# E. Lattice Semiconductor Corporation - <u>LC4064C-10TN100I Datasheet</u>

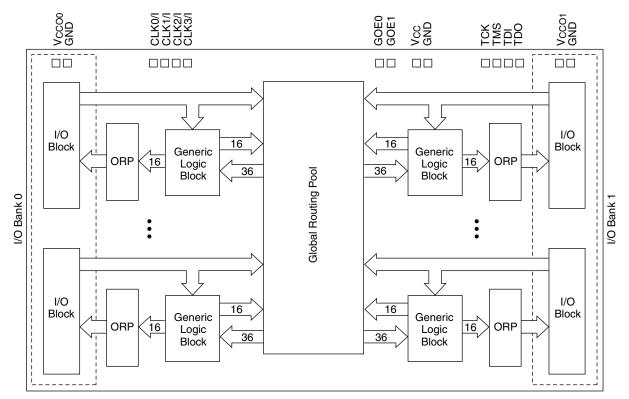


Welcome to E-XFL.COM

#### Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.


#### **Applications of Embedded - CPLDs**


#### Details

| Product Status                  | Obsolete                                                                    |
|---------------------------------|-----------------------------------------------------------------------------|
| Programmable Type               | In System Programmable                                                      |
| Delay Time tpd(1) Max           | 10 ns                                                                       |
| Voltage Supply - Internal       | 1.65V ~ 1.95V                                                               |
| Number of Logic Elements/Blocks | 4                                                                           |
| Number of Macrocells            | 64                                                                          |
| Number of Gates                 | -                                                                           |
| Number of I/O                   | 64                                                                          |
| Operating Temperature           | -40°C ~ 105°C (TJ)                                                          |
| Mounting Type                   | Surface Mount                                                               |
| Package / Case                  | 100-LQFP                                                                    |
| Supplier Device Package         | 100-TQFP (14x14)                                                            |
| Purchase URL                    | https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4064c-10tn100i |
|                                 |                                                                             |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





The I/Os in the ispMACH 4000 are split into two banks. Each bank has a separate I/O power supply. Inputs can support a variety of standards independent of the chip or bank power supply. Outputs support the standards compatible with the power supply provided to the bank. Support for a variety of standards helps designers implement designs in mixed voltage environments. In addition, 5V tolerant inputs are specified within an I/O bank that is connected to  $V_{CCO}$  of 3.0V to 3.6V for LVCMOS 3.3, LVTTL and PCI interfaces.

## ispMACH 4000 Architecture

There are a total of two GLBs in the ispMACH 4032, increasing to 32 GLBs in the ispMACH 4512. Each GLB has 36 inputs. All GLB inputs come from the GRP and all outputs from the GLB are brought back into the GRP to be connected to the inputs of any other GLB on the device. Even if feedback signals return to the same GLB, they still must go through the GRP. This mechanism ensures that GLBs communicate with each other with consistent and predictable delays. The outputs from the GLB are also sent to the ORP. The ORP then sends them to the associated I/O cells in the I/O block.

## **Generic Logic Block**

The ispMACH 4000 GLB consists of a programmable AND array, logic allocator, 16 macrocells and a GLB clock generator. Macrocells are decoupled from the product terms through the logic allocator and the I/O pins are decoupled from macrocells through the ORP. Figure 2 illustrates the GLB.

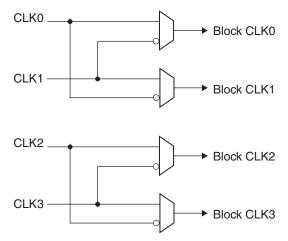
- Block CLK2
- Block CLK3
- PT Clock
- PT Clock Inverted
- Shared PT Clock
- Ground

## **Clock Enable Multiplexer**

Each macrocell has a 4:1 clock enable multiplexer. This allows the clock enable signal to be selected from the following four sources:

- PT Initialization/CE
- PT Initialization/CE Inverted
- Shared PT Clock
- Logic High

## **Initialization Control**


The ispMACH 4000 family architecture accommodates both block-level and macrocell-level set and reset capability. There is one block-level initialization term that is distributed to all macrocell registers in a GLB. At the macrocell level, two product terms can be "stolen" from the cluster associated with a macrocell to be used for set/reset functionality. A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, providing flexibility.

Note that the reset/preset swapping selection feature affects power-up reset as well. All flip-flops power up to a known state for predictable system initialization. If a macrocell is configured to SET on a signal from the block-level initialization, then that macrocell will be SET during device power-up. If a macrocell is configured to RESET on a signal from the block-level initialization or is not configured for set/reset, then that macrocell will RESET on power-up. To guarantee initialization values, the  $V_{CC}$  rise must be monotonic, and the clock must be inactive until the reset delay time has elapsed.

## **GLB Clock Generator**

Each ispMACH 4000 device has up to four clock pins that are also routed to the GRP to be used as inputs. These pins drive a clock generator in each GLB, as shown in Figure 6. The clock generator provides four clock signals that can be used anywhere in the GLB. These four GLB clock signals can consist of a number of combinations of the true and complement edges of the global clock signals.

#### Figure 6. GLB Clock Generator



| I/O Cell | Available Macrocells                 |
|----------|--------------------------------------|
| I/O 0    | M0, M1, M2, M3, M4, M5, M6, M7       |
| I/O 1    | M1, M2, M3, M4, M5, M6, M7, M8       |
| I/O 2    | M2, M3, M4, M5, M6, M7, M8, M9       |
| I/O 3    | M3, M4, M5, M6, M7, M8, M9, M10      |
| I/O 4    | M4, M5, M6, M7, M8, M9, M10, M11     |
| I/O 5    | M5, M6, M7, M8, M9, M10, M11, M12    |
| I/O 6    | M6, M7, M8, M9, M10, M11, M12, M13   |
| I/O 7    | M7, M8, M9, M10, M11, M12, M13, M14  |
| I/O 8    | M8, M9, M10, M11, M12, M13, M14, M15 |
| I/O 9    | M9, M10, M11, M12, M13, M14, M15, M0 |
| I/O 10   | M10, M11, M12, M13, M14, M15, M0, M1 |
| I/O 11   | M11, M12, M13, M14, M15, M0, M1, M2  |
| I/O 12   | M12, M13, M14, M15, M0, M1, M2, M3   |
| I/O 13   | M13, M14, M15, M0, M1, M2, M3, M4    |
| I/O 14   | M14, M15, M0, M1, M2, M3, M4, M5     |
| I/O 15   | M15, M0, M1, M2, M3, M4, M5, M6      |

#### Table 7. ORP Combinations for I/O Blocks with 16 I/Os

#### Table 8. ORP Combinations for I/O Blocks with 4 I/Os

| I/O Cell | Available Macrocells                 |  |  |  |  |
|----------|--------------------------------------|--|--|--|--|
| I/O 0    | M0, M1, M2, M3, M4, M5, M6, M7       |  |  |  |  |
| I/O 1    | M4, M5, M6, M7, M8, M9, M10, M11     |  |  |  |  |
| I/O 2    | M8, M9, M10, M11, M12, M13, M14, M15 |  |  |  |  |
| I/O 3    | M12, M13, M14, M15, M0, M1, M2, M3   |  |  |  |  |

#### Table 9. ORP Combinations for I/O Blocks with 10 I/Os

| I/O Cell | Available Macrocells                 |
|----------|--------------------------------------|
| I/O 0    | M0, M1, M2, M3, M4, M5, M6, M7       |
| I/O 1    | M2, M3, M4, M5, M6, M7, M8, M9       |
| I/O 2    | M4, M5, M6, M7, M8, M9, M10, M11     |
| I/O 3    | M6, M7, M8, M9, M10, M11, M12, M13   |
| I/O 4    | M8, M9, M10, M11, M12, M13, M14, M15 |
| I/O 5    | M10, M11, M12, M13, M14, M15, M0, M1 |
| I/O 6    | M12, M13, M14, M15, M0, M1, M2, M3   |
| I/O 7    | M14, M15, M0, M1, M2, M3, M4, M5     |
| I/O 8    | M2, M3, M4, M5, M6, M7, M8, M9       |
| I/O 9    | M10, M11, M12, M13, M14, M15, M0, M1 |

## IEEE 1532-Compliant In-System Programming

Programming devices in-system provides a number of significant benefits including: rapid prototyping, lower inventory levels, higher quality and the ability to make in-field modifications. All ispMACH 4000 devices provide In-System Programming (ISP<sup>™</sup>) capability through the Boundary Scan Test Access Port. This capability has been implemented in a manner that ensures that the port remains complaint to the IEEE 1149.1 standard. By using IEEE 1149.1 as the communication interface through which ISP is achieved, users get the benefit of a standard, welldefined interface. All ispMACH 4000 devices are also compliant with the IEEE 1532 standard.

