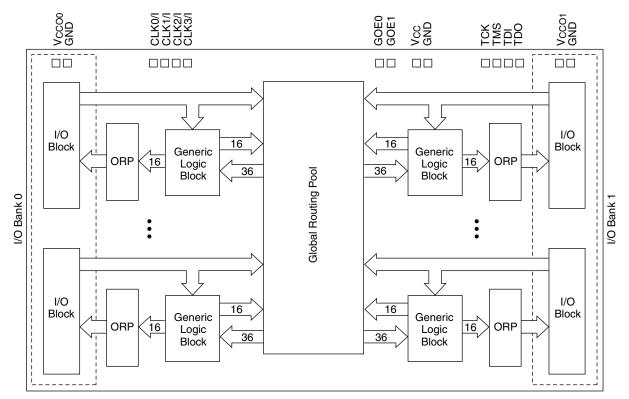
E. Lattice Semiconductor Corporation - <u>LC4064C-75TN100I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.


Applications of Embedded - CPLDs

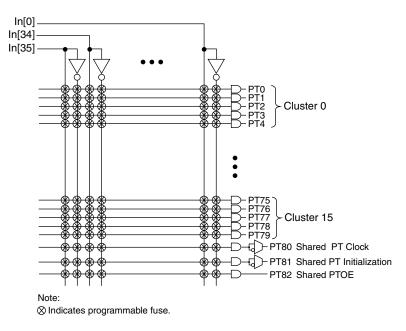

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	1.65V ~ 1.95V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	-
Number of I/O	64
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4064c-75tn100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The I/Os in the ispMACH 4000 are split into two banks. Each bank has a separate I/O power supply. Inputs can support a variety of standards independent of the chip or bank power supply. Outputs support the standards compatible with the power supply provided to the bank. Support for a variety of standards helps designers implement designs in mixed voltage environments. In addition, 5V tolerant inputs are specified within an I/O bank that is connected to V_{CCO} of 3.0V to 3.6V for LVCMOS 3.3, LVTTL and PCI interfaces.


ispMACH 4000 Architecture

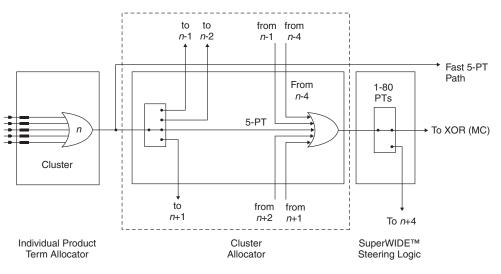
There are a total of two GLBs in the ispMACH 4032, increasing to 32 GLBs in the ispMACH 4512. Each GLB has 36 inputs. All GLB inputs come from the GRP and all outputs from the GLB are brought back into the GRP to be connected to the inputs of any other GLB on the device. Even if feedback signals return to the same GLB, they still must go through the GRP. This mechanism ensures that GLBs communicate with each other with consistent and predictable delays. The outputs from the GLB are also sent to the ORP. The ORP then sends them to the associated I/O cells in the I/O block.

Generic Logic Block

The ispMACH 4000 GLB consists of a programmable AND array, logic allocator, 16 macrocells and a GLB clock generator. Macrocells are decoupled from the product terms through the logic allocator and the I/O pins are decoupled from macrocells through the ORP. Figure 2 illustrates the GLB.

Figure 3. AND Array

Enhanced Logic Allocator

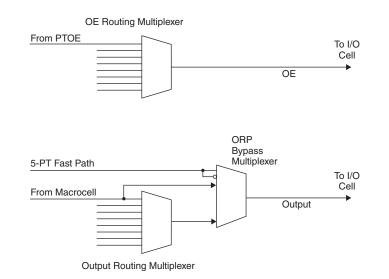

Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term cluster is associated with a macrocell. The cluster size for the ispMACH 4000 family is 4+1 (total 5) product terms. The software automatically considers the availability and distribution of product term clusters as it fits the functions within a GLB. The logic allocator is designed to provide three speed paths: 5-PT fast bypass path, 20-PT Speed Locking path and an up to 80-PT path. The availability of these three paths lets designers trade timing variability for increased performance.

The enhanced Logic Allocator of the ispMACH 4000 family consists of the following blocks:

- Product Term Allocator
- Cluster Allocator
- Wide Steering Logic

Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.

Figure 4. Macrocell Slice


Output Routing Pool (ORP)

The Output Routing Pool allows macrocell outputs to be connected to any of several I/O cells within an I/O block. This provides greater flexibility in determining the pinout and allows design changes to occur without affecting the pinout. The output routing pool also provides a parallel capability for routing macrocell-level OE product terms. This allows the OE product term to follow the macrocell output as it is switched between I/O cells. Additionally, the output routing pool allows the macrocell output or true and complement forms of the 5-PT bypass signal to bypass the output routing multiplexers and feed the I/O cell directly. The enhanced ORP of the ispMACH 4000 family consists of the following elements:

- Output Routing Multiplexers
- OE Routing Multiplexers
- Output Routing Pool Bypass Multiplexers

Figure 7 shows the structure of the ORP from the I/O cell perspective. This is referred to as an ORP slice. Each ORP has as many ORP slices as there are I/O cells in the corresponding I/O block.

Figure 7. ORP Slice

Output Routing Multiplexers

The details of connections between the macrocells and the I/O cells vary across devices and within a device dependent on the maximum number of I/Os available. Tables 5-9 provide the connection details.

