D13	1	D10	D^10	G4	G^3	N6	N^3
D14	1	D9	D^9	G2	G^2	N8	N^4
D12	1	D8	D^8	G1	G^1	N10	N^5
C14	1	I	-	G0	G^0	N12	N^6
C13	1	NC	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
B14	-	TDO	-	TDO	-	TDO	-
A14	-	VCC	-	VCC	-	VCC	-
A13	-	GND	-	GND	-	GND	-
B13	1	NC	-	H14	H^11	O12	O^6
A12	1	Ţ	-	H13	H^10	O10	O^5
C12	1	D7	D^7	H12	H^9	O8	0^4
B12	1	D6	D^6	H10	H^8	O6	O^3
A11	1	D5	D^5	H9	H^7	O4	0^2
C11	1	D4	D^4	H8	H^6	O2	O^1
B11	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
A10	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
B10	1	NC	-	H6	H^5	P12	P^6
C10	1	NC	-	H5	H^4	P10	P^5
B9	1	D3	D^3	H4	H^3	P8	P^4
A9	1	D2	D^2	H2	H^2	P6	P^3
C9	1	D1	D^1	H1	H^1	P4	P^2
A8	1	D0/GOE1	D^0	H0/GOE1	H^0	P2/GOE1	P^1
B8	1	CLK3/I	-	CLK3/I	-	CLK3/I	-
C8	0	CLK0/I	-	CLK0/I	-	CLK0/I	-
B7	-	VCC	-	VCC	-	VCC	-
A7	0	NC ¹	-	NC¹	-	I ¹	-
C7	0	A0/GOE0	A^0	A0/GOE0	A^0	A2/GOE0	A^1
A6	0	A1	A^1	A1	A^1	A4	A^2
B6	0	A2	A^2	A2	A^2	A6	A^3
C6	0	A3	A^3	A4	A^3	A8	A^4
B5	0	NC	-	A5	A^4	A10	A^5
A5	0	NC	-	A6	A^5	A12	A^6
C5	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
B4	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
A4	0	NC	-	A8	A^6	B2	B^1
C4	0	A4	A^4	A9	A^7	B4	B^2
A3	0	A5	A^5	A10	A^8	В6	B^3
В3	0	A6	A^6	A12	A^9	B8	B^4
A2	0	A7	A^7	A13	A^10	B10	B^5
A1	0	NC	-	A14	A^11	B12	B^6
	1	1		1	l	l .	

^{1.} For device migration considerations, these NC pins are input signal pins in ispMACH 4256Z device.

ispMACH 4256V/B/C/Z, 4384V/B/C, 4512V/B/C, Logic Signal Connections: 176-Pin TQFP (Cont.)

	Bank	ispMACH 42	56V/B/C/Z	ispMACH 4	384V/B/C	ispMACH 4	MACH 4512V/B/C		
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP		
19	0	D4	D^2	E4	E^2	G4	G^2		
20	0	D2	D^1	E2	E^1	G2	G^1		
21	0	D0	D^0	E0	E^0	G0	G^0		
22	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-		
23	0	E0	E^0	H0	H^0	J0	J^0		
24	0	E2	E^1	H2	H^1	J2	J^1		
25	0	E4	E^2	H4	H^2	J4	J^2		
26	0	E6	E^3	H6	H^3	J6	J^3		
27	0	E8	E^4	H8	H^4	J8	J^4		
28	0	E10	E^5	H10	H^5	J10	J^5		
29	0	E12	E^6	H12	H^6	J12	J^6		
30	0	E14	E^7	H14	H^7	J14	J^7		
31	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-		
32	0	F0	F^0	J0	J^0	N0	N^0		
33	0	F2	F^1	J2	J^1	N2	N^1		
34	0	F4	F^2	J4	J^2	N4	N^2		
35	0	F6	F^3	J6	J^3	N6	N^3		
36	0	F8	F^4	J8	J^4	N8	N^4		
37	0	F10	F^5	J10	J^5	N10	N^5		
38	0	F12	F^6	J12	J^6	N12	N^6		
39	0	F14	F^7	J14	J^7	N14	N^7		
40	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-		
41	-	TCK	-	TCK	-	TCK	-		
42	-	VCC	-	VCC	-	VCC	-		
43	-	NC	-	NC	-	NC	-		
44	-	NC	-	NC	-	NC	-		
45	-	NC	-	NC	-	NC	-		
46	-	GND	-	GND (Bank 0)	-	GND	-		
47	0	G14	G^7	K14	K^7	O14	O^7		
48	0	G12	G^6	K12	K^6	O12	O^6		
49	0	G10	G^5	K10	K^5	O10	O^5		
50	0	G8	G^4	K8	K^4	O8	0^4		
51	0	G6	G^3	K6	K^3	O6	O^3		
52	0	G4	G^2	K4	K^2	04	O^2		
53	0	G2	G^1	K2	K^1	O2	O^1		
54	0	G0	G^0	K0	K^0	00	O^0		
55	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-		
56	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-		
57	0	H14	H^7	L14	L^7	P14	P^7		
58	0	H12	H^6	L12	L^6	P12	P^6		
59	0	H10	H^5	L10	L^5	P10	P^5		