The ispMACH 4000 devices can be programmed across the commercial temperature and voltage range. The PCbased Lattice software facilitates in-system programming of ispMACH 4000 devices. The software takes the JEDEC file output produced by the design implementation software, along with information about the scan chain, and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain via the parallel port of a PC. Alternatively, the software can output files in formats understood by common automated test equipment. This equipment can then be used to program ispMACH 4000 devices during the testing of a circuit board.

## **User Electronic Signature**

The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the device, stored in E<sup>2</sup>CMOS memory. The ispMACH 4000 device contains 32 UES bits that can be configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.

## **Security Bit**

A programmable security bit is provided on the ispMACH 4000 devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.

## Hot Socketing

The ispMACH 4000 devices are well-suited for applications that require hot socketing capability. Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The isp-MACH 4000 devices provide this capability for input voltages in the range 0V to 3.0V.

## **Density Migration**

The ispMACH 4000 family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

# Supply Current, ispMACH 4000Z (Cont.)

| <b>Over Recommended</b> | Operating | Conditions |
|-------------------------|-----------|------------|
|-------------------------|-----------|------------|

| Symbol                    | Parameter                      | Parameter Condition              |   |     |    | Units |
|---------------------------|--------------------------------|----------------------------------|---|-----|----|-------|
| ispMACH 4                 | 256ZC                          |                                  |   | L   |    |       |
|                           |                                | $Vcc = 1.8V, T_A = 25^{\circ}C$  | — | 341 | —  | μΑ    |
| ICC <sup>1, 2, 3, 5</sup> | Operating Power Supply Current | $Vcc = 1.9V, T_A = 70^{\circ}C$  | _ | 361 | _  | μA    |
|                           | Operating Fower Supply Current | $Vcc = 1.9V, T_A = 85^{\circ}C$  | — | 372 | —  | μA    |
|                           |                                | $Vcc = 1.9V, T_A = 125^{\circ}C$ | _ | 468 | —  | μA    |
|                           |                                | $Vcc = 1.8V, T_A = 25^{\circ}C$  | _ | 13  | —  | μA    |
| ICC <sup>4, 5</sup>       | Standby Power Supply Current   | $Vcc = 1.9V, T_A = 70^{\circ}C$  | _ | 32  | 55 | μA    |
|                           | Standby I ower Supply Surrent  | $Vcc = 1.9V, T_A = 85^{\circ}C$  | — | 43  | 90 | μA    |
|                           |                                | $Vcc = 1.9V, T_A = 125^{\circ}C$ | _ | 135 | _  | μA    |

 1.  $T_A = 25^{\circ}C$ , frequency = 1.0 MHz.

 2. Device configured with 16-bit counters.

 3.  $I_{CC}$  varies with specific device configuration and operating frequency.

 4.  $V_{CCO} = 3.6V$ ,  $V_{IN} = 0V$  or  $V_{CCO}$ , bus maintenance turned off.  $V_{IN}$  above  $V_{CCO}$  will add transient current above the specified standby  $I_{CC}$ .

 5. Includes  $V_{CCO}$  current without output loading.

## I/O DC Electrical Characteristics

|                   |                    |                                     | innonaca operating                  |         |                         |                         |                 |                              |                              |
|-------------------|--------------------|-------------------------------------|-------------------------------------|---------|-------------------------|-------------------------|-----------------|------------------------------|------------------------------|
|                   | V <sub>IL</sub>    |                                     | V <sub>IL</sub> V <sub>IH</sub>     |         |                         | V <sub>OL</sub>         | V <sub>OH</sub> | I <sub>OL</sub> <sup>1</sup> | I <sub>OH</sub> <sup>1</sup> |
| Standard          | Min (V)            | Max (V)                             | Min (V)                             | Max (V) | Max (V)                 | Min (V)                 | (mĀ)            | (mA)                         |                              |
| LVTTL             | -0.3               | 0.80                                | 2.0                                 | 5.5     | 0.40                    | V <sub>CCO</sub> - 0.40 | 8.0             | -4.0                         |                              |
|                   | -0.5               | 0.00                                | 2.0                                 | 5.5     | 0.20                    | V <sub>CCO</sub> - 0.20 | 0.1             | -0.1                         |                              |
| LVCMOS 3.3        | -0.3               | 0.80                                | 2.0                                 | 5.5     | 0.40                    | V <sub>CCO</sub> - 0.40 | 8.0             | -4.0                         |                              |
| 200000000         | -0.5               | 0.00                                | 2.0                                 | 5.5     | 0.20                    | V <sub>CCO</sub> - 0.20 | 0.1             | -0.1                         |                              |
| LVCMOS 2.5        | -0.3 0.70 1.70 3.6 |                                     | 3.6                                 | 0.40    | V <sub>CCO</sub> - 0.40 | 8.0                     | -4.0            |                              |                              |
| LV CIVIO 3 2.5    | -0.3               | 0.70                                | 1.70                                | 3.0     | 0.20                    | V <sub>CCO</sub> - 0.20 | 0.1             | -0.1                         |                              |
| LVCMOS 1.8        | -0.3               | 0.63                                | 1.17                                | 3.6     | 0.40                    | V <sub>CCO</sub> - 0.45 | 2.0             | -2.0                         |                              |
| (4000V/B)         | -0.3               | 0.03                                | 1.17                                | 3.0     | 0.20                    | V <sub>CCO</sub> - 0.20 | 0.1             | -0.1                         |                              |
| LVCMOS 1.8        | -0.3               | 0.35 * V <sub>CC</sub>              | 0.65 * V <sub>CC</sub>              | 3.6     | 0.40                    | V <sub>CCO</sub> - 0.45 | 2.0             | -2.0                         |                              |
| (4000C/Z)         | -0.3               | 0.35 V <sub>CC</sub>                | 0.05 VCC                            | 3.0     | 0.20                    | V <sub>CCO</sub> - 0.20 | 0.1             | -0.1                         |                              |
| PCI 3.3 (4000V/B) | -0.3               | 1.08                                | 1.5                                 | 5.5     | 0.1 V <sub>CCO</sub>    | 0.9 V <sub>CCO</sub>    | 1.5             | -0.5                         |                              |
| PCI 3.3 (4000C/Z) | -0.3               | 0.3 * 3.3 * (V <sub>CC</sub> / 1.8) | 0.5 * 3.3 * (V <sub>CC</sub> / 1.8) | 5.5     | 0.1 V <sub>CCO</sub>    | 0.9 V <sub>CCO</sub>    | 1.5             | -0.5                         |                              |

#### **Over Recommended Operating Conditions**

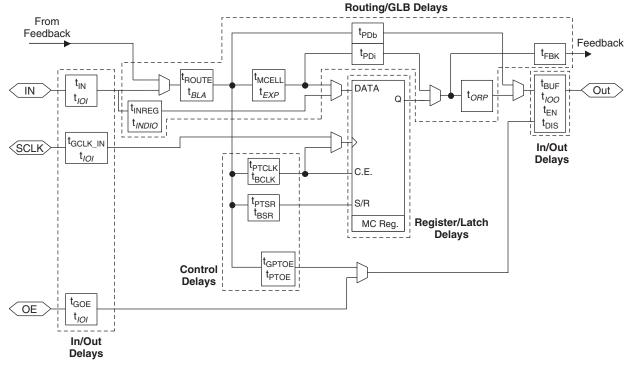
 The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of the I/O bank, as shown in the logic signals connection table, shall not exceed n\*8mA. Where n is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank.