Table 6. ORP Combinations for I/O Blocks with 8 I/Os

I/O Cell	Available Macrocells
I/O 0	M0, M1, M2, M3, M4, M5, M6, M7
I/O 1	M2, M3, M4, M5, M6, M7, M8, M9
I/O 2	M4, M5, M6, M7, M8, M9, M10, M11
I/O 3	M6, M7, M8, M9, M10, M11, M12, M13
I/O 4	M8, M9, M10, M11, M12, M13, M14, M15
I/O 5	M10, M11, M12, M13, M14, M15, M0, M1
I/O 6	M12, M13, M14, M15, M0, M1, M2, M3
I/O 7	M14, M15, M0, M1, M2, M3, M4, M5

I/O Cell	Available Macrocells
I/O 0	M0, M1, M2, M3, M4, M5, M6, M7
I/O 1	M1, M2, M3, M4, M5, M6, M7, M8
I/O 2	M2, M3, M4, M5, M6, M7, M8, M9
I/O 3	M3, M4, M5, M6, M7, M8, M9, M10
I/O 4	M4, M5, M6, M7, M8, M9, M10, M11
I/O 5	M5, M6, M7, M8, M9, M10, M11, M12
I/O 6	M6, M7, M8, M9, M10, M11, M12, M13
I/O 7	M7, M8, M9, M10, M11, M12, M13, M14
I/O 8	M8, M9, M10, M11, M12, M13, M14, M15
I/O 9	M9, M10, M11, M12, M13, M14, M15, M0
I/O 10	M10, M11, M12, M13, M14, M15, M0, M1
I/O 11	M11, M12, M13, M14, M15, M0, M1, M2
I/O 12	M12, M13, M14, M15, M0, M1, M2, M3
I/O 13	M13, M14, M15, M0, M1, M2, M3, M4
I/O 14	M14, M15, M0, M1, M2, M3, M4, M5
I/O 15	M15, M0, M1, M2, M3, M4, M5, M6

Table 7. ORP Combinations for I/O Blocks with 16 I/Os

Table 8. ORP Combinations for I/O Blocks with 4 I/Os

I/O Cell	Available Macrocells			
I/O 0	M0, M1, M2, M3, M4, M5, M6, M7			
I/O 1	M4, M5, M6, M7, M8, M9, M10, M11			
I/O 2	M8, M9, M10, M11, M12, M13, M14, M15			
I/O 3	M12, M13, M14, M15, M0, M1, M2, M3			

Table 9. ORP Combinations for I/O Blocks with 10 I/Os

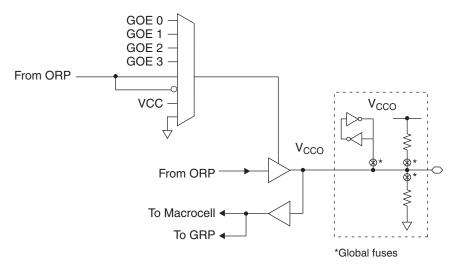
I/O Cell	Available Macrocells
I/O 0	M0, M1, M2, M3, M4, M5, M6, M7
I/O 1	M2, M3, M4, M5, M6, M7, M8, M9
I/O 2	M4, M5, M6, M7, M8, M9, M10, M11
I/O 3	M6, M7, M8, M9, M10, M11, M12, M13
I/O 4	M8, M9, M10, M11, M12, M13, M14, M15
I/O 5	M10, M11, M12, M13, M14, M15, M0, M1
I/O 6	M12, M13, M14, M15, M0, M1, M2, M3
I/O 7	M14, M15, M0, M1, M2, M3, M4, M5
I/O 8	M2, M3, M4, M5, M6, M7, M8, M9
I/O 9	M10, M11, M12, M13, M14, M15, M0, M1

I/O Cell	Available Macrocells
I/O 0	M0, M1, M2, M3, M4, M5, M6, M7
I/O 1	M1, M2, M3, M4, M5, M6, M7, M8
I/O 2	M2, M3, M4, M5, M6, M7, M8, M9
I/O 3	M4, M5, M6, M7, M8, M9, M10, M11
I/O 4	M5, M6, M7, M8, M9, M10, M11, M12
I/O 5	M6, M7, M8, M9, M10, M11, M12, M13
I/O 6	M8, M9, M10, M11, M12, M13, M14, M15
I/O 7	M9, M10, M11, M12, M13, M14, M15, M0
I/O 8	M10, M11, M12, M13, M14, M15, M0, M1
I/O 9	M12, M13, M14, M15, M0, M1, M2, M3
I/O 10	M13, M14, M15, M0, M1, M2, M3, M4
I/O 11	M14, M15, M0, M1, M2, M3, M4, M5

Table 10. ORP Combinations for I/O Blocks with 12 I/Os

ORP Bypass and Fast Output Multiplexers

The ORP bypass and fast-path output multiplexer is a 4:1 multiplexer and allows the 5-PT fast path to bypass the ORP and be connected directly to the pin with either the regular output or the inverted output. This multiplexer also allows the register output to bypass the ORP to achieve faster t_{CO} .


Output Enable Routing Multiplexers

The OE Routing Pool provides the corresponding local output enable (OE) product term to the I/O cell.

I/O Cell

The I/O cell contains the following programmable elements: output buffer, input buffer, OE multiplexer and bus maintenance circuitry. Figure 8 details the I/O cell.

Figure 8. I/O Cell

Each output supports a variety of output standards dependent on the V_{CCO} supplied to its I/O bank. Outputs can also be configured for open drain operation. Each input can be programmed to support a variety of standards, independent of the V_{CCO} supplied to its I/O bank. The I/O standards supported are:

IEEE 1532-Compliant In-System Programming

Programming devices in-system provides a number of significant benefits including: rapid prototyping, lower inventory levels, higher quality and the ability to make in-field modifications. All ispMACH 4000 devices provide In-System Programming (ISP[™]) capability through the Boundary Scan Test Access Port. This capability has been implemented in a manner that ensures that the port remains complaint to the IEEE 1149.1 standard. By using IEEE 1149.1 as the communication interface through which ISP is achieved, users get the benefit of a standard, welldefined interface. All ispMACH 4000 devices are also compliant with the IEEE 1532 standard.

The ispMACH 4000 devices can be programmed across the commercial temperature and voltage range. The PCbased Lattice software facilitates in-system programming of ispMACH 4000 devices. The software takes the JEDEC file output produced by the design implementation software, along with information about the scan chain, and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain via the parallel port of a PC. Alternatively, the software can output files in formats understood by common automated test equipment. This equipment can then be used to program ispMACH 4000 devices during the testing of a circuit board.

User Electronic Signature

The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the device, stored in E²CMOS memory. The ispMACH 4000 device contains 32 UES bits that can be configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.

Security Bit

A programmable security bit is provided on the ispMACH 4000 devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.

Hot Socketing

The ispMACH 4000 devices are well-suited for applications that require hot socketing capability. Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The isp-MACH 4000 devices provide this capability for input voltages in the range 0V to 3.0V.

Density Migration

The ispMACH 4000 family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

ispMACH 4000V/B/C External Switching Characteristics (Cont.)

