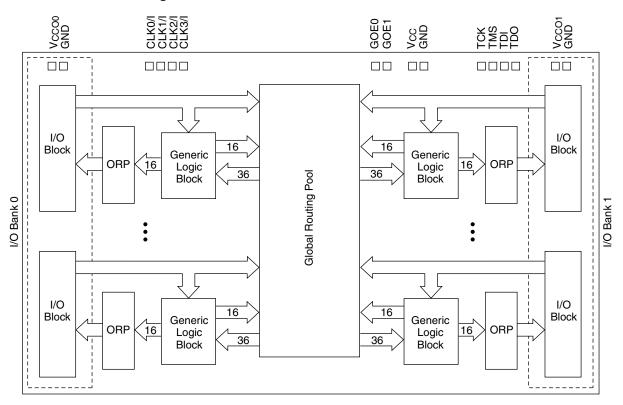


Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.


Applications of Embedded - CPLDs

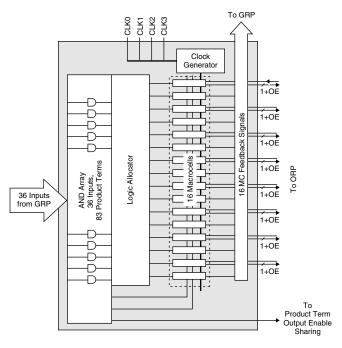
Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	-
Number of I/O	64
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4064v-10t100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1. Functional Block Diagram

The I/Os in the ispMACH 4000 are split into two banks. Each bank has a separate I/O power supply. Inputs can support a variety of standards independent of the chip or bank power supply. Outputs support the standards compatible with the power supply provided to the bank. Support for a variety of standards helps designers implement designs in mixed voltage environments. In addition, 5V tolerant inputs are specified within an I/O bank that is connected to V_{CCO} of 3.0V to 3.6V for LVCMOS 3.3, LVTTL and PCI interfaces.

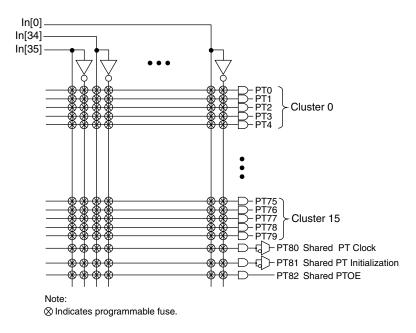

ispMACH 4000 Architecture

There are a total of two GLBs in the ispMACH 4032, increasing to 32 GLBs in the ispMACH 4512. Each GLB has 36 inputs. All GLB inputs come from the GRP and all outputs from the GLB are brought back into the GRP to be connected to the inputs of any other GLB on the device. Even if feedback signals return to the same GLB, they still must go through the GRP. This mechanism ensures that GLBs communicate with each other with consistent and predictable delays. The outputs from the GLB are also sent to the ORP. The ORP then sends them to the associated I/O cells in the I/O block.

Generic Logic Block

The ispMACH 4000 GLB consists of a programmable AND array, logic allocator, 16 macrocells and a GLB clock generator. Macrocells are decoupled from the product terms through the logic allocator and the I/O pins are decoupled from macrocells through the ORP. Figure 2 illustrates the GLB.

Figure 2. Generic Logic Block



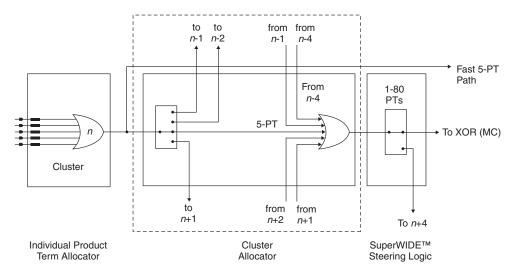
AND Array

The programmable AND Array consists of 36 inputs and 83 output product terms. The 36 inputs from the GRP are used to form 72 lines in the AND Array (true and complement of the inputs). Each line in the array can be connected to any of the 83 output product terms via a wired-AND. Each of the 80 logic product terms feed the logic allocator with the remaining three control product terms feeding the Shared PT Clock, Shared PT Initialization and Shared PT OE. The Shared PT Clock and Shared PT Initialization signals can optionally be inverted before being fed to the macrocells.

Every set of five product terms from the 80 logic product terms forms a product term cluster starting with PT0. There is one product term cluster for every macrocell in the GLB. Figure 3 is a graphical representation of the AND Array.