# ispMACH 4000Z External Switching Characteristics

|                               |                                                                            | -35  |      | -3   | 37   | -4   |      |       |
|-------------------------------|----------------------------------------------------------------------------|------|------|------|------|------|------|-------|
| Parameter                     | Description <sup>1, 2, 3</sup>                                             | Min. | Max. | Min. | Max. | Min. | Max. | Units |
| t <sub>PD</sub>               | 5-PT bypass combinatorial propagation delay                                |      | 3.5  | —    | 3.7  | _    | 4.2  | ns    |
| t <sub>PD_MC</sub>            | 20-PT combinatorial propagation delay through macrocell                    | _    | 4.4  | _    | 4.7  | _    | 5.7  | ns    |
| t <sub>S</sub>                | GLB register setup time before clock                                       | 2.2  |      | 2.5  |      | 2.7  | —    | ns    |
| t <sub>ST</sub>               | GLB register setup time before clock with<br>T-type register               | 2.4  | —    | 2.7  | _    | 2.9  | _    | ns    |
| t <sub>SIR</sub>              | GLB register setup time before clock, input register path                  | 1.0  | —    | 1.1  | _    | 1.3  | _    | ns    |
| t <sub>SIRZ</sub>             | GLB register setup time before clock with zero hold                        | 2.0  | _    | 2.1  | _    | 2.6  | _    | ns    |
| t <sub>H</sub>                | GLB register hold time after clock                                         | 0.0  | —    | 0.0  | —    | 0.0  | —    | ns    |
| t <sub>HT</sub>               | GLB register hold time after clock with T-type register                    |      | _    | 0.0  | _    | 0.0  | _    | ns    |
| t <sub>HIR</sub>              | GLB register hold time after clock, input register path                    |      | —    | 1.0  | _    | 1.3  | _    | ns    |
| t <sub>HIRZ</sub>             | GLB register hold time after clock, input register path with zero hold     | 0.0  | —    | 0.0  | _    | 0.0  | _    | ns    |
| t <sub>CO</sub>               | GLB register clock-to-output delay                                         | _    | 3.0  |      | 3.2  | _    | 3.5  | ns    |
| t <sub>R</sub>                | External reset pin to output delay                                         | _    | 5.0  |      | 6.0  | _    | 7.3  | ns    |
| t <sub>RW</sub>               | External reset pulse duration                                              | 1.5  | —    | 1.7  | —    | 2.0  | —    | ns    |
| t <sub>PTOE/DIS</sub>         | Input to output local product term output enable/disable                   | _    | 7.0  | _    | 8.0  | _    | 8.0  | ns    |
| t <sub>GPTOE/DIS</sub>        | Input to output global product term output enable/disable                  | _    | 6.5  | _    | 7.0  | _    | 8.0  | ns    |
| t <sub>GOE/DIS</sub>          | Global OE input to output enable/disable                                   | _    | 4.5  | —    | 4.5  | _    | 4.8  | ns    |
| t <sub>CW</sub>               | Global clock width, high or low                                            | 1.0  | —    | 1.5  | —    | 1.8  | —    | ns    |
| t <sub>GW</sub>               | Global gate width low (for low transparent) or high (for high transparent) |      | —    | 1.5  | _    | 1.8  | _    | ns    |
| t <sub>WIR</sub>              | Input register clock width, high or low                                    | 1.0  | —    | 1.5  | —    | 1.8  | —    | ns    |
| f <sub>MAX</sub> <sup>4</sup> | Clock frequency with internal feedback                                     | _    | 267  | —    | 250  | —    | 220  | MHz   |
| f <sub>MAX</sub> (Ext.)       | clock frequency with external feedback, $[1 / (t_S + t_{CO})]$             | _    | 192  | _    | 175  |      | 161  | MHz   |

## **Over Recommended Operating Conditions**

1. Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate other standards. Timing v.2.2


2. Measured using standard switching GRP loading of 1 and 1 output switching.

3. Pulse widths and clock widths less than minimum will cause unknown behavior.

4. Standard 16-bit counter using GRP feedback.

## **Timing Model**

The task of determining the timing through the ispMACH 4000 family, like any CPLD, is relatively simple. The timing model provided in Figure 11 shows the specific delay paths. Once the implementation of a given function is determined either conceptually or from the software report file, the delay path of the function can easily be determined from the timing model. The Lattice design tools report the timing delays based on the same timing model for a particular design. Note that the internal timing parameters are given for reference only, and are not tested. The external timing parameters are tested and guaranteed for every device. For more information on the timing model and usage, refer to TN1004, <u>ispMACH 4000 Timing Model Design and Usage Guidelines</u>.





Note: Italicized items are optional delay adders.

# ispMACH 4000Z Internal Timing Parameters (Cont.)

**Over Recommended Operating Conditions** 

|                                                                                                                                           |                       | -45  |      | -5         |      | -75  |      |       |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|------|------------|------|------|------|-------|
| Parameter                                                                                                                                 | Description           | Min. | Max. | Min.       | Max. | Min. | Max. | Units |
| t <sub>PTOE</sub>                                                                                                                         | Macrocell PT OE Delay | _    | 2.50 | _          | 2.70 | _    | 2.00 | ns    |
| Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for Timing v.2.2 |                       |      |      | ning v.2.2 |      |      |      |       |

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for Timing further details.

# ispMACH 4000V/B/C Timing Adders<sup>1</sup>

| Adder                         | Base                                                         |                                               | -2   | 25   | -2   | 27   | -    | 3    |      |      |       |
|-------------------------------|--------------------------------------------------------------|-----------------------------------------------|------|------|------|------|------|------|------|------|-------|
| Туре                          | Parameter                                                    | Description                                   | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Units |
| Optional Delay                | Adders                                                       | •                                             |      |      |      |      |      |      |      |      |       |
| t <sub>INDIO</sub>            | t <sub>INREG</sub>                                           | Input register delay                          | —    | 0.95 |      | 1.00 |      | 1.00 |      | 1.00 | ns    |
| t <sub>EXP</sub>              | t <sub>MCELL</sub>                                           | Product term expander delay                   |      | 0.33 | —    | 0.33 |      | 0.33 | —    | 0.33 | ns    |
| t <sub>ORP</sub>              |                                                              | Output routing pool delay                     |      | 0.05 | —    | 0.05 |      | 0.05 | —    | 0.05 | ns    |
| t <sub>BLA</sub>              | t <sub>ROUTE</sub>                                           | Additional block loading adder                |      | 0.03 | _    | 0.05 |      | 0.05 | _    | 0.05 | ns    |
| t <sub>IOI</sub> Input Adjust | ers                                                          |                                               |      |      |      |      |      |      |      |      |       |
| LVTTL_in                      | t <sub>IN</sub> , t <sub>GCLK_IN</sub> ,<br>t <sub>GOE</sub> | Using LVTTL standard                          | _    | 0.60 | —    | 0.60 | _    | 0.60 | _    | 0.60 | ns    |
| LVCMOS33_in                   | t <sub>IN</sub> , t <sub>GCLK_IN</sub> ,<br>t <sub>GOE</sub> | Using LVCMOS 3.3<br>standard                  |      | 0.60 | _    | 0.60 |      | 0.60 | —    | 0.60 | ns    |
| LVCMOS25_in                   | t <sub>IN</sub> , t <sub>GCLK_IN</sub> ,<br>t <sub>GOE</sub> | Using LVCMOS 2.5<br>standard                  |      | 0.60 | _    | 0.60 |      | 0.60 | —    | 0.60 | ns    |
| LVCMOS18_in                   | t <sub>IN</sub> , t <sub>GCLK_IN</sub> ,<br>t <sub>GOE</sub> | Using LVCMOS 1.8<br>standard                  |      | 0.00 | _    | 0.00 |      | 0.00 | _    | 0.00 | ns    |
| PCI_in                        | t <sub>IN</sub> , t <sub>GCLK_IN</sub> ,<br>t <sub>GOE</sub> | Using PCI compatible<br>input                 |      | 0.60 | _    | 0.60 |      | 0.60 | _    | 0.60 | ns    |
| t <sub>IOO</sub> Output Adju  | usters                                                       | •                                             |      |      |      |      |      |      |      |      |       |
| LVTTL_out                     | t <sub>BUF</sub> , t <sub>EN</sub> , t <sub>DIS</sub>        | Output configured as<br>TTL buffer            | _    | 0.20 | _    | 0.20 | _    | 0.20 | _    | 0.20 | ns    |
| LVCMOS33_out                  | t <sub>BUF</sub> , t <sub>EN</sub> , t <sub>DIS</sub>        | Output configured as 3.3V buffer              |      | 0.20 | _    | 0.20 |      | 0.20 | _    | 0.20 | ns    |
| LVCMOS25_out                  | t <sub>BUF</sub> , t <sub>EN</sub> , t <sub>DIS</sub>        | Output configured as 2.5V buffer              |      | 0.10 | _    | 0.10 |      | 0.10 | _    | 0.10 | ns    |
| LVCMOS18_out                  | t <sub>BUF</sub> , t <sub>EN</sub> , t <sub>DIS</sub>        | Output configured as 1.8V buffer              | _    | 0.00 | _    | 0.00 | _    | 0.00 | _    | 0.00 | ns    |
| PCI_out                       | t <sub>BUF</sub> , t <sub>EN</sub> , t <sub>DIS</sub>        | Output configured as<br>PCI compatible buffer | _    | 0.20 | _    | 0.20 |      | 0.20 | _    | 0.20 | ns    |
| Slow Slew                     | t <sub>BUF</sub> , t <sub>EN</sub>                           | Output configured for slow slew rate          | _    | 1.00 | _    | 1.00 | _    | 1.00 | _    | 1.00 | ns    |

Timing v.3.2

Note: Open drain timing is the same as corresponding LVCMOS timing. 1. Refer to TN1004, <u>ispMACH 4000 Timing Model Design and Usage Guidelines</u> for information regarding use of these adders.