		-	5	-75		-10		
Parameter	Description ^{1, 2, 3}	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PD}	5-PT bypass combinatorial propagation delay	_	5.0	—	7.5	—	10.0	ns
t _{PD_MC}	20-PT combinatorial propagation delay through macrocell	_	5.5	—	8.0	—	10.5	ns
t _S	GLB register setup time before clock	3.0	—	4.5	—	5.5	—	ns
t _{ST}	GLB register setup time before clock with T-type register	3.2	—	4.7	—	5.5	—	ns
t _{SIR}	GLB register setup time before clock, input register path	1.2	—	1.7	—	1.7	—	ns
t _{SIRZ}	GLB register setup time before clock with zero hold	2.2	—	2.7	—	2.7	—	ns
t _H	GLB register hold time after clock	0.0	—	0.0	—	0.0	—	ns
t _{HT}	GLB register hold time after clock with T-type register	0.0	—	0.0	—	0.0	—	ns
t _{HIR}	GLB register hold time after clock, input register path	1.0	—	1.0	—	1.0	—	ns
t _{HIRZ}	GLB register hold time after clock, input register path with zero hold	0.0	_	0.0	_	0.0	_	ns
t _{CO}	GLB register clock-to-output delay	_	3.4	—	4.5	—	6.0	ns
t _R	External reset pin to output delay	_	6.3	—	9.0	—	10.5	ns
t _{RW}	External reset pulse duration	2.0	—	4.0	—	4.0	—	ns
t _{PTOE/DIS}	Input to output local product term output enable/disable	_	7.0	—	9.0	—	10.5	ns
t _{GPTOE/DIS}	Input to output global product term output enable/disable		9.0	—	10.3	—	12.0	ns
t _{GOE/DIS}	Global OE input to output enable/disable		5.0	—	7.0	—	8.0	ns
t _{CW}	Global clock width, high or low	2.2	—	2.8	—	4.0	—	ns
t _{GW}	Global gate width low (for low transparent) or high (for high transparent)	2.2	_	2.8	_	4.0	_	ns
t _{WIR}	Input register clock width, high or low	2.2	—	2.8	_	4.0		ns
f _{MAX} ⁴	Clock frequency with internal feedback	_	227		168	_	125	MHz
f _{MAX} (Ext.)	Clock frequency with external feedback, $[1/(t_S + t_{CO})]$	_	156	—	111	—	86	MHz

Over Recommended Operating Conditions

 1. Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate other standards.
 Timing v.3.2

 2. Measured using standard switching circuit, assuming GRP loading of 1 and 1 output switching.
 Timing v.3.2

3. Pulse widths and clock widths less than minimum will cause unknown behavior.

4. Standard 16-bit counter using GRP feedback.

ispMACH 4000Z External Switching Characteristics

		-3	35	-3	37	-42		
Parameter	Description ^{1, 2, 3}	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PD}	5-PT bypass combinatorial propagation delay	_	3.5	—	3.7	_	4.2	ns
t _{PD_MC}	20-PT combinatorial propagation delay through macrocell	_	4.4	_	4.7	_	5.7	ns
t _S	GLB register setup time before clock	2.2		2.5		2.7	—	ns
t _{ST}	GLB register setup time before clock with T-type register	2.4	—	2.7	_	2.9	_	ns
t _{SIR}	GLB register setup time before clock, input register path	1.0	—	1.1	_	1.3	_	ns
t _{SIRZ}	GLB register setup time before clock with zero hold	2.0	_	2.1	_	2.6	_	ns
t _H	GLB register hold time after clock	0.0	—	0.0	—	0.0	—	ns
t _{HT}	GLB register hold time after clock with T-type register	0.0	_	0.0	_	0.0	_	ns
t _{HIR}	GLB register hold time after clock, input register path	1.0	—	1.0	_	1.3	_	ns
t _{HIRZ}	GLB register hold time after clock, input register path with zero hold	0.0	—	0.0	_	0.0	_	ns
t _{CO}	GLB register clock-to-output delay	_	3.0		3.2	_	3.5	ns
t _R	External reset pin to output delay	_	5.0		6.0	_	7.3	ns
t _{RW}	External reset pulse duration	1.5	—	1.7	—	2.0	—	ns
t _{PTOE/DIS}	Input to output local product term output enable/disable	_	7.0	_	8.0	_	8.0	ns
t _{GPTOE/DIS}	Input to output global product term output enable/disable	_	6.5	_	7.0	_	8.0	ns
t _{GOE/DIS}	Global OE input to output enable/disable	_	4.5	—	4.5	_	4.8	ns
t _{CW}	Global clock width, high or low	1.0	—	1.5	—	1.8	—	ns
t _{GW}	Global gate width low (for low transparent) or high (for high transparent)	1.0	—	1.5	_	1.8	_	ns
t _{WIR}	Input register clock width, high or low	1.0	—	1.5	—	1.8	—	ns
f _{MAX} ⁴	Clock frequency with internal feedback	_	267	—	250	—	220	MHz
f _{MAX} (Ext.)	clock frequency with external feedback, $[1 / (t_S + t_{CO})]$	_	192	_	175		161	MHz

Over Recommended Operating Conditions

1. Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate other standards. Timing v.2.2

2. Measured using standard switching GRP loading of 1 and 1 output switching.

3. Pulse widths and clock widths less than minimum will cause unknown behavior.

4. Standard 16-bit counter using GRP feedback.

ispMACH 4000V/B/C Timing Adders¹ (Cont.)