Figure 3. AND Array

Enhanced Logic Allocator


Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term cluster is associated with a macrocell. The cluster size for the ispMACH 4000 family is 4+1 (total 5) product terms. The software automatically considers the availability and distribution of product term clusters as it fits the functions within a GLB. The logic allocator is designed to provide three speed paths: 5-PT fast bypass path, 20-PT Speed Locking path and an up to 80-PT path. The availability of these three paths lets designers trade timing variability for increased performance.

The enhanced Logic Allocator of the ispMACH 4000 family consists of the following blocks:

- Product Term Allocator
- Cluster Allocator
- Wide Steering Logic

Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.

Figure 4. Macrocell Slice

Product Term Allocator

The product term allocator assigns product terms from a cluster to either logic or control applications as required by the design being implemented. Product terms that are used as logic are steered into a 5-input OR gate associated with the cluster. Product terms that used for control are steered either to the macrocell or I/O cell associated with the cluster. Table 3 shows the available functions for each of the five product terms in the cluster. The OR gate output connects to the associated I/O cell, providing a fast path for narrow combinatorial functions, and to the logic allocator.

Table 3. Individual PT Steering

Product Term	Logic	Control
PT <i>n</i>	Logic PT	Single PT for XOR/OR
PT <i>n</i> +1	Logic PT	Individual Clock (PT Clock)
PT <i>n</i> +2	Logic PT	Individual Initialization or Individual Clock Enable (PT Initialization/CE)
PT <i>n</i> +3	Logic PT	Individual Initialization (PT Initialization)
PT <i>n</i> +4	Logic PT	Individual OE (PTOE)

Cluster Allocator

The cluster allocator allows clusters to be steered to neighboring macrocells, thus allowing the creation of functions with more product terms. Table 4 shows which clusters can be steered to which macrocells. Used in this manner, the cluster allocator can be used to form functions of up to 20 product terms. Additionally, the cluster allocator accepts inputs from the wide steering logic. Using these inputs, functions up to 80 product terms can be created.

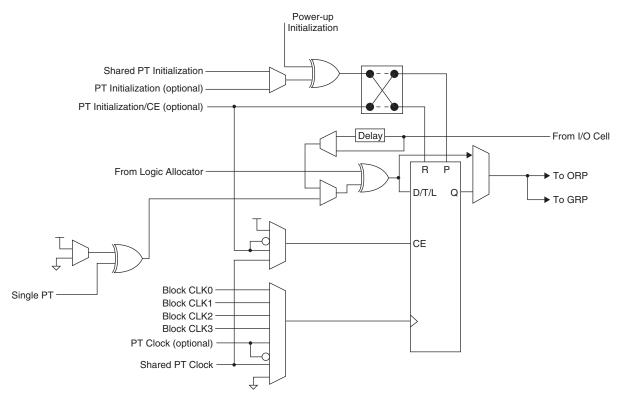
Table 4. Available Clusters for Each Macrocell

Macrocell		Available	Clusters	
M0	_	C0	C1	C2
M1	C0	C1	C2	C3
M2	C1	C2	C3	C4
M3	C2	C3	C4	C5
M4	C3	C4	C5	C6
M5	C4	C5	C6	C7
M6	C5	C6	C7	C8
M7	C6	C7	C8	C9
M8	C7	C8	C9	C10
M9	C8	C9	C10	C11
M10	C9	C10	C11	C12
M11	C10	C11	C12	C13
M12	C11	C12	C13	C14
M13	C12	C13	C14	C15
M14	C13	C14	C15	_
M15	C14	C15	_	_

Wide Steering Logic

The wide steering logic allows the output of the cluster allocator n to be connected to the input of the cluster allocator n+4. Thus, cluster chains can be formed with up to 80 product terms, supporting wide product term functions and allowing performance to be increased through a single GLB implementation. Table 5 shows the product term chains.

Table 5. Product Term Expansion Capability


Expansion Chains	Macrocells Associated with Expansion Chain (with Wrap Around)	Max PT/ Macrocell
Chain-0	M0 M4 M8 M12 M0	75
Chain-1	M1 M5 M9 M13 M1	80
Chain-2	M2 M6 M10 M14 M2	75
Chain-3	M3 M7 M11 M15 M3	70

Every time the super cluster allocator is used, there is an incremental delay of t_{EXP}. When the super cluster allocator is used, all destinations other than the one being steered to, are given the value of ground (i.e., if the super cluster is steered to M (n+4), then M (n) is ground).