# ispMACH 4000V/B/C Timing Adders<sup>1</sup> (Cont.)

| Adder                         | Adder Base -5                                                |                                            | 5    | -7   | 75   | -1       | 10   |       |          |
|-------------------------------|--------------------------------------------------------------|--------------------------------------------|------|------|------|----------|------|-------|----------|
| Туре                          | Parameter                                                    | Description                                | Min. | Max. | Min. | Max.     | Min. | Max.  | Units    |
| Optional Delay A              | Adders                                                       |                                            | 1    | •    |      |          |      | •     |          |
| t <sub>INDIO</sub>            | t <sub>INREG</sub>                                           | Input register delay                       | —    | 1.00 | —    | 1.00     | —    | 1.00  | ns       |
| t <sub>EXP</sub>              | t <sub>MCELL</sub>                                           | Product term expander delay                | _    | 0.33 | —    | 0.33     | —    | 0.33  | ns       |
| t <sub>ORP</sub>              | —                                                            | Output routing pool delay                  | _    | 0.05 | —    | 0.05     |      | 0.05  | ns       |
| t <sub>BLA</sub>              | t <sub>ROUTE</sub>                                           | Additional block loading adder             |      | 0.05 | _    | 0.05     |      | 0.05  | ns       |
| t <sub>IOI</sub> Input Adjust | ers                                                          |                                            |      |      |      |          |      |       |          |
| LVTTL_in                      | t <sub>IN</sub> , t <sub>GCLK_IN</sub> ,<br>t <sub>GOE</sub> | Using LVTTL standard                       | _    | 0.60 | _    | 0.60     | _    | 0.60  | ns       |
| LVCMOS33_in                   | t <sub>IN</sub> , t <sub>GCLK_IN</sub> ,<br>t <sub>GOE</sub> | Using LVCMOS 3.3 standard                  | -    | 0.60 | _    | 0.60     | -    | 0.60  | ns       |
| LVCMOS25_in                   | t <sub>IN</sub> , t <sub>GCLK_IN</sub> ,<br>t <sub>GOE</sub> | Using LVCMOS 2.5 standard                  | _    | 0.60 | _    | 0.60     | _    | 0.60  | ns       |
| LVCMOS18_in                   | t <sub>IN</sub> , t <sub>GCLK_IN</sub> ,<br>t <sub>GOE</sub> | Using LVCMOS 1.8 standard                  | -    | 0.00 | _    | 0.00     | -    | 0.00  | ns       |
| PCI_in                        | t <sub>IN</sub> , t <sub>GCLK_IN</sub> ,<br>t <sub>GOE</sub> | Using PCI compatible input                 | _    | 0.60 | _    | 0.60     | _    | 0.60  | ns       |
| t <sub>IOO</sub> Output Adju  | isters                                                       |                                            |      |      |      |          |      |       |          |
| LVTTL_out                     | t <sub>BUF</sub> , t <sub>EN</sub> , t <sub>DIS</sub>        | Output configured as TTL buffer            |      | 0.20 |      | 0.20     |      | 0.20  | ns       |
| LVCMOS33_out                  | t <sub>BUF</sub> , t <sub>EN</sub> , t <sub>DIS</sub>        | Output configured as 3.3V buffer           |      | 0.20 | _    | 0.20     |      | 0.20  | ns       |
| LVCMOS25_out                  | t <sub>BUF</sub> , t <sub>EN</sub> , t <sub>DIS</sub>        | Output configured as 2.5V buffer           | _    | 0.10 | —    | 0.10     | —    | 0.10  | ns       |
| LVCMOS18_out                  | t <sub>BUF</sub> , t <sub>EN</sub> , t <sub>DIS</sub>        | Output configured as 1.8V buffer           | _    | 0.00 | —    | 0.00     | —    | 0.00  | ns       |
| PCI_out                       | t <sub>BUF</sub> , t <sub>EN</sub> , t <sub>DIS</sub>        | Output configured as PCI compatible buffer | _    | 0.20 | _    | 0.20     | _    | 0.20  | ns       |
| Slow Slew                     | t <sub>BUF</sub> , t <sub>EN</sub>                           | Output configured for slow slew rate       | _    | 1.00 | _    | 1.00     | —    | 1.00  | ns       |
|                               |                                                              | as corresponding LVCMOS timing.            |      |      |      | <i>.</i> |      | Timir | ng v.3.2 |

Note: Open drain timing is the same as corresponding LVCMOS timing. 1. Refer to TN1004, <u>ispMACH 4000 Timing Model Design and Usage Guidelines</u> for information regarding use of these adders.

# ispMACH 4000V/B/C/Z Power Supply and NC Connections<sup>1</sup> (Cont.)

| Signal                 | 132-ball csBGA <sup>7</sup>                                                                                                                                                                        | 144-pin TQFP⁴                                                                     | 176-pin TQFP⁴                       | 256-ball ftBGA/fpBGA <sup>2, 3, 7, 9</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VCC                    | P1, A14, B7, N8                                                                                                                                                                                    | 36, 57, 108, 129                                                                  | 42, 69, 88, 130,<br>157, 176        | B2, B15, G8, G9, K8, K9, R2, R15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| VCCO0<br>VCCO (Bank 0) | G3, P5, C1 <sup>8</sup> , M2 <sup>8</sup> ,<br>C5                                                                                                                                                  | 3, 19, 34, 47, 136                                                                | 4, 22, 40, 56, 166                  | D6, F4, H7, J7, L4, N6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| VCCO1<br>VCCO (Bank 1) | M10, M14 <sup>8</sup> , H12,<br>A10, C13 <sup>8</sup>                                                                                                                                              | 64, 75, 91, 106, 119                                                              | 78, 92, 110, 128,<br>144            | D11, F13, H10, J10, L13, N11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GND                    | B1, P2, N14, A13                                                                                                                                                                                   | 1, 37, 73, 109                                                                    | 2, 46⁵, 65, 90, 134,<br>153         | A1, A16, C6, C11, F3, F14, G7, G10, H8,<br>H9, J8, J9, K7, K10, L3, L14, P6, P11, T1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| GND (Bank 0)           | E2, K2, N4, B4                                                                                                                                                                                     | 10, 18 <sup>6</sup> , 27, 46, 127,<br>137                                         | 13, 31, 55, 155,<br>167             | T16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| GND (Bank 1)           | N11, K13, E13, B11                                                                                                                                                                                 | 55, 65, 82, 90 <sup>6</sup> , 99,<br>118                                          | 67, 79, 101, 119,<br>143            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NC                     | <b>4064Z:</b> C1, C3, E1,<br>E3, H2, J3, K1, M2,<br>M4, N5, P7, P8, M8,<br>P10, P11, P14, M12,<br>K14, K12, G13,<br>G14, E14, C13, B13,<br>B10, C10, A7, B5,<br>A5, A4, A1<br><b>4128Z:</b> P8, A7 | <b>4128V</b> : 17, 20, 38, 45, 72, 89, 92, 110, 117, 144<br><b>4256V</b> : 18, 90 | 1, 43, 44, 45, 89,<br>131, 132, 133 | <ul> <li>4256V/B/C, 128 I/O: A4, A5, A6, A11, A12, A13, A15, B5, B6, B11, B12, B14, C7, D1, D4, D5, D10, D12, D16, E1, E2, E4, E5, E7, E10, E13, E14, E15, E16, F1, F2, F15, F16, G1, G4, G5, G6, G12, G13, G14, J11, K3, K4, K15, L1, L2, L12, L15, L16, M1, M2, M3, M4, M5, M12, M13, M15, M16, N1, N2, N7, N10, N12, N14, P5, P12, R4, R5, R6, R11, R12, R16, T2, T4, T5, T6, T11, T12, T13, T15</li> <li>4256V/B/C, 160 I/O: A5, A12, A15, B5, B6, B11, B12, B14, D4, D5, D12, E1, E4, E5, E13, E15, E16, F1, F2, F15, G1, G5, G12, G14, L1, L2, L12, L15, L16, M1, M2, M3, M12, M16, N1, N12, N14, P5, R4, R5, R6, R11, R12, R16, T4, T5, T12, T15</li> <li>4384V/B/C: B5, B12, D5, D12, E1, E15, E16, F2, L12, M1, M2, M16, N12, R5, R12, T4</li> <li>4512V/B/C: None</li> </ul> |
|                        |                                                                                                                                                                                                    |                                                                                   |                                     | 4512V/B/C: None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

1. All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with the bank shown.

2. Internal GNDs and I/O GNDs (Bank 0/1) are connected inside package.

3. V<sub>CCO</sub> balls connect to two power planes within the package, one for V<sub>CCO0</sub> and one for V<sub>CCO1</sub>.

4. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

5. ispMACH 4384V/B/C pin 46 is tied to GND (Bank 0).

6. ispMACH 4128V only.

7. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.

8. ispMACH 4128Z and 4256Z only. NC for ispMACH 4064Z.