Adder	Base		-	5	-7	75	-1	10	
Туре	Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Optional Delay A	Adders		1	•				•	
t _{INDIO}	t _{INREG}	Input register delay	—	1.00	—	1.00	—	1.00	ns
t _{EXP}	t _{MCELL}	Product term expander delay	_	0.33	—	0.33	—	0.33	ns
t _{ORP}	—	Output routing pool delay	_	0.05	—	0.05		0.05	ns
t _{BLA}	t _{ROUTE}	Additional block loading adder		0.05	_	0.05		0.05	ns
t _{IOI} Input Adjust	ers								
LVTTL_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVTTL standard	_	0.60	_	0.60	_	0.60	ns
LVCMOS33_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 3.3 standard	-	0.60	_	0.60	-	0.60	ns
LVCMOS25_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 2.5 standard	_	0.60	_	0.60	_	0.60	ns
LVCMOS18_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 1.8 standard	-	0.00	_	0.00	-	0.00	ns
PCI_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using PCI compatible input	_	0.60	_	0.60	_	0.60	ns
t _{IOO} Output Adju	isters								
LVTTL_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as TTL buffer		0.20		0.20		0.20	ns
LVCMOS33_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as 3.3V buffer		0.20	_	0.20		0.20	ns
LVCMOS25_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as 2.5V buffer	_	0.10	—	0.10	—	0.10	ns
LVCMOS18_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as 1.8V buffer	_	0.00	—	0.00	—	0.00	ns
PCI_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as PCI compatible buffer	_	0.20	_	0.20	_	0.20	ns
Slow Slew	t _{BUF} , t _{EN}	Output configured for slow slew rate	_	1.00	_	1.00	—	1.00	ns
		as corresponding LVCMOS timing.				<i>.</i>		Timir	ng v.3.2

Note: Open drain timing is the same as corresponding LVCMOS timing. 1. Refer to TN1004, <u>ispMACH 4000 Timing Model Design and Usage Guidelines</u> for information regarding use of these adders.

ispMACH 4000Z Timing Adders ¹

Adder	Base		-35		-3	37	-42		
Туре	Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Optional Delay A	dders								
t _{INDIO}	t _{INREG}	Input register delay	—	1.00	—	1.00	—	1.30	ns
t _{EXP}	t _{MCELL}	Product term expander delay	_	0.40	_	0.40	_	0.45	ns
t _{ORP}	—	Output routing pool delay	_	0.40	_	0.40	_	0.40	ns
t _{BLA}	t _{ROUTE}	Additional block load- ing adder		0.04	_	0.05		0.05	ns
t _{IOI} Input Adjuste	ers			•		•			
LVTTL_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVTTL standard		0.60	—	0.60	_	0.60	ns
LVCMOS33_in	t _{IN,} t _{GCLK_IN} , t _{GOE}	Using LVCMOS 3.3 standard	_	0.60	_	0.60	_	0.60	ns
LVCMOS25_in	t _{IN,} t _{GCLK_IN} , t _{GOE}	Using LVCMOS 2.5 standard	_	0.60	_	0.60	_	0.60	ns
LVCMOS18_in	t _{IN,} t _{GCLK_IN} , t _{GOE}	Using LVCMOS 1.8 standard	_	0.00	—	0.00	_	0.00	ns
PCI_in	t _{IN,} t _{GCLK_IN} , t _{GOE}	Using PCI compatible input	_	0.60	_	0.60	_	0.60	ns
t _{IOO} Output Adju	isters			•	•	•			
LVTTL_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as TTL buffer	_	0.20	_	0.20	_	0.20	ns
LVCMOS33_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as 3.3V buffer		0.20	_	0.20	_	0.20	ns
LVCMOS25_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as 2.5V buffer		0.10	_	0.10		0.10	ns
LVCMOS18_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as 1.8V buffer	_	0.00	_	0.00	_	0.00	ns
PCI_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as PCI compatible buffer	_	0.20	—	0.20	_	0.20	ns
Slow Slew	t _{BUF,} t _{EN}	Output configured for slow slew rate	_	1.00	_	1.00		1.00	ns

Timing v.2.2

Note: Open drain timing is the same as corresponding LVCMOS timing. Tin
1. Refer to TN1004, <u>ispMACH 4000 Timing Model Design and Usage Guidelines</u> for information regarding the use of these adders.

Boundary Scan Waveforms and Timing Specifications

Symbol	Parameter	Min.	Max.	Units
t _{BTCP}	TCK [BSCAN test] clock cycle	40	—	ns
t _{BTCH}	TCK [BSCAN test] pulse width high	20	—	ns
t _{BTCL}	TCK [BSCAN test] pulse width low	20	_	ns
t _{BTSU}	TCK [BSCAN test] setup time	8	—	ns
t _{BTH}	TCK [BSCAN test] hold time	10	—	ns
t _{BRF}	TCK [BSCAN test] rise and fall time	50	_	mV/ns
t _{BTCO}	TAP controller falling edge of clock to valid output	—	10	ns
t _{BTOZ}	TAP controller falling edge of clock to data output disable	—	10	ns
t _{BTVO}	TAP controller falling edge of clock to data output enable	—	10	ns
t _{BTCPSU}	BSCAN test Capture register setup time	8	_	ns
t _{BTCPH}	BSCAN test Capture register hold time	10	_	ns
t _{BTUCO}	BSCAN test Update reg, falling edge of clock to valid output	—	25	ns
t _{BTUOZ}	BSCAN test Update reg, falling edge of clock to output disable	—	25	ns
t _{BTUOV}	BSCAN test Update reg, falling edge of clock to output enable	—	25	ns

Signal Descriptions

Signal Names	Desc	ription				
TMS	Input – This pin is the IEEE 1149.1 Test M the state machine.	Input – This pin is the IEEE 1149.1 Test Mode Select input, which is used to control the state machine.				
ТСК	Input – This pin is the IEEE 1149.1 Test C state machine.	Input – This pin is the IEEE 1149.1 Test Clock input pin, used to clock through the state machine.				
TDI	Input – This pin is the IEEE 1149.1 Test D	Data In pin, used to load data.				
TDO	Output – This pin is the IEEE 1149.1 Test	Data Out pin used to shift data out.				
GOE0/IO, GOE1/IO	These pins are configured to be either Glopins.	These pins are configured to be either Global Output Enable Input or as general I/O pins.				
GND	Ground	Ground				
NC	Not Connected	Not Connected				
V _{CC}	The power supply pins for logic core and	JTAG port.				
CLK0/I, CLK1/I, CLK2/I, CLK3/I	These pins are configured to be either CL	K input or as an input.				
V _{CCO0} , V _{CCO1}	The power supply pins for each I/O bank.					
	Input/Output ¹ – These are the general put reference (alpha) and z is macrocell refer	rpose I/O used by the logic array. y is GLB ence (numeric). z: 0-15.				
	ispMACH 4032	y: A-B				
	ispMACH 4064	y: A-D				
yzz	ispMACH 4128	y: A-H				
	ispMACH 4256	y: A-P				
	ispMACH 4384	y: A-P, AX-HX				
	ispMACH 4512	y: A-P, AX-PX				