ispMACH 4000C (1.8V) Industrial Devices (Cont.)

Family	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	1/0	Grade
	LC4384C-5FT256I	384	1.8	5	ftBGA	256	192	I
	LC4384C-75FT256I	384	1.8	7.5	ftBGA	256	192	I
	LC4384C-10FT256I	384	1.8	10	ftBGA	256	192	I
	LC4384C-5F256I ¹	384	1.8	5	fpBGA	256	192	I
LC4384C	LC4384C-75F256I ¹	384	1.8	7.5	fpBGA	256	192	1
	LC4384C-10F256I ¹	384	1.8	10	fpBGA	256	192	I
	LC4384C-5T176I	384	1.8	5	TQFP	176	128	I
	LC4384C-75T176I	384	1.8	7.5	TQFP	176	128	I
	LC4384C-10T176I	384	1.8	10	TQFP	176	128	1
	LC4512C-5FT256I	512	1.8	5	ftBGA	256	208	I
	LC4512C-75FT256I	512	1.8	7.5	ftBGA	256	208	I
	LC4512C-10FT256I	512	1.8	10	ftBGA	256	208	1
	LC4512C-5F256I ¹	512	1.8	5	fpBGA	256	208	I
LC4512C	LC4512C-75F256I ¹	512	1.8	7.5	fpBGA	256	208	I
	LC4512C-10F256I ¹	512	1.8	10	fpBGA	256	208	1
	LC4512C-5T176I	512	1.8	5	TQFP	176	128	I
	LC4512C-75T176I	512	512 1.8 7.5		TQFP	176	128	1
	LC4512C-10T176I	512	1.8	10	TQFP	176	128	I

^{1.} Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000B (2.5V) Commercial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032B-25T48C	32	2.5	2.5	TQFP	48	32	С
	LC4032B-5T48C	32	2.5	5	TQFP	48	32	С
LC4032B	LC4032B-75T48C	32	2.5	7.5	TQFP	48	32	С
LC4032B	LC4032B-25T44C	32	2.5	2.5	TQFP	44	30	С
	LC4032B-5T44C	32	2.5	5	TQFP	44	30	С
	LC4032B-75T44C	32	2.5	7.5	TQFP	44	30	С
	LC4064B-25T100C	64	2.5	2.5	TQFP	100	64	С
	LC4064B-5T100C	64	2.5	5	TQFP	100	64	С
	LC4064B-75T100C	64	2.5	7.5	TQFP	100	64	С
	LC4064B-25T48C	64	2.5	2.5	TQFP	48	32	С
LC4064B	LC4064B-5T48C	64	2.5	5	TQFP	48	32	С
	LC4064B-75T48C	64	2.5	7.5	TQFP	48	32	С
	LC4064B-25T44C	64	2.5	2.5	TQFP	44	30	С
	LC4064B-5T44C	64	2.5	5	TQFP	44	30	С
	LC4064B-75T44C	64	2.5	7.5	TQFP	44	30	С
	LC4128B-27T128C	128	2.5	2.7	TQFP	128	92	С
	LC4128B-5T128C	128	2.5	5	TQFP	128	92	С
LC4128B	LC4128B-75T128C	128	2.5	7.5	TQFP	128	92	С
LU4120D	LC4128B-27T100C	128	2.5	2.7	TQFP	100	64	С
	LC4128B-5T100C	128	128 2.5		TQFP	100	64	С
	LC4128B-75T100C	128	2.5	7.5	TQFP	100	64	С

ispMACH 4000B (2.5V) Commercial Devices (Cont.)