9. Use 256 ftBGA package for all new designs. Refer to PCN#14A-07 for 256 fpBGA package discontinuance.

# ispMACH 4064Z, 4128Z and 4256Z Logic Signal Connections: 132-Ball csBGA (Cont.)

|             |             | ispMACI         | H 4064Z | ispMAC          | H 4128Z | ispMACH 4256Z  |     |  |
|-------------|-------------|-----------------|---------|-----------------|---------|----------------|-----|--|
| Ball Number | Bank Number | GLB/MC/Pad      | ORP     | GLB/MC/Pad      | ORP     | GLB/MC/Pad     | ORP |  |
| D13         | 1           | D10             | D^10    | G4              | G^3     | N6             | N^3 |  |
| D14         | 1           | D9              | D^9     | G2              | G^2     | N8             | N^4 |  |
| D12         | 1           | D8              | D^8     | G1              | G^1     | N10            | N^5 |  |
| C14         | 1           | I               | -       | G0              | G^0     | N12            | N^6 |  |
| C13         | 1           | NC              | -       | VCCO (Bank 1)   | -       | VCCO (Bank 1)  | -   |  |
| B14         | -           | TDO             | -       | TDO             | -       | TDO            | -   |  |
| A14         | -           | VCC             | -       | VCC             | -       | VCC            | -   |  |
| A13         | -           | GND             | -       | GND             | -       | GND            | -   |  |
| B13         | 1           | NC              | -       | H14             | H^11    | O12            | O^6 |  |
| A12         | 1           | I               | -       | H13             | H^10    | O10            | O^5 |  |
| C12         | 1           | D7              | D^7     | H12             | H^9     | O8             | O^4 |  |
| B12         | 1           | D6              | D^6     | H10             | H^8     | O6             | O^3 |  |
| A11         | 1           | D5              | D^5     | H9              | H^7     | O4             | O^2 |  |
| C11         | 1           | D4              | D^4     | H8              | H^6     | O2             | O^1 |  |
| B11         | 1           | GND (Bank 1)    | -       | GND (Bank 1)    | -       | GND (Bank 1)   | -   |  |
| A10         | 1           | VCCO (Bank 1)   | -       | VCCO (Bank 1)   | -       | VCCO (Bank 1)  | -   |  |
| B10         | 1           | NC              | -       | H6              | H^5     | P12            | P^6 |  |
| C10         | 1           | NC              | -       | H5              | H^4     | P10            | P^5 |  |
| B9          | 1           | D3              | D^3     | H4              | H^3     | P8             | P^4 |  |
| A9          | 1           | D2              | D^2     | H2              | H^2     | P6             | P^3 |  |
| C9          | 1           | D1              | D^1     | H1              | H^1     | P4             | P^2 |  |
| A8          | 1           | D0/GOE1         | D^0     | H0/GOE1         | H^0     | P2/GOE1        | P^1 |  |
| B8          | 1           | CLK3/I          | -       | CLK3/I          | -       | CLK3/I         | -   |  |
| C8          | 0           | CLK0/I          | -       | CLK0/I          | -       | CLK0/I         | -   |  |
| B7          | -           | VCC             | -       | VCC             | -       | VCC            | -   |  |
| A7          | 0           | NC <sup>1</sup> | -       | NC <sup>1</sup> | -       | l <sup>1</sup> | -   |  |
| C7          | 0           | A0/GOE0         | A^0     | A0/GOE0         | A^0     | A2/GOE0        | A^1 |  |
| A6          | 0           | A1              | A^1     | A1              | A^1     | A4             | A^2 |  |
| B6          | 0           | A2              | A^2     | A2              | A^2     | A6             | A^3 |  |
| C6          | 0           | A3              | A^3     | A4              | A^3     | A8             | A^4 |  |
| B5          | 0           | NC              | -       | A5              | A^4     | A10            | A^5 |  |
| A5          | 0           | NC              | -       | A6              | A^5     | A12            | A^6 |  |
| C5          | 0           | VCCO (Bank 0)   | -       | VCCO (Bank 0)   | -       | VCCO (Bank 0)  | -   |  |
| B4          | 0           | GND (Bank 0)    | -       | GND (Bank 0)    | -       | GND (Bank 0)   | -   |  |
| A4          | 0           | NC              | -       | A8              | A^6     | B2             | B^1 |  |
| C4          | 0           | A4              | A^4     | A9              | A^7     | B4             | B^2 |  |
| A3          | 0           | A5              | A^5     | A10             | A^8     | B6             | B^3 |  |
| B3          | 0           | A6              | A^6     | A12             | A^9     | B8             | B^4 |  |
| A2          | 0           | A7              | A^7     | A13             | A^10    | B10            | B^5 |  |
| A1          | 0           | NC              | -       | A14             | A^11    | B12            | B^6 |  |

1. For device migration considerations, these NC pins are input signal pins in ispMACH 4256Z device.

# ispMACH 4128V and 4256V Logic Signal Connections: 144-Pin TQFP (Cont.)

|            |             | ispMACH         | 4128V | ispMACH 4     | 4256V |
|------------|-------------|-----------------|-------|---------------|-------|
| Pin Number | Bank Number | GLB/MC/Pad      | ORP   | GLB/MC/Pad    | ORP   |
| 129        | -           | VCC             | -     | VCC           | -     |
| 130        | 0           | A0/GOE0         | A^0   | A2/GOE0       | A^1   |
| 131        | 0           | A1              | A^1   | A4            | A^2   |
| 132        | 0           | A2              | A^2   | A6            | A^3   |
| 133        | 0           | A4              | A^3   | A8            | A^4   |
| 134        | 0           | A5              | A^4   | A10           | A^5   |
| 135        | 0           | A6              | A^5   | A12           | A^6   |
| 136        | 0           | VCCO (Bank 0)   | -     | VCCO (Bank 0) | -     |
| 137        | 0           | GND (Bank 0)    | -     | GND (Bank 0)  | -     |
| 138        | 0           | A8              | A^6   | B2            | B^1   |
| 139        | 0           | A9              | A^7   | B4            | B^2   |
| 140        | 0           | A10             | A^8   | B6            | B^3   |
| 141        | 0           | A12             | A^9   | B8            | B^4   |
| 142        | 0           | A13             | A^10  | B10           | B^5   |
| 143        | 0           | A14             | A^11  | B12           | B^6   |
| 144        | 0           | NC <sup>2</sup> | -     | <sup>2</sup>  | -     |

1. For device migration considerations, these NC pins are GND pins for I/O banks in ispMACH 4128V devices.

2. For device migration considerations, these NC pins are input signal pins in ispMACH 4256V devices.

# ispMACH 4256V/B/C/Z, 4384V/B/C, 4512V/B/C, Logic Signal Connections: 176-Pin TQFP

|            | Bank   | ispMACH 42    | 56V/B/C/Z | ispMACH 4     | 384V/B/C | ispMACH 4     | 512V/B/C |
|------------|--------|---------------|-----------|---------------|----------|---------------|----------|
| Pin Number | Number | GLB/MC/Pad    | ORP       | GLB/MC/Pad    | ORP      | GLB/MC/Pad    | ORP      |
| 1          | -      | NC            | -         | NC            | -        | NC            | -        |
| 2          | -      | GND           | -         | GND           | -        | GND           | -        |
| 3          | -      | TDI           | -         | TDI           | -        | TDI           | -        |
| 4          | 0      | VCCO (Bank 0) | -         | VCCO (Bank 0) | -        | VCCO (Bank 0) | -        |
| 5          | 0      | C14           | C^7       | C14           | C^7      | C14           | C^7      |
| 6          | 0      | C12           | C^6       | C12           | C^6      | C12           | C^6      |
| 7          | 0      | C10           | C^5       | C10           | C^5      | C10           | C^5      |
| 8          | 0      | C8            | C^4       | C8            | C^4      | C8            | C^4      |
| 9          | 0      | C6            | C^3       | C6            | C^3      | C6            | C^3      |
| 10         | 0      | C4            | C^2       | C4            | C^2      | C4            | C^2      |
| 11         | 0      | C2            | C^1       | C2            | C^1      | C2            | C^1      |
| 12         | 0      | C0            | C^0       | C0            | C^0      | C0            | C^0      |
| 13         | 0      | GND (Bank 0)  | -         | GND (Bank 0)  | -        | GND (Bank 0)  | -        |
| 14         | 0      | D14           | D^7       | E14           | E^7      | G14           | G^7      |
| 15         | 0      | D12           | D^6       | E12           | E^6      | G12           | G^6      |
| 16         | 0      | D10           | D^5       | E10           | E^5      | G10           | G^5      |
| 17         | 0      | D8            | D^4       | E8            | E^4      | G8            | G^4      |
| 18         | 0      | D6            | D^3       | E6            | E^3      | G6            | G^3      |

## **Ordering Information**

Note: ispMACH 4000 devices are all dual marked except the slowest commercial speed grade ispMACH 4000Z devices. For example, the commercial speed grade LC4128C-5T100C is also marked with the industrial grade -75I. The commercial grade is always one speed grade faster than the associated dual mark industrial grade. The slowest commercial speed grade ispMACH 4000Z devices are marked as commercial grade only.