1. In some packages, certain I/Os are only available for use as inputs. See the signal connections table for details.

ispMACH 4000V/B/C ORP Reference Table

	4032	V/B/C	4	1064\	//B/C	4128	V/B/0	0		4256	V/B/C		4384\	//B/C	4512	2V/B/C
Number of I/Os	30 ¹	32	30 ²	32	64	64	92 ³	96	64	96 ⁴	128	160	128	192	128	208
Number of GLBs	2	2	4	4	4	8	8	8	16	16	16	16	16	16	16	16
Number of I/Os / GLB	16	16	8	8	16	8	12	12	4	8	8	10	8	8	8	Mixture of 8 & 4 ⁵
Reference ORP Table	16 l/ Gl	/Os / LB	8 I/(GI		16 l/Os / GLB	8 I/Os / GLB	12 l/ Gl		4 I/Os / GLB	8 I/Os / GLB	8 I/Os / GLB	10 I/Os / GLB	8 I/(GL		8 I/Os / GLB	8 I/Os / GLB 4 I/Os / GLB

1. 32-macrocell device, 44 TQFP: 2 GLBs have 15 out of 16 I/Os bonded out.

2. 64-macrocells device, 44 TQFP: 2 GLBs have 7 out of 8 I/Os bonded out.

3. 128-macrocell device, 128 TQFP: 4 GLBs have 11 out of 12 I/Os

4. 256-macrocell device, 144 TQFP: 16 GLBs have 6 I/Os per

5. 512-macrocell device: 20 GLBs have 8 I/Os per, 12 GLBs have 4 I/Os per

ispMACH 4000Z ORP Reference Table

	4032Z	406	64Z	412	28Z		4256Z	
Number of I/Os	32	32	64	64	96	64	96¹	128
Number of GLBs	2	4	4	8	8	16	16	16
Number of I/Os / GLB	16	8	16	8	12	4	8	8
Reference ORP Table	16 I/Os / GLB	8 I/Os / GLB	16 I/Os / GLB	8 I/Os / GLB	12 I/Os / GLB	4 I/Os / GLB	8 I/Os / GLB	8 I/Os / GLB

1. 256-macrocell device, 132 csBGA: 16 GLBs have 6 I/Os per

ispMACH 4032V/B/C and 4064V/B/C Logic Signal Connections: 44-Pin TQFP (Cont.)

		ispMACH	4032V/B/C	ispMACH 4064V/B/C		
Pin Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	
42	0	A2	A^2	A4	A^2	
43	0	A3	A^3	A6	A^3	
44	0	A4	A^4	A8	A^4	

ispMACH 4032V/B/C/Z and 4064V/B/C/Z Logic Signal Connections: 48-Pin TQFP

Pin	Bank	ispMACH 4	032V/B/C/Z	ispMACH 4	4064V/B/C	ispMACH 4	4064Z
Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
1	-	TDI	-	TDI	-	TDI	-
2	0	A5	A^5	A10	A^5	A8	A^5
3	0	A6	A^6	A12	A^6	A10	A^6
4	0	A7	A^7	A14	A^7	A11	A^7
5	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
6	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
7	0	A8	A^8	B0	B^0	B15	B^7
8	0	A9	A^9	B2	B^1	B12	B^6
9	0	A10	A^10	B4	B^2	B10	B^5
10	0	A11	A^11	B6	B^3	B8	B^4
11	-	ТСК	-	TCK	-	TCK	-
12	-	VCC	-	VCC	-	VCC	-
13	-	GND	-	GND	-	GND	-
14	0	A12	A^12	B8	B^4	B6	B^3
15	0	A13	A^13	B10	B^5	B4	B^2
16	0	A14	A^14	B12	B^6	B2	B^1
17	0	A15	A^15	B14	B^7	B0	B^0
18	0	CLK1/I	-	CLK1/I	-	CLK1/I	-
19	1	CLK2/I	-	CLK2/I	-	CLK2/I	-
20	1	B0	B^0	C0	C^0	C0	C^0
21	1	B1	B^1	C2	C^1	C1	C^1
22	1	B2	B^2	C4	C^2	C2	C^2
23	1	B3	B^3	C6	C^3	C4	C^3
24	1	B4	B^4	C8	C^4	C6	C^4
25	-	TMS	-	TMS	-	TMS	-
26	1	B5	B^5	C10	C^5	C8	C^5
27	1	B6	B^6	C12	C^6	C10	C^6
28	1	B7	B^7	C14	C^7	C11	C^7
29	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
30	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
31	1	B8	B^8	D0	D^0	D15	D^7
32	1	B9	B^9	D2	D^1	D12	D^6

ispMACH 4064V/B/C/Z, 4128V/B/C/Z, 4256V/B/C/Z Logic Signal Connections: 100-Pin TQFP (Cont.)

	Bank	ispMACH 40	64V/B/C/Z	ispMACH 41	28V/B/C/Z	ispMACH 42	256V/B/C/Z
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
83	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
84	1	D3	D^3	H6	H^3	P12	P^3
85	1	D2	D^2	H4	H^2	P10	P^2
86	1	D1	D^1	H2	H^1	P6	P^1
87	1	D0/GOE1	D^0	H0/GOE1	H^0	P2/OE1	P^0
88	1	CLK3/I	-	CLK3/I	-	CLK3/I	-
89	0	CLK0/I	-	CLK0/I	-	CLK0/I	-
90	-	VCC	-	VCC	-	VCC	-
91	0	A0/GOE0	A^0	A0/GOE0	A^0	A2/GOE0	A^0
92	0	A1	A^1	A2	A^1	A6	A^1
93	0	A2	A^2	A4	A^2	A10	A^2
94	0	A3	A^3	A6	A^3	A12	A^3
95	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
96	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
97	0	A4	A^4	A8	A^4	B2	B^0
98	0	A5	A^5	A10	A^5	B6	B^1
99	0	A6	A^6	A12	A^6	B10	B^2
100	0	A7	A^7	A14	A^7	B12	B^3

*This pin is input only.