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4256B-3FT256AC	256	2.5	3	ftBGA	256	128	С
	LC4256B-5FT256AC	256	2.5	5	ftBGA	256	128	С
	LC4256B-75FT256AC	256	2.5	7.5	ftBGA	256	128	С
	LC4256B-3FT256BC	256	2.5	3	ftBGA	256	160	С
	LC4256B-5FT256BC	256	2.5	5	ftBGA	256	160	С
	LC4256B-75FT256BC	256	2.5	7.5	ftBGA	256	160	С
	LC4256B-3F256AC1	256	2.5	3	fpBGA	256	128	С
	LC4256B-5F256AC ¹	256	2.5	5	fpBGA	256	128	С
LC4256B	LC4256B-75F256AC1	256	2.5	7.5	fpBGA	256	128	С
LC4230B	LC4256B-3F256BC ¹	256	2.5	3	fpBGA	256	160	С
	LC4256B-5F256BC ¹	256	2.5	5	fpBGA	256	160	С
	LC4256B-75F256BC ¹	256	2.5	7.5	fpBGA	256	160	С
	LC4256B-3T176C	256	2.5	3	TQFP	176	128	С
	LC4256B-5T176C	256	2.5	5	TQFP	176	128	С
	LC4256B-75T176C	256	2.5	7.5	TQFP	176	128	С
	LC4256B-3T100C	256	2.5	3	TQFP	100	64	С
	LC4256B-5T100C	256	2.5	5	TQFP	100	64	С
	LC4256B-75T100C	256	2.5	7.5	TQFP	100	64	С
	LC4384B-35FT256C	384	2.5	3.5	ftBGA	256	192	С
	LC4384B-5FT256C	384	2.5	5	ftBGA	256	192	С
	LC4384B-75FT256C	384	2.5	7.5	ftBGA	256	192	С
	LC4384B-35F256C1	384	2.5	3.5	fpBGA	256	192	С
LC4384B	LC4384B-5F256C ¹	384	2.5	5	fpBGA	256	192	С
	LC4384B-75F256C1	384	2.5	7.5	fpBGA	256	192	С
	LC4384B-35T176C	384	2.5	3.5	TQFP	176	128	С
	LC4384B-5T176C	384	2.5	5	TQFP	176	128	С
	LC4384B-75T176C	384	2.5	7.5	TQFP	176	128	С
	LC4512B-35FT256C	512	2.5	3.5	ftBGA	256	208	С
	LC4512B-5FT256C	512	2.5	5	ftBGA	256	208	С
	LC4512B-75FT256C	512	2.5	7.5	ftBGA	256	208	С
	LC4512B-35F256C1	512	2.5	3.5	fpBGA	256	208	С
LC4512B	LC4512B-5F256C ¹	512	2.5	5	fpBGA	256	208	С
	LC4512B-75F256C1	512	2.5	7.5	fpBGA	256	208	С
	LC4512B-35T176C	512	2.5	3.5	TQFP	176	128	С
	LC4512B-5T176C	512	2.5	5	TQFP	176	128	С
	LC4512B-75T176C	512	2.5	7.5	TQFP	176	128	С

^{1.} Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000V (3.3V) Commercial Devices (Cont.)