| Device                                                                                               | Part Number      | Macrocells | Voltage | t <sub>PD</sub> | Package | Pin/Ball Count | I/O | Grade |
|------------------------------------------------------------------------------------------------------|------------------|------------|---------|-----------------|---------|----------------|-----|-------|
|                                                                                                      | LC4032ZC-35M56C  | 32         | 1.8     | 3.5             | csBGA   | 56             | 32  | C     |
|                                                                                                      | LC4032ZC-5M56C   | 32         | 1.8     | 5               | csBGA   | 56             | 32  | C     |
|                                                                                                      | LC4032ZC-75M56C  | 32         | 1.8     | 7.5             | csBGA   | 56             | 32  | C     |
| LC4032ZC                                                                                             | LC4032ZC-35T48C  | 32         | 1.8     | 3.5             | TQFP    | 48             | 32  | С     |
|                                                                                                      | LC4032ZC-5T48C   | 32         | 1.8     | 5               | TQFP    | 48             | 32  | С     |
|                                                                                                      | LC4032ZC-75T48C  | 32         | 1.8     | 7.5             | TQFP    | 48             | 32  | С     |
|                                                                                                      | LC4064ZC-37M132C | 64         | 1.8     | 3.7             | csBGA   | 132            | 64  | С     |
|                                                                                                      | LC4064ZC-5M132C  | 64         | 1.8     | 5               | csBGA   | 132            | 64  | С     |
|                                                                                                      | LC4064ZC-75M132C | 64         | 1.8     | 7.5             | csBGA   | 132            | 64  | С     |
|                                                                                                      | LC4064ZC-37T100C | 64         | 1.8     | 3.7             | TQFP    | 100            | 64  | С     |
|                                                                                                      | LC4064ZC-5T100C  | 64         | 1.8     | 5               | TQFP    | 100            | 64  | С     |
| LC4064ZC                                                                                             | LC4064ZC-75T100C | 64         | 1.8     | 7.5             | TQFP    | 100            | 64  | С     |
|                                                                                                      | LC4064ZC-37M56C  | 64         | 1.8     | 3.7             | csBGA   | 56             | 32  | С     |
|                                                                                                      | LC4064ZC-5M56C   | 64         | 1.8     | 5               | csBGA   | 56             | 32  | С     |
|                                                                                                      | LC4064ZC-75M56C  | 64         | 1.8     | 7.5             | csBGA   | 56             | 32  | С     |
|                                                                                                      | LC4064ZC-37T48C  | 64         | 1.8     | 3.7             | TQFP    | 48             | 32  | С     |
|                                                                                                      | LC4064ZC-5T48C   | 64         | 1.8     | 5               | TQFP    | 48             | 32  | С     |
| LC4064ZC [<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[ | LC4064ZC-75T48C  | 64         | 1.8     | 7.5             | TQFP    | 48             | 32  | С     |
|                                                                                                      | LC4128ZC-42M132C | 128        | 1.8     | 4.2             | csBGA   | 132            | 96  | С     |
| LC4128ZC                                                                                             | LC4128ZC-75M132C | 128        | 1.8     | 7.5             | csBGA   | 132            | 96  | С     |
| LU41202U                                                                                             | LC4128ZC-42T100C | 128        | 1.8     | 4.2             | TQFP    | 100            | 64  | С     |
|                                                                                                      | LC4128ZC-75T100C | 128        | 1.8     | 7.5             | TQFP    | 100            | 64  | С     |
|                                                                                                      | LC4256ZC-45T176C | 256        | 1.8     | 4.5             | TQFP    | 176            | 128 | С     |
|                                                                                                      | LC4256ZC-75T176C | 256        | 1.8     | 7.5             | TQFP    | 176            | 128 | С     |
| LC4256ZC                                                                                             | LC4256ZC-45M132C | 256        | 1.8     | 4.5             | csBGA   | 132            | 96  | С     |
|                                                                                                      | LC4256ZC-75M132C | 256        | 1.8     | 7.5             | csBGA   | 132            | 96  | С     |
|                                                                                                      | LC4256ZC-45T100C | 256        | 1.8     | 4.5             | TQFP    | 100            | 64  | С     |
|                                                                                                      | LC4256ZC-75T100C | 256        | 1.8     | 7.5             | TQFP    | 100            | 64  | С     |

## **Conventional Packaging**

ispMACH 4000ZC (Zero Power, 1.8V) Commercial Devices

#### ispMACH 4000ZC (1.8V, Zero Power) Industrial Devices

| Device   | Part Number     | Macrocells | Voltage | tPD | Package | Pin/Ball Count | I/O | Grade |
|----------|-----------------|------------|---------|-----|---------|----------------|-----|-------|
| LC4032ZC | LC4032ZC-5M56I  | 32         | 1.8     | 5   | csBGA   | 56             | 32  | I     |
|          | LC4032ZC-75M56I | 32         | 1.8     | 7.5 | csBGA   | 56             | 32  | I     |
| 10403220 | LC4032ZC-5T48I  | 32         | 1.8     | 5   | TQFP    | 48             | 32  | I     |
|          | LC4032ZC-75T48I | 32         | 1.8     | 7.5 | TQFP    | 48             | 32  | I     |

|          | <b></b>          |            |         |     |         |                |     |       |
|----------|------------------|------------|---------|-----|---------|----------------|-----|-------|
| Device   | Part Number      | Macrocells | Voltage | tPD | Package | Pin/Ball Count | I/O | Grade |
|          | LC4064ZC-5M132I  | 64         | 1.8     | 5   | csBGA   | 132            | 64  | I     |
|          | LC4064ZC-75M132I | 64         | 1.8     | 7.5 | csBGA   | 132            | 64  | I     |
|          | LC4064ZC-5T100I  | 64         | 1.8     | 5   | TQFP    | 100            | 64  | I     |
| LC4064ZC | LC4064ZC-75T100I | 64         | 1.8     | 7.5 | TQFP    | 100            | 64  | I     |
| LC40042C | LC4064ZC-5M56I   | 64         | 1.8     | 5   | csBGA   | 56             | 34  | I     |
|          | LC4064ZC-75M56I  | 64         | 1.8     | 7.5 | csBGA   | 56             | 34  | I     |
|          | LC4064ZC-5T48I   | 64         | 1.8     | 5   | TQFP    | 48             | 32  | I     |
|          | LC4064ZC-75T48I  | 64         | 1.8     | 7.5 | TQFP    | 48             | 32  | I     |
| LC4128ZC | LC4128ZC-75M132I | 128        | 1.8     | 7.5 | csBGA   | 132            | 96  | I     |
| 10412020 | LC4128ZC-75T100I | 128        | 1.8     | 7.5 | TQFP    | 100            | 64  | I     |
|          | LC4256ZC-75T176I | 256        | 1.8     | 7.5 | TQFP    | 176            | 128 | I     |
| LC4256ZC | LC4256ZC-75M132I | 256        | 1.8     | 7.5 | csBGA   | 132            | 96  | I     |
|          | LC4256ZC-75T100I | 256        | 1.8     | 7.5 | TQFP    | 100            | 64  | I     |

## ispMACH 4000ZC (1.8V, Zero Power) Industrial Devices (Cont.)

## ispMACH 4000ZC (1.8V, Zero Power) Extended Temperature Devices

| Family   | Part Number      | Macrocells | Voltage | t <sub>PD</sub> | Package | Pin/Ball Count | I/O | Grade |
|----------|------------------|------------|---------|-----------------|---------|----------------|-----|-------|
| LC4032ZC | LC4032ZC-75T48E  | 32         | 1.8     | 7.5             | TQFP    | 48             | 32  | E     |
| LC4064ZC | LC4064ZC-75T100E | 64         | 1.8     | 7.5             | TQFP    | 100            | 64  | E     |
| 20400420 | LC4064ZC-75T48E  | 64         | 1.8     | 7.5             | TQFP    | 48             | 32  | E     |
| LC4128ZC | LC4128ZC-75T100E | 128        | 1.8     | 7.5             | TQFP    | 100            | 64  | E     |
| LC4256ZC | LC4256ZC-75T176E | 256        | 1.8     | 7.5             | TQFP    | 176            | 128 | E     |
| 20423020 | LC4256ZC-75T100E | 256        | 1.8     | 7.5             | TQFP    | 100            | 64  | E     |