Macrocell

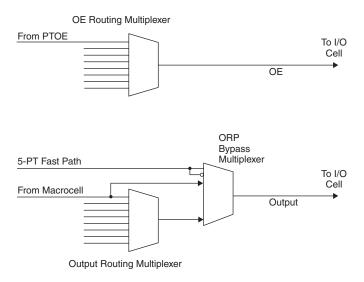
The 16 macrocells in the GLB are driven by the 16 outputs from the logic allocator. Each macrocell contains a programmable XOR gate, a programmable register/latch, along with routing for the logic and control functions. Figure 5 shows a graphical representation of the macrocell. The macrocells feed the ORP and GRP. A direct input from the I/O cell allows designers to use the macrocell to construct high-speed input registers. A programmable delay in this path allows designers to choose between the fastest possible set-up time and zero hold time.

Figure 5. Macrocell

Enhanced Clock Multiplexer

The clock input to the flip-flop can select any of the four block clocks along with the shared PT clock, and true and complement forms of the optional individual term clock. An 8:1 multiplexer structure is used to select the clock. The eight sources for the clock multiplexer are as follows:

- Block CLK0
- Block CLK1


Output Routing Pool (ORP)

The Output Routing Pool allows macrocell outputs to be connected to any of several I/O cells within an I/O block. This provides greater flexibility in determining the pinout and allows design changes to occur without affecting the pinout. The output routing pool also provides a parallel capability for routing macrocell-level OE product terms. This allows the OE product term to follow the macrocell output as it is switched between I/O cells. Additionally, the output routing pool allows the macrocell output or true and complement forms of the 5-PT bypass signal to bypass the output routing multiplexers and feed the I/O cell directly. The enhanced ORP of the ispMACH 4000 family consists of the following elements:

- · Output Routing Multiplexers
- OE Routing Multiplexers
- Output Routing Pool Bypass Multiplexers

Figure 7 shows the structure of the ORP from the I/O cell perspective. This is referred to as an ORP slice. Each ORP has as many ORP slices as there are I/O cells in the corresponding I/O block.

Figure 7. ORP Slice

Output Routing Multiplexers

The details of connections between the macrocells and the I/O cells vary across devices and within a device dependent on the maximum number of I/Os available. Tables 5-9 provide the connection details.

Table 6. ORP Combinations for I/O Blocks with 8 I/Os

I/O Cell	Available Macrocells
I/O 0	M0, M1, M2, M3, M4, M5, M6, M7
I/O 1	M2, M3, M4, M5, M6, M7, M8, M9
I/O 2	M4, M5, M6, M7, M8, M9, M10, M11
I/O 3	M6, M7, M8, M9, M10, M11, M12, M13
I/O 4	M8, M9, M10, M11, M12, M13, M14, M15
I/O 5	M10, M11, M12, M13, M14, M15, M0, M1
I/O 6	M12, M13, M14, M15, M0, M1, M2, M3
I/O 7	M14, M15, M0, M1, M2, M3, M4, M5