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4512V-35FT256C	512	3.3	3.5	ftBGA	256	208	С
	LC4512V-5FT256C	512	3.3	5	ftBGA	256	208	С
	LC4512V-75FT256C	512	3.3	7.5	ftBGA	256	208	С
	LC4512V-35F256C ¹	F256C ¹ 512 3.3 3.5 fpBGA 256		256	208	С		
LC4512V	LC4512V-5F256C ¹	512	3.3	5	fpBGA	256	208	С
	LC4512V-75F256C1	512	3.3	7.5	fpBGA	256	208	С
	LC4512V-35T176C	512	3.3	3.5	TQFP	176	128	С
	LC4512V-5T176C	512	3.3	5	TQFP	176	128	С
	LC4512V-75T176C	512	3.3	7.5	TQFP	176	128	С

^{1.} Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000V (3.3V) Industrial Devices

Family	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032V-5T48I	32	3.3	5	TQFP	48	32	I
	LC4032V-75T48I	32	3.3	7.5	TQFP	48	32	I
LC4032V	LC4032V-10T48I	32	3.3	10	TQFP	48	32	1
LC4032V	LC4032V-5T44I	32	3.3	5	TQFP	44	30	I
	LC4032V-75T44I	32	3.3	7.5	TQFP	44	30	1
	LC4032V-10T44I	32	3.3	10	TQFP	44	30	1
	LC4064V-5T100I	64	3.3	5	TQFP	100	64	1
	LC4064V-75T100I	64	3.3	7.5	TQFP	100	64	1
	LC4064V-10T100I	64	3.3	10	TQFP	100	64	I
	LC4064V-5T48I	64	3.3	5	TQFP	48	32	1
LC4064V	LC4064V-75T48I	64	3.3	7.5	TQFP	48	32	I
	LC4064V-10T48I	64	3.3	10	TQFP	48	32	I
	LC4064V-5T44I	64	3.3	5	TQFP	44	30	1
	LC4064V-75T44I	64	3.3	7.5	TQFP	44	30	I
	LC4064V-10T44I	64	3.3	10	TQFP	44	30	I
	LC4128V-5T144I	128	3.3	5	TQFP	144	96	I
	LC4128V-75T144I	128	3.3	7.5	TQFP	144	96	I
	LC4128V-10T144I	128	3.3	10	TQFP	144	96	I
	LC4128V-5T128I	128	3.3	5	TQFP	128	92	1
LC4128V	LC4128V-75T128I	128	3.3	7.5	TQFP	128	92	I
	LC4128V-10T128I	128	3.3	10	TQFP	128	92	I
	LC4128V-5T100I	128	3.3	5	TQFP	100	64	I
	LC4128V-75T100I	128	3.3	7.5	TQFP	100	64	I
	LC4128V-10T100I	128	3.3	10	TQFP	100	64	I

ispMACH 4000V (3.3V) Lead-Free Industrial Devices

Device	Part Number	Part Number Macrocells Voltage t _{PD} Package		Package	Pin/Ball Count	I/O	Grade	
	LC4032V-5TN48I	32	3.3	5	Lead-free TQFP	48	32	I
	LC4032V-75TN48I	32	3.3	7.5	Lead-free TQFP	48	32	I
LC4032V	LC4032V-10TN48I	32	3.3	10	Lead-free TQFP	48	32	I
LC4032V	LC4032V-5TN44I	32	3.3	5	Lead-free TQFP	44	30	I
	LC4032V-75TN44I	32	3.3	7.5	Lead-free TQFP	44	30	I
	LC4032V-10TN44I	32	3.3	10	Lead-free TQFP	44	30	I
	LC4064V-5TN100I	64	3.3	5	Lead-free TQFP	100	64	I
	LC4064V-75TN100I	64	3.3	7.5	Lead-free TQFP	100	64	I
	LC4064V-10TN100I	64	3.3	10	Lead-free TQFP	100	64	I
	LC4064V-5TN48I	64	3.3	5	Lead-free TQFP	48	32	I
LC4064V	LC4064V-75TN48I	64	3.3	7.5	Lead-free TQFP	48	32	I
	LC4064V-10TN48I	64	3.3	10	Lead-free TQFP	48	32	I
	LC4064V-5TN44I	64	3.3	5	Lead-free TQFP	44	30	I
	LC4064V-75TN44I	64	3.3	7.5	Lead-free TQFP	44	30	I
	LC4064V-10TN44I	64	3.3	10	Lead-free TQFP	44	30	I
	LC4128V-5TN144I	128	3.3	5	Lead-free TQFP	144	96	I
	LC4128V-75TN144I	128	3.3	7.5	Lead-free TQFP	144	96	I
	LC4128V-10TN144I	128	3.3	10	Lead-free TQFP	144	96	I
	LC4128V-5TN128I	128	3.3	5	Lead-free TQFP	128	92	I
LC4128V	LC4128V-75TN128I	128	3.3	7.5	Lead-free TQFP	128	92	I
	LC4128V-10TN128I	128	3.3	10	Lead-free TQFP	128	92	I
	LC4128V-5TN100I	128	3.3	5	Lead-free TQFP	100	64	I
	LC4128V-75TN100I	128	3.3	7.5	Lead-free TQFP	100	64	I
	LC4128V-10TN100I	128	3.3	10	Lead-free TQFP	100	64	I