### ispMACH 4000C (1.8V) Commercial Devices

| Device  | Part Number     | Macrocells | Voltage | t <sub>PD</sub> | Package | Pin/Ball Count | I/O | Grade |
|---------|-----------------|------------|---------|-----------------|---------|----------------|-----|-------|
|         | LC4032C-25T48C  | 32         | 1.8     | 2.5             | TQFP    | 48             | 32  | С     |
|         | LC4032C-5T48C   | 32         | 1.8     | 5               | TQFP    | 48             | 32  | С     |
| LC4032C | LC4032C-75T48C  | 32         | 1.8     | 7.5             | TQFP    | 48             | 32  | С     |
| L040320 | LC4032C-25T44C  | 32         | 1.8     | 2.5             | TQFP    | 44             | 30  | С     |
|         | LC4032C-5T44C   | 32         | 1.8     | 5               | TQFP    | 44             | 30  | С     |
|         | LC4032C-75T44C  | 32         | 1.8     | 7.5             | TQFP    | 44             | 30  | С     |
|         | LC4064C-25T100C | 64         | 1.8     | 2.5             | TQFP    | 100            | 64  | С     |
|         | LC4064C-5T100C  | 64         | 1.8     | 5               | TQFP    | 100            | 64  | С     |
|         | LC4064C-75T100C | 64         | 1.8     | 7.5             | TQFP    | 100            | 64  | С     |
|         | LC4064C-25T48C  | 64         | 1.8     | 2.5             | TQFP    | 48             | 32  | С     |
| LC4064C | LC4064C-5T48C   | 64         | 1.8     | 5               | TQFP    | 48             | 32  | С     |
|         | LC4064C-75T48C  | 64         | 1.8     | 7.5             | TQFP    | 48             | 32  | С     |
|         | LC4064C-25T44C  | 64         | 1.8     | 2.5             | TQFP    | 44             | 30  | С     |
|         | LC4064C-5T44C   | 64         | 1.8     | 5               | TQFP    | 44             | 30  | С     |
|         | LC4064C-75T44C  | 64         | 1.8     | 7.5             | TQFP    | 44             | 30  | С     |

| Family    | Part Number       | Macrocells | Voltage | t <sub>PD</sub> | Package | Pin/Ball Count | I/O | Grade |
|-----------|-------------------|------------|---------|-----------------|---------|----------------|-----|-------|
|           | LC4032C-5T48I     | 32         | 1.8     | 5               | TQFP    | 48             | 32  |       |
|           | LC4032C-75T48I    | 32         | 1.8     | 7.5             | TQFP    | 48             | 32  | I     |
| 1 0 40000 | LC4032C-10T48I    | 32         | 1.8     | 10              | TQFP    | 48             | 32  | I     |
| LC4032C   | LC4032C-5T44I     | 32         | 1.8     | 5               | TQFP    | 44             | 30  | I     |
|           | LC4032C-75T44I    | 32         | 1.8     | 7.5             | TQFP    | 44             | 30  | I     |
|           | LC4032C-10T44I    | 32         | 1.8     | 10              | TQFP    | 44             | 30  | I     |
|           | LC4064C-5T100I    | 64         | 1.8     | 5               | TQFP    | 100            | 64  | I     |
|           | LC4064C-75T100I   | 64         | 1.8     | 7.5             | TQFP    | 100            | 64  | I     |
|           | LC4064C-10T100I   | 64         | 1.8     | 10              | TQFP    | 100            | 64  | I     |
|           | LC4064C-5T48I     | 64         | 1.8     | 5               | TQFP    | 48             | 32  | I     |
| LC4064C   | LC4064C-75T48I    | 64         | 1.8     | 7.5             | TQFP    | 48             | 32  | I     |
|           | LC4064C-10T48I    | 64         | 1.8     | 10              | TQFP    | 48             | 32  | I     |
|           | LC4064C-5T44I     | 64         | 1.8     | 5               | TQFP    | 44             | 30  | I     |
|           | LC4064C-75T44I    | 64         | 1.8     | 7.5             | TQFP    | 44             | 30  | I     |
|           | LC4064C-10T44I    | 64         | 1.8     | 10              | TQFP    | 44             | 30  | I     |
|           | LC4128C-5T128I    | 128        | 1.8     | 5               | TQFP    | 128            | 92  | I     |
|           | LC4128C-75T128I   | 128        | 1.8     | 7.5             | TQFP    | 128            | 92  | I     |
| 1044000   | LC4128C-10T128I   | 128        | 1.8     | 10              | TQFP    | 128            | 92  | I     |
| LC4128C   | LC4128C-5T100I    | 128        | 1.8     | 5               | TQFP    | 100            | 64  | I     |
|           | LC4128C-75T100I   | 128        | 1.8     | 7.5             | TQFP    | 100            | 64  | I     |
|           | LC4128C-10T100I   | 128        | 1.8     | 10              | TQFP    | 100            | 64  | I     |
|           | LC4256C-5FT256AI  | 256        | 1.8     | 5               | ftBGA   | 256            | 128 | I     |
|           | LC4256C-75FT256AI | 256        | 1.8     | 7.5             | ftBGA   | 256            | 128 | I     |
|           | LC4256C-10FT256AI | 256        | 1.8     | 10              | ftBGA   | 256            | 128 | I     |
|           | LC4256C-5FT256BI  | 256        | 1.8     | 5               | ftBGA   | 256            | 160 | I     |
|           | LC4256C-75FT256BI | 256        | 1.8     | 7.5             | ftBGA   | 256            | 160 | I     |
|           | LC4256C-10FT256BI | 256        | 1.8     | 10              | ftBGA   | 256            | 160 | I     |
|           | LC4256C-5F256Al1  | 256        | 1.8     | 5               | fpBGA   | 256            | 128 | I     |
|           | LC4256C-75F256AI1 | 256        | 1.8     | 7.5             | fpBGA   | 256            | 128 | I     |
|           | LC4256C-10F256AI1 | 256        | 1.8     | 10              | fpBGA   | 256            | 128 | I     |
| LC4256C   | LC4256C-5F256BI1  | 256        | 1.8     | 5               | fpBGA   | 256            | 160 | I     |
|           | LC4256C-75F256BI1 | 256        | 1.8     | 7.5             | fpBGA   | 256            | 160 | I     |
|           | LC4256C-10F256BI1 | 256        | 1.8     | 10              | fpBGA   | 256            | 160 | I     |
|           | LC4256C-5T176I    | 256        | 1.8     | 5               | TQFP    | 176            | 128 | I     |
|           | LC4256C-75T176I   | 256        | 1.8     | 7.5             | TQFP    | 176            | 128 | I     |
|           | LC4256C-10T176I   | 256        | 1.8     | 10              | TQFP    | 176            | 128 | 1     |
|           | LC4256C-5T100I    | 256        | 1.8     | 5               | TQFP    | 100            | 64  | 1     |
|           | LC4256C-75T100I   | 256        | 1.8     | 7.5             | TQFP    | 100            | 64  | I     |
|           | LC4256C-10T100I   | 256        | 1.8     | 10              | TQFP    | 100            | 64  | Ι     |

ispMACH 4000C (1.8V) Industrial Devices

| Device     | Part Number     | Macrocells | Voltage | t <sub>PD</sub> | Package | Pin/Ball Count | I/O | Grade |
|------------|-----------------|------------|---------|-----------------|---------|----------------|-----|-------|
| 1.0.40001/ | LC4032V-75T48E  | 32         | 3.3     | 7.5             | TQFP    | 48             | 32  | E     |
| LC4032V    | LC4032V-75T44E  | 32         | 3.3     | 7.5             | TQFP    | 44             | 30  | E     |
|            | LC4064V-75T100E | 64         | 3.3     | 7.5             | TQFP    | 100            | 64  | E     |
| LC4064V    | LC4064V-75T48E  | 64         | 3.3     | 7.5             | TQFP    | 48             | 32  | E     |
|            | LC4064V-75T44E  | 64         | 3.3     | 7.5             | TQFP    | 44             | 30  | E     |
|            | LC4128V-75T144E | 128        | 3.3     | 7.5             | TQFP    | 144            | 96  | E     |
| LC4128V    | LC4128V-75T128E | 128        | 3.3     | 7.5             | TQFP    | 128            | 92  | E     |
|            | LC4128V-75T100E | 128        | 3.3     | 7.5             | TQFP    | 100            | 64  | E     |
|            | LC4256V-75T176E | 256        | 3.3     | 7.5             | TQFP    | 176            | 128 | E     |
| LC4256V    | LC4256V-75T144E | 256        | 3.3     | 7.5             | TQFP    | 144            | 96  | E     |
|            | LC4256V-75T100E | 256        | 3.3     | 7.5             | TQFP    | 100            | 64  | E     |