Timing v.3.2

ispMACH 4000V/B/C External Switching Characteristics

Over Recommended Operating Conditions

		-2	25	-2	-27		3	-35		
Parameter	Description ^{1, 2, 3}	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PD}	5-PT bypass combinatorial propagation delay	_	2.5	_	2.7	_	3.0	_	3.5	ns
t _{PD_MC}	20-PT combinatorial propagation delay through macrocell	_	3.2	_	3.5	_	3.8	_	4.2	ns
t _S	GLB register setup time before clock	1.8		1.8		2.0		2.0	_	ns
t _{ST}	GLB register setup time before clock with T-type register	2.0	_	2.0	_	2.2	_	2.2	_	ns
t _{SIR}	GLB register setup time before clock, input register path	0.7	_	1.0	_	1.0	_	1.0	_	ns
t _{SIRZ}	GLB register setup time before clock with zero hold	1.7	_	2.0	_	2.0	_	2.0	_	ns
t _H	GLB register hold time after clock	0.0	_	0.0	_	0.0	_	0.0	_	ns
t _{HT}	GLB register hold time after clock with T-type register	0.0	_	0.0	_	0.0	_	0.0	_	ns
t _{HIR}	GLB register hold time after clock, input register path	0.9	_	1.0	_	1.0	_	1.0	_	ns
t _{HIRZ}	GLB register hold time after clock, input register path with zero hold	0.0	_	0.0	_	0.0	_	0.0	_	ns
t _{CO}	GLB register clock-to-output delay		2.2	_	2.7	_	2.7	_	2.7	ns
t _R	External reset pin to output delay	_	3.5	_	4.0	_	4.4	_	4.5	ns
t _{RW}	External reset pulse duration	1.5		1.5	_	1.5		1.5	-	ns
t _{PTOE/DIS}	Input to output local product term output enable/disable	_	4.0	_	4.5	_	5.0	_	5.5	ns
t _{GPTOE/DIS}	Input to output global product term output enable/disable	-	5.0	_	6.5	_	8.0	_	8.0	ns
t _{GOE/DIS}	Global OE input to output enable/disable	_	3.0	_	3.5	_	4.0	_	4.5	ns
t _{CW}	Global clock width, high or low	1.1		1.3	_	1.3	_	1.3	_	ns
t _{GW}	Global gate width low (for low transparent) or high (for high transparent)	1.1	_	1.3	_	1.3	_	1.3	_	ns
t _{WIR}	Input register clock width, high or low	1.1	_	1.3	_	1.3	_	1.3	_	ns
f _{MAX} ⁴	Clock frequency with internal feedback		400		333	_	322	_	322	MHz
f _{MAX} (Ext.)	Clock frequency with external feedback, [1/ (t _S + t _{CO})]	_	250	_	222	_	212	_	212	MHz

^{1.} Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate other standards.

^{2.} Measured using standard switching circuit, assuming GRP loading of 1 and 1 output switching.

^{3.} Pulse widths and clock widths less than minimum will cause unknown behavior.

^{4.} Standard 16-bit counter using GRP feedback.

ispMACH 4000Z External Switching Characteristics

Over Recommended Operating Conditions

		-35		-3	37	-4		
Parameter	Description ^{1, 2, 3}	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PD}	5-PT bypass combinatorial propagation delay		3.5		3.7	_	4.2	ns
t _{PD_MC}	20-PT combinatorial propagation delay through macrocell	_	4.4	_	4.7	_	5.7	ns
t _S	GLB register setup time before clock	2.2	_	2.5	_	2.7	_	ns
t _{ST}	GLB register setup time before clock with T-type register	2.4	_	2.7	_	2.9	_	ns
t _{SIR}	GLB register setup time before clock, input register path	1.0	_	1.1	_	1.3	_	ns
t _{SIRZ}	GLB register setup time before clock with zero hold	2.0	_	2.1	_	2.6	_	ns
t _H	GLB register hold time after clock	0.0	_	0.0	_	0.0	_	ns
t _{HT}	GLB register hold time after clock with T-type register		_	0.0	_	0.0	_	ns
t _{HIR}	GLB register hold time after clock, input register path		_	1.0	_	1.3	_	ns
t _{HIRZ}	GLB register hold time after clock, input register path with zero hold	0.0	_	0.0	_	0.0	_	ns
t _{CO}	GLB register clock-to-output delay		3.0		3.2	_	3.5	ns
t _R	External reset pin to output delay		5.0		6.0	_	7.3	ns
t _{RW}	External reset pulse duration	1.5	_	1.7	_	2.0	_	ns
t _{PTOE/DIS}	Input to output local product term output enable/disable	_	7.0	_	8.0	_	8.0	ns
t _{GPTOE/DIS}	Input to output global product term output enable/disable	_	6.5	_	7.0	_	8.0	ns
t _{GOE/DIS}	Global OE input to output enable/disable	_	4.5	_	4.5	_	4.8	ns
t _{CW}	Global clock width, high or low	1.0	_	1.5	_	1.8	_	ns
t _{GW}	Global gate width low (for low transparent) or high (for high transparent)		_	1.5	_	1.8	_	ns
t _{WIR}	Input register clock width, high or low	1.0	_	1.5	_	1.8	_	ns
f _{MAX} ⁴	Clock frequency with internal feedback	_	267	_	250	_	220	MHz
f _{MAX} (Ext.)	clock frequency with external feedback, $[1 / (t_S + t_{CO})]$	_	192	_	175	_	161	MHz

^{1.} Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate other standards.

Timing v.2.2

^{2.} Measured using standard switching GRP loading of 1 and 1 output switching.