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
LC4032V	LC4032V-75TN48E	32	3.3	7.5	Lead-free TQFP	48	32	Е
LO4032V	LC4032V-75TN44E	32	3.3	7.5	Lead-free TQFP	44	30	Е
	LC4064V-75TN100E	64	3.3	7.5	Lead-free TQFP	100	64	Е
LC4064V	LC4064V-75TN48E	64	3.3	7.5	Lead-free TQFP	48	32	Е
	LC4064V-75TN44E	64	3.3	7.5	Lead-free TQFP	44	30	Е
	LC4128V-75TN144E	128	3.3	7.5	Lead-free TQFP	144	96	Е
LC4128V	LC4128V-75TN128E	128	3.3	7.5	Lead-free TQFP	128	92	Е
	LC4128V-75TN100E	128	3.3	7.5	Lead-free TQFP	100	64	Е
	LC4256V-75TN176E	256	3.3	7.5	Lead-free TQFP	176	128	Е
LC4256V	LC4256V-75TN144E	256	3.3	7.5	Lead-free TQFP	144	96	Е
	LC4256V-75TN100E	256	3.3	7.5	Lead-free TQFP	100	64	E

For Further Information

In addition to this data sheet, the following technical notes may be helpful when designing with the ispMACH 4000V/B/C/Z family:

- TN1004, ispMACH 4000 Timing Model Design and Usage Guidelines
- TN1005, Power Estimation in ispMACH 4000V/B/C/Z Devices

Revision History

Date	Version	Change Summary
_	_	Previous Lattice releases.
July 2003	17z	Changed device status for LC4064ZC and LC4128ZC to production release and updated/added AC and DC parameters as well as ordering part numbers for LC4064ZC and LC4128ZC devices.
		Improved leakage current specifications for ispMACH 4000Z. For ispMACH 4000V/B/C IIL, IIH condition now includes 0V and 3.6V end points ($0 \le VIN \le 3.6V$).
		Added 132-ball chip scale BGA power supply and NC connections.
		Added 132-ball chip scale BGA logic signal connections for LC4064ZC, LC4128ZC and LC4256ZC devices.
		Added lead-free package designators.
October 2003	18z	Hot socketing characteristics footnote 1. has been enhanced; Insensitive to sequence of VCC or VCCO. However, assumes monotonic rise/fall rates for Vcc and Vcco, provided (VIN - VCCO) \leq 3.6V.
		Improved LC4064ZC t_S to 2.5ns, t_{ST} to 2.7ns and f_{MAX} (Ext.) to 175MHz, LC4128ZC t_{CO} to 3.5ns and f_{MAX} (Ext.) to 161MHz (version v.2.1).
		Improved associated internal timing numbers and timing adders (version v.2.1).
		Added ispMACH 4000V/B/C/Z ORP Reference Tables.
		Enhanced ORP information in device pinout tables consistent with the ORP Combinations for I/O Blocks tables (table 6, 7, 8 and 9 in page 9-11).
		Corrected GLB/MC/Pad information in the 256-fpBGA pinouts for the LC4256V/B/C 160-I/O version.
		Added the ispMACH 4000 Family Speed Grade Offering table.
		Added the ispMACH 4128ZC Industrial and Automotive Device OPNs
December 2003	19z	Added the ispMACH 4032ZC and 4064ZC Industrial and Automotive Device OPNs