ispMACH 4128V/B/C Logic Signal Connections: 128-Pin TQFP

		ispMACH 41	28V/B/C
Pin Number	Bank Number	GLB/MC/Pad	ORP
1	0	GND	-
2	0	TDI	-
3	0	VCCO (Bank 0)	-
4	0	B0	B^0
5	0	B1	B^1
6	0	B2	B^2
7	0	B4	B^3
8	0	B5	B^4
9	0	B6	B^5
10	0	GND (Bank 0)	-
11	0	B8	B^6
12	0	B9	B^7
13	0	B10	B^8
14	0	B12	B^9
15	0	B13	B^10
16	0	B14	B^11
17	0	VCCO (Bank 0)	-
18	0	C14	C^11

ispMACH 4128V and 4256V Logic Signal Connections: 144-Pin TQFP (Cont.)

		ispMACH	4128V	ispMACH 4	4256V
Pin Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
43	0	D9	D^7	G4	G^2
44	0	D8	D^6	G2	G^1
45	0	NC ²	-	²	-
46	0	GND (Bank 0)	-	GND (Bank 0)	-
47	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-
48	0	D6	D^5	H12	H^6
49	0	D5	D^4	H10	H^5
50	0	D4	D^3	H8	H^4
51	0	D2	D^2	H6	H^3
52	0	D1	D^1	H4	H^2
53	0	D0	D^0	H2	H^1
54	0	CLK1/I	-	CLK1/I	-
55	1	GND (Bank 1)	-	GND (Bank 1)	-
56	1	CLK2/I	-	CLK2/I	-
57	-	VCC	-	VCC	-
58	1	E0	E^0	12	I^1
59	1	E1	E^1	14	I^2
60	1	E2	E^2	16	I^3
61	1	E4	E^3	18	I^4
62	1	E5	E^4	110	I^5
63	1	E6	E^5	l12	I^6
64	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-
65	1	GND (Bank 1)	-	GND (Bank 1)	-
66	1	E8	E^6	J2	J^1
67	1	E9	E^7	J4	J^2
68	1	E10	E^8	J6	J^3
69	1	E12	E^9	J8	J^4
70	1	E13	E^10	J10	J^5
71	1	E14	E^11	J12	J^6
72	1	NC ²	-	²	-
73	-	GND	-	GND	-
74	-	TMS	-	TMS	-
75	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-
76	1	F0	F^0	K12	K^6
77	1	F1	F^1	K10	K^5
78	1	F2	F^2	K8	K^4
79	1	F4	F^3	K6	K^3
80	1	F5	F^4	K4	K^2
81	1	F6	F^5	K2	K^1
82	1	GND (Bank 1)	-	GND (Bank 1)	-
83	1	F8	F^6	L14	L^7
84	1	F9	F^7	L12	L^6
85	1	F10	F^8	L10	L^5

ispMACH 4256V/B/C/Z, 4384V/B/C, 4512V/B/C, Logic Signal Connections: 176-Pin TQFP (Cont.)

	Bank	ispMACH 42	56V/B/C/Z	ispMACH 43	384V/B/C	ispMACH 4	512V/B/C
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
142	1	O0	O^0	GX0	GX^0	OX0	OX^0
143	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
144	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
145	1	P14	P^7	HX14	HX^7	PX14	PX^7
146	1	P12	P^6	HX12	HX^6	PX12	PX^6
147	1	P10	P^5	HX10	HX^5	PX10	PX^5
148	1	P8	P^4	HX8	HX^4	PX8	PX^4
149	1	P6	P^3	HX6	HX^3	PX6	PX^3
150	1	P4	P^2	HX4	HX^2	PX4	PX^2
151	1	P2/GOE1	P^1	HX2/GOE1	HX^1	PX2/GOE1	PX^1
152	1	P0	P^0	HX0	HX^0	PX0	PX^0
153	-	GND	-	GND	-	GND	-
154	1	CLK3/I	-	CLK3/I	-	CLK3/I	-
155	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
156	0	CLK0/I	-	CLK0/I	-	CLK0/I	-
157	-	VCC	-	VCC	-	VCC	-
158	0	A0	A^0	A0	A^0	A0	A^0
159	0	A2/GOE0	A^1	A2/GOE0	A^1	A2//GOE0	A^1
160	0	A4	A^2	A4	A^2	A4	A^2
161	0	A6	A^3	A6	A^3	A6	A^3
162	0	A8	A^4	A8	A^4	A8	A^4
163	0	A10	A^5	A10	A^5	A10	A^5
164	0	A12	A^6	A12	A^6	A12	A^6
165	0	A14	A^7	A14	A^7	A14	A^7
166	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
167	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
168	0	B0	B^0	B0	B^0	B0	B^0
169	0	B2	B^1	B2	B^1	B2	B^1
170	0	B4	B^2	B4	B^2	B4	B^2
171	0	B6	B^3	B6	B^3	B6	B^3
172	0	B8	B^4	B8	B^4	B8	B^4
173	0	B10	B^5	B10	B^5	B10	B^5
174	0	B12	B^6	B12	B^6	B12	B^6
175	0	B14	B^7	B14	B^7	B14	B^7
176	-	VCC	-	VCC	-	VCC	-

ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C Logic Signal Connections: 256-Ball ftBGA/fpBGA (Cont.)