## ispMACH 4000V (3.3V) Extended Temperature Devices

## Lead-Free Packaging

ispMACH 4000Z (Zero Power, 1.8V) Lead-Free Commercial Devices

| Device   | Part Number       | Macrocells | Voltage | t <sub>PD</sub> | Package         | Pin/Ball<br>Count | I/O | Grade |
|----------|-------------------|------------|---------|-----------------|-----------------|-------------------|-----|-------|
|          | LC4032ZC-35MN56C  | 32         | 1.8     | 3.5             | Lead-free csBGA | 56                | 32  | С     |
|          | LC4032ZC-5MN56C   | 32         | 1.8     | 5               | Lead-free csBGA | 56                | 32  | С     |
| LC4032ZC | LC4032ZC-75MN56C  | 32         | 1.8     | 7.5             | Lead-free csBGA | 56                | 32  | С     |
| LC4032ZC | LC4032ZC-35TN48C  | 32         | 1.8     | 3.5             | Lead-free TQFP  | 48                | 32  | С     |
|          | LC4032ZC-5TN48C   | 32         | 1.8     | 5               | Lead-free TQFP  | 48                | 32  | С     |
|          | LC4032ZC-75TN48C  | 32         | 1.8     | 7.5             | Lead-free TQFP  | 48                | 32  | С     |
|          | LC4064ZC-37MN132C | 64         | 1.8     | 3.7             | Lead-free csBGA | 132               | 64  | С     |
|          | LC4064ZC-5MN132C  | 64         | 1.8     | 5               | Lead-free csBGA | 132               | 64  | С     |
|          | LC4064ZC-75MN132C | 64         | 1.8     | 7.5             | Lead-free csBGA | 132               | 64  | С     |
|          | LC4064ZC-37TN100C | 64         | 1.8     | 3.7             | Lead-free TQFP  | 100               | 64  | С     |
|          | LC4064ZC-5TN100C  | 64         | 1.8     | 5               | Lead-free TQFP  | 100               | 64  | С     |
|          | LC4064ZC-75TN100C | 64         | 1.8     | 7.5             | Lead-free TQFP  | 100               | 64  | С     |
| LC4064ZC | LC4064ZC-37MN56C  | 64         | 1.8     | 3.7             | Lead-free csBGA | 56                | 32  | С     |
|          | LC4064ZC-5MN56C   | 64         | 1.8     | 5               | Lead-free csBGA | 56                | 32  | С     |
|          | LC4064ZC-75MN56C  | 64         | 1.8     | 7.5             | Lead-free csBGA | 56                | 32  | С     |
|          | LC4064ZC-37TN48C  | 64         | 1.8     | 3.7             | Lead-free TQFP  | 48                | 32  | С     |
|          | LC4064ZC-5TN48C   | 64         | 1.8     | 5               | Lead-free TQFP  | 48                | 32  | С     |
|          | LC4064ZC-75TN48C  | 64         | 1.8     | 7.5             | Lead-free TQFP  | 48                | 32  | С     |
|          | LC4128ZC-42MN132C | 128        | 1.8     | 4.2             | Lead-free csBGA | 132               | 96  | С     |
| LC4128ZC | LC4128ZC-75MN132C | 128        | 1.8     | 7.5             | Lead-free csBGA | 132               | 96  | С     |
| 10412020 | LC4128ZC-42TN100C | 128        | 1.8     | 4.2             | Lead-free TQFP  | 100               | 64  | С     |
|          | LC4128ZC-75TN100C | 128        | 1.8     | 7.5             | Lead-free TQFP  | 100               | 64  | С     |
|          | LC4256ZC-45TN176C | 256        | 1.8     | 4.5             | Lead-free TQFP  | 176               | 128 | С     |
|          | LC4256ZC-75TN176C | 256        | 1.8     | 7.5             | Lead-free TQFP  | 176               | 128 | С     |
| LC4256ZC | LC4256ZC-45MN132C | 256        | 1.8     | 4.5             | Lead-free csBGA | 132               | 96  | С     |
| 10420020 | LC4256ZC-75MN132C | 256        | 1.8     | 7.5             | Lead-free csBGA | 132               | 96  | С     |
|          | LC4256ZC-45TN100C | 256        | 1.8     | 4.5             | Lead-free TQFP  | 100               | 64  | С     |
|          | LC4256ZC-75TN100C | 256        | 1.8     | 7.5             | Lead-free TQFP  | 100               | 64  | С     |

#### ispMACH 4000Z (Zero Power, 1.8V) Lead-Free Industrial Devices

| Device   | Part Number      | Macrocells | Voltage | t <sub>PD</sub> | Package         | Pin/Ball<br>Count | I/O | Grade |
|----------|------------------|------------|---------|-----------------|-----------------|-------------------|-----|-------|
|          | LC4032ZC-5MN56I  | 32         | 1.8     | 5               | Lead-free csBGA | 56                | 32  | I     |
| LC4032ZC | LC4032ZC-75MN56I | 32         | 1.8     | 7.5             | Lead-free csBGA | 56                | 32  | I     |
| LC40322C | LC4032ZC-5TN48I  | 32         | 1.8     | 5               | Lead-free TQFP  | 48                | 32  | Ι     |
|          | LC4032ZC-75TN48I | 32         | 1.8     | 7.5             | Lead-free TQFP  | 48                | 32  | I     |

| Device  | Part Number       | Macrocells | Voltage | t <sub>PD</sub> | Package         | Pin/Ball<br>Count | I/O | Grade |
|---------|-------------------|------------|---------|-----------------|-----------------|-------------------|-----|-------|
| LC4384B | LC4384B-35FTN256C | 384        | 2.5     | 3.5             | Lead-Free ftBGA | 256               | 192 | С     |
|         | LC4384B-5FTN256C  | 384        | 2.5     | 5               | Lead-Free ftBGA | 256               | 192 | С     |
|         | LC4384B-75FTN256C | 384        | 2.5     | 7.5             | Lead-Free ftBGA | 256               | 192 | С     |
|         | LC4384B-35FN256C1 | 384        | 2.5     | 3.5             | Lead-Free fpBGA | 256               | 192 | С     |
|         | LC4384B-5FN256C1  | 384        | 2.5     | 5               | Lead-Free fpBGA | 256               | 192 | С     |
|         | LC4384B-75FN256C1 | 384        | 2.5     | 7.5             | Lead-Free fpBGA | 256               | 192 | С     |
|         | LC4384B-35TN176C  | 384        | 2.5     | 3.5             | Lead-Free TQFP  | 176               | 128 | С     |
|         | LC4384B-5TN176C   | 384        | 2.5     | 5               | Lead-Free TQFP  | 176               | 128 | С     |
|         | LC4384B-75TN176C  | 384        | 2.5     | 7.5             | Lead-Free TQFP  | 176               | 128 | С     |
| LC4512B | LC4512B-35FTN256C | 512        | 2.5     | 3.5             | Lead-Free ftBGA | 256               | 208 | С     |
|         | LC4512B-5FTN256C  | 512        | 2.5     | 5               | Lead-Free ftBGA | 256               | 208 | С     |
|         | LC4512B-75FTN256C | 512        | 2.5     | 7.5             | Lead-Free ftBGA | 256               | 208 | С     |
|         | LC4512B-35FN256C1 | 512        | 2.5     | 3.5             | Lead-Free fpBGA | 256               | 208 | С     |
|         | LC4512B-5FN256C1  | 512        | 2.5     | 5               | Lead-Free fpBGA | 256               | 208 | С     |
|         | LC4512B-75FN256C1 | 512        | 2.5     | 7.5             | Lead-Free fpBGA | 256               | 208 | С     |
|         | LC4512B-35TN176C  | 512        | 2.5     | 3.5             | Lead-Free TQFP  | 176               | 128 | С     |
|         | LC4512B-5TN176C   | 512        | 2.5     | 5               | Lead-Free TQFP  | 176               | 128 | С     |
|         | LC4512B-75TN176C  | 512        | 2.5     | 7.5             | Lead-Free TQFP  | 176               | 128 | С     |

### ispMACH 4000B (2.5V) Lead-Free Commercial Devices (Cont.)

1. Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

### ispMACH 4000B (2.5V) Lead-Free Industrial Devices

| Device  | Part Number      | Macrocells | Voltage | t <sub>PD</sub> | Package        | Pin/Ball<br>Count | I/O | Grade |
|---------|------------------|------------|---------|-----------------|----------------|-------------------|-----|-------|
| LC4032B | LC4032B-5TN48I   | 32         | 2.5     | 5               | Lead-Free TQFP | 48                | 32  | I     |
|         | LC4032B-75TN48I  | 32         | 2.5     | 7.5             | Lead-Free TQFP | 48                | 32  | I     |
|         | LC4032B-10TN48I  | 32         | 2.5     | 10              | Lead-Free TQFP | 48                | 32  | I     |
|         | LC4032B-5TN44I   | 32         | 2.5     | 5               | Lead-Free TQFP | 44                | 30  | I     |
|         | LC4032B-75TN44I  | 32         | 2.5     | 7.5             | Lead-Free TQFP | 44                | 30  | I     |
|         | LC4032B-10TN44I  | 32         | 2.5     | 10              | Lead-Free TQFP | 44                | 30  | I     |
| LC4064B | LC4064B-5TN100I  | 64         | 2.5     | 5               | Lead-Free TQFP | 100               | 64  | I     |
|         | LC4064B-75TN100I | 64         | 2.5     | 7.5             | Lead-Free TQFP | 100               | 64  | I     |
|         | LC4064B-10TN100I | 64         | 2.5     | 10              | Lead-Free TQFP | 100               | 64  | I     |
|         | LC4064B-5TN48I   | 64         | 2.5     | 5               | Lead-Free TQFP | 48                | 32  | I     |
|         | LC4064B-75TN48I  | 64         | 2.5     | 7.5             | Lead-Free TQFP | 48                | 32  | I     |
|         | LC4064B-10TN48I  | 64         | 2.5     | 10              | Lead-Free TQFP | 48                | 32  | I     |
|         | LC4064B-5TN44I   | 64         | 2.5     | 5               | Lead-Free TQFP | 44                | 30  | I     |
|         | LC4064B-75TN44I  | 64         | 2.5     | 7.5             | Lead-Free TQFP | 44                | 30  | I     |
|         | LC4064B-10TN44I  | 64         | 2.5     | 10              | Lead-Free TQFP | 44                | 30  | I     |