Ball	I/O	ispMACH 4256 128-I/O	V/B/C	ispMACH 4256 160-I/O	V/B/C	ispMACH 4384	V/B/C	ispMACH 4512	V/B/C
Number	Bank	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
R14	1	J10	J^5	J10	J^7	N10	N^5	BX10	BX^5
P13	1	J12	J^6	J12	J^8	N12	N^6	BX12	BX^6
N13	1	J14	J^7	J14	J~9	N14	N^7	BX14	BX^7
M12	1	NC	-	NC	-	P4	P^2	FX0	FX^0
T15	1	NC	-	NC	-	P6	P^3	FX2	FX^1
-	-	VCC	-	VCC	-	VCC	-	VCC	-
-	-	GND	-	GND	-	GND	-	GND	-
-	1	-	-	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
P14	-	TMS	-	TMS	-	TMS	-	TMS	-
-	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
L12	1	NC	-	NC	-	NC	-	FX4	FX^2
R16	1	NC	-	NC	-	P8	P^4	FX6	FX^3
N14	1	NC	-	NC	-	P10	P^5	FX8	FX^4
P15	1	K14	K^7	K14	K^9	O14	O^7	CX14	CX^7
L11	1	K12	K^6	K12	K^8	O12	O^6	CX12	CX^6
P16	1	K10	K^5	K10	K^7	O10	O^5	CX10	CX^5
K11	1	K8	K^4	K9	K^6	O8	O^4	CX8	CX^4
M14	1	K6	K^3	K8	K^5	O6	O^3	CX6	CX^3
K12	1	K4	K^2	K6	K^4	O4	O^2	CX4	CX^2
N15	1	K2	K^1	K4	K^3	O2	O^1	CX2	CX^1
N16	1	K0	K^0	K2	K^2	O0	O^0	CX0	CX^0
M15	1	NC	-	K1	K^1	BX6	BX^3	HX0	HX^0
M13	1	NC	-	K0	K^0	BX4	BX^2	HX4	HX^1
-	1	-	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
-	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
M16	1	NC	-	NC	-	NC	-	FX10	FX^5
L15	1	NC	-	NC	-	P12	P^6	FX12	FX^6
L16	1	NC	-	NC	-	P14	P^7	FX14	FX^7
J11	1	NC	-	L14	L^9	BX2	BX^1	HX8	HX^2
K15	1	NC	-	L12	L^8	BX0	BX^0	HX12	HX^3
J12	1	L14	L^7	L10	L^7	AX14	AX^7	GX14	GX^7
K13	1	L12	L^6	L9	L^6	AX12	AX^6	GX12	GX^6
K14	1	L10	L^5	L8	L^5	AX10	AX^5	GX10	GX^5
K16	1	L8	L^4	L6	L^4	AX8	AX^4	GX8	GX^4
J16	1	L6	L^3	L4	L^3	AX6	AX^3	GX6	GX^3
J15	1	L4	L^2	L2	L^2	AX4	AX^2	GX4	GX^2
H16	1	L2	L^1	L1	L^1	AX2	AX^1	GX2	GX^1
J13	1	LO	L^0	LO	L^0	AX0	AX^0	GX0	GX^0
-	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
-	1	-	-	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
J14	1	M0	M^0	MO	M^0	DX0	DX^0	JX0	JX^0

ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C Logic Signal Connections: 256-Ball ftBGA/fpBGA (Cont.)

Ball	I/O	ispMACH 4256 128-I/O	V/B/C	ispMACH 4256 160-I/O	V/B/C	ispMACH 4384	V/B/C	ispMACH 4512	V/B/C
Number	Bank	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
H15	1	M2	M^1	M1	M^1	DX2	DX^1	JX2	JX^1
H14	1	M4	M^2	M2	M^2	DX4	DX^2	JX4	JX^2
H13	1	M6	M^3	M4	M^3	DX6	DX^3	JX6	JX^3
G16	1	M8	M^4	M6	M^4	DX8	DX^4	JX8	JX^4
H12	1	M10	M^5	M8	M^5	DX10	DX^5	JX10	JX^5
G15	1	M12	M^6	M9	M^6	DX12	DX^6	JX12	JX^6
H11	1	M14	M^7	M10	M^7	DX14	DX^7	JX14	JX^7
F16	1	NC	-	M12	M^8	CX0	CX^0	IX0	IX^0
G13	1	NC	-	M14	M^9	CX2	CX^1	IX4	IX^1
G14	1	NC	-	NC	-	EX14	EX^7	KX0	KX^0
F15	1	NC	-	NC	-	EX12	EX^6	KX2	KX^1
E16	1	NC	-	NC	-	NC	-	KX4	KX^2
-	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
-	1	-	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
E15	1	NC	-	NC	-	NC	-	KX6	KX^3
G12	1	NC	-	NC	-	EX10	EX^5	KX8	KX^4
E13	1	NC	-	NC	-	EX8	EX^4	KX10	KX^5
D16	1	NC	-	N0	N^0	CX4	CX^2	IX8	IX^2
E14	1	NC	-	N1	N^1	CX6	CX^3	IX12	IX^3
G11	1	NO	N^0	N2	N^2	FX0	FX^0	NX0	NX^0
D15	1	N2	N^1	N4	N^3	FX2	FX^1	NX2	NX^1
F11	1	N4	N^2	N6	N^4	FX4	FX^2	NX4	NX^2
C16	1	N6	N^3	N8	N^5	FX6	FX^3	NX6	NX^3
F12	1	N8	N^4	N9	N^6	FX8	FX^4	NX8	NX^4
D14	1	N10	N^5	N10	N^7	FX10	FX^5	NX10	NX^5
C15	1	N12	N^6	N12	N^8	FX12	FX^6	NX12	NX^6
B16	1	N14	N^7	N14	N^9	FX14	FX^7	NX14	NX^7
-	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
C14	-	TDO	-	TDO	-	TDO	-	TDO	-
-	-	VCC	-	VCC	-	VCC	-	VCC	-
-	-	GND	-	GND	-	GND	-	GND	-
-	1	-	-	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
A15	1	NC	-	NC	-	EX6	EX^3	KX12	KX^6
B14	1	NC	-	NC	-	EX4	EX^2	KX14	KX^7
E12	1	O14	O^7	O14	O^9	GX14	GX^7	OX14	OX^7
A14	1	O12	O^6	O12	O^8	GX12	GX^6	OX12	OX^6
C13	1	O10	O^5	O10	0^7	GX10	GX^5	OX10	OX^5
D13	1	O8	0^4	O9	O^6	GX8	GX^4	OX8	OX^4
E11	1	O6	O^3	O8	O^5	GX6	GX^3	OX6	OX^3
B13	1	O4	O^2	O6	0^4	GX4	GX^2	OX4	OX^2
F10	1	O2	O^1	O4	O^3	GX2	GX^1	OX2	OX^1

								
Device	Part Number	Macrocells	Voltage	tPD	Package	Pin/Ball Count	I/O	Grade
	LC4064ZC-5M132I	64	1.8	5	csBGA	132	64	I
	LC4064ZC-75M132I	64	1.8	7.5	csBGA	132	64	I
	LC4064ZC-5T100I	64	1.8	5	TQFP	100	64	I
LC4064ZC	LC4064ZC-75T100I	64	1.8	7.5	TQFP	100	64	I
LC40042C	LC4064ZC-5M56I	64	1.8	5	csBGA	56	34	I
	LC4064ZC-75M56I	64	1.8	7.5	csBGA	56	34	I
	LC4064ZC-5T48I	64	1.8	5	TQFP	48	32	I
	LC4064ZC-75T48I	64	1.8	7.5	TQFP	48	32	I
LC4128ZC	LC4128ZC-75M132I	128	1.8	7.5	csBGA	132	96	I
10412020	LC4128ZC-75T100I	128	1.8	7.5	TQFP	100	64	I
	LC4256ZC-75T176I	256	1.8	7.5	TQFP	176	128	I
LC4256ZC	LC4256ZC-75M132I	256	1.8	7.5	csBGA	132	96	I
	LC4256ZC-75T100I	256	1.8	7.5	TQFP	100	64	I

ispMACH 4000ZC (1.8V, Zero Power) Industrial Devices (Cont.)

ispMACH 4000ZC (1.8V, Zero Power) Extended Temperature Devices

Family	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
LC4032ZC	LC4032ZC-75T48E	32	1.8	7.5	TQFP	48	32	E
LC4064ZC	LC4064ZC-75T100E	64	1.8	7.5	TQFP	100	64	E
20400420	LC4064ZC-75T48E	64	1.8	7.5	TQFP	48	32	E
LC4128ZC	LC4128ZC-75T100E	128	1.8	7.5	TQFP	100	64	E
LC4256ZC	LC4256ZC-75T176E	256	1.8	7.5	TQFP	176	128	E
20423020	LC4256ZC-75T100E	256	1.8	7.5	TQFP	100	64	E

ispMACH 4000C (1.8V) Commercial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
LC4032C	LC4032C-25T48C	32	1.8	2.5	TQFP	48	32	С
	LC4032C-5T48C	32	1.8	5	TQFP	48	32	С
	LC4032C-75T48C	32	1.8	7.5	TQFP	48	32	С
	LC4032C-25T44C	32	1.8	2.5	TQFP	44	30	С
	LC4032C-5T44C	32	1.8	5	TQFP	44	30	С
	LC4032C-75T44C	32	1.8	7.5	TQFP	44	30	С
LC4064C	LC4064C-25T100C	64	1.8	2.5	TQFP	100	64	С
	LC4064C-5T100C	64	1.8	5	TQFP	100	64	С
	LC4064C-75T100C	64	1.8	7.5	TQFP	100	64	С
	LC4064C-25T48C	64	1.8	2.5	TQFP	48	32	С
	LC4064C-5T48C	64	1.8	5	TQFP	48	32	С
	LC4064C-75T48C	64	1.8	7.5	TQFP	48	32	С
	LC4064C-25T44C	64	1.8	2.5	TQFP	44	30	С
	LC4064C-5T44C	64	1.8	5	TQFP	44	30	С
	LC4064C-75T44C	64	1.8	7.5	TQFP	44	30	С

Device	Part Number Macrocells Voltage t _{PD} Packa		Package	Pin/Ball Count	I/O	Grade		
	LC4256C-5FTN256AI	256	1.8	5	Lead-free ftBGA	256	128	I
	LC4256C-75FTN256AI	256	1.8	7.5	Lead-free ftBGA	256	128	I
	LC4256C-10FTN256AI	256	1.8	10	Lead-free ftBGA	256	128	I
	LC4256C-5FTN256BI	256	1.8	5	Lead-free ftBGA	256	160	1
	LC4256C-75FTN256BI	256	1.8	7.5	Lead-free ftBGA	256	160	1
	LC4256C-10FTN256BI	256	1.8	10	Lead-free ftBGA	256	160	1
	LC4256C-5FN256AI1	256	1.8	5	Lead-free fpBGA	256	128	I
	LC4256C-75FN256AI1	256	1.8	7.5	Lead-free fpBGA	256	128	I
	LC4256C-10FN256AI1	256	1.8	10	Lead-free fpBGA	256	128	I
LC4256C	LC4256C-5FN256BI1	256	1.8	5	Lead-free fpBGA	256	160	I
	LC4256C-75FN256BI1	256	1.8	7.5	Lead-free fpBGA	256	160	I
	LC4256C-10FN256BI1	256	1.8	10	Lead-free fpBGA	256	160	I
	LC4256C-5TN176I	256	1.8	5	Lead-free TQFP	176	128	Ι
	LC4256C-75TN176I	256	1.8	7.5	Lead-free TQFP	176	128	I
	LC4256C-10TN176I	256	1.8	10	Lead-free TQFP	176	128	Ι
	LC4256C-5TN100I	256	1.8	5	Lead-free TQFP	100	64	I
	LC4256C-75TN100I	256	1.8	7.5	Lead-free TQFP	100	64	I
	LC4256C-10TN100I	256	1.8	10	Lead-free TQFP	100	64	I
	LC4384C-5FTN256I	384	1.8	5	Lead-free ftBGA	256	192	I
	LC4384C-75FTN256I	384	1.8	7.5	Lead-free ftBGA	256	192	I
	LC4384C-10FTN256I	384	1.8	10	Lead-free ftBGA	256	192	I
	LC4384C-5FN256I1	384	1.8	5	Lead-free fpBGA	256	192	I
LC4384C	LC4384C-75FN256l1	384	1.8	7.5	Lead-free fpBGA	256	192	I
	LC4384C-10FN256l1	384	1.8	10	Lead-free fpBGA	256	192	I
	LC4384C-5TN176I	384	1.8	5	Lead-free TQFP	176	128	I
	LC4384C-75TN176I	384	1.8	7.5	Lead-free TQFP	176	128	I
	LC4384C-10TN176I	384	1.8	10	Lead-free TQFP	176	128	I
	LC4512C-5FTN256I	512	1.8	5	Lead-free ftBGA	256	208	I
LC4512C	LC4512C-75FTN256I	512	1.8	7.5	Lead-free ftBGA	256	208	I
	LC4512C-10FTN256I	512	1.8	10	Lead-free ftBGA	256	208	I
	LC4512C-5FN256I1	512	1.8	5	Lead-free fpBGA	256	208	I
	LC4512C-75FN256I1	512	1.8	7.5	Lead-free fpBGA	256	208	I
	LC4512C-10FN256I1	512	1.8	10	Lead-free fpBGA	256	208	I
	LC4512C-5TN176I	512	1.8	5	Lead-free TQFP	176	128	I
	LC4512C-75TN176I	512	1.8	7.5	Lead-free TQFP	176	128	I
	LC4512C-10TN176I	512	1.8	10	Lead-free TQFP	176	128	I

ispMACH 4000C (1.8V) Lead-Free Industrial Devices (Cont.)

1. Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.