^{3.} Pulse widths and clock widths less than minimum will cause unknown behavior.

^{4.} Standard 16-bit counter using GRP feedback.

Signal Descriptions

Signal Names	Desc	ription					
TMS	Input – This pin is the IEEE 1149.1 Test Notes that the state machine.	Input – This pin is the IEEE 1149.1 Test Mode Select input, which is used to control the state machine.					
TCK	Input – This pin is the IEEE 1149.1 Test 0 state machine.	Clock input pin, used to clock through the					
TDI	Input – This pin is the IEEE 1149.1 Test D	Data In pin, used to load data.					
TDO	Output – This pin is the IEEE 1149.1 Test	Data Out pin used to shift data out.					
GOE0/IO, GOE1/IO	These pins are configured to be either Gl pins.	obal Output Enable Input or as general I/O					
GND	Ground	Ground					
NC	Not Connected						
V _{CC}	The power supply pins for logic core and	JTAG port.					
CLK0/I, CLK1/I, CLK2/I, CLK3/I	These pins are configured to be either CL	₋K input or as an input.					
V _{CCO0} , V _{CCO1}	The power supply pins for each I/O bank.						
	Input/Output ¹ – These are the general pu reference (alpha) and z is macrocell refer	rpose I/O used by the logic array. y is GLB ence (numeric). z: 0-15.					
	ispMACH 4032	y: A-B					
	ispMACH 4064	y: A-D					
yzz	ispMACH 4128	y: A-H					
	ispMACH 4256	y: A-P					
	ispMACH 4384	y: A-P, AX-HX					
	ispMACH 4512	y: A-P, AX-PX					

^{1.} In some packages, certain I/Os are only available for use as inputs. See the signal connections table for details.

ispMACH 4000V/B/C ORP Reference Table

	4032	V/B/C	4	1064\	//B/C	4128	V/B/	0		4256	V/B/C		4384\	//B/C	4512	2V/B/C
Number of I/Os	30¹	32	30 ²	32	64	64	92³	96	64	96 ⁴	128	160	128	192	128	208
Number of GLBs	2	2	4	4	4	8	8	8	16	16	16	16	16	16	16	16
Number of I/Os / GLB	16	16	8	8	16	8	12	12	4	8	8	10	8	8	8	Mixture of 8 & 4 ⁵
Reference ORP Table	16 l/ Gl	Os / LB	8 I/0 GI		16 I/Os / GLB	8 I/Os / GLB	12 l/ GI		4 I/Os / GLB	8 I/Os / GLB	8 I/Os / GLB	10 I/Os / GLB	8 I/0 GL		8 I/Os/ GLB	8 I/Os / GLB 4 I/Os / GLB

- 1. 32-macrocell device, 44 TQFP: 2 GLBs have 15 out of 16 I/Os bonded out.
- 2. 64-macrocells device, 44 TQFP: 2 GLBs have 7 out of 8 I/Os bonded out.
- 3. 128-macrocell device, 128 TQFP: 4 GLBs have 11 out of 12 I/Os
- 4. 256-macrocell device, 144 TQFP: 16 GLBs have 6 I/Os per
- 5. 512-macrocell device: 20 GLBs have 8 I/Os per, 12 GLBs have 4 I/Os per

ispMACH 4000Z ORP Reference Table

	4032Z	406	64Z	412	28Z	4256Z		
Number of I/Os	32	32	64	64	96	64	96¹	128
Number of GLBs	2	4	4	8	8	16	16	16
Number of I/Os / GLB	16	8	16	8	12	4	8	8
Reference ORP Table	16 I/Os / GLB	8 I/Os / GLB	16 I/Os / GLB	8 I/Os / GLB	12 I/Os / GLB	4 I/Os / GLB	8 I/Os / GLB	8 I/Os / GLB

^{1. 256-}macrocell device, 132 csBGA: 16 GLBs have 6 I/Os per

ispMACH 4000V/B/C/Z Power Supply and NC Connections¹

Signal	44-pin TQFP ²	48-pin TQFP ²	56-ball csBGA ³	100-pin TQFP ²	128-pin TQFP ²
VCC	11, 33	12, 36	K2, A9	25, 40, 75, 90	32, 51, 96, 115
VCCO0 VCCO (Bank 0)	6	6	F3	13, 33, 95	3, 17, 30, 41, 122
VCCO1 VCCO (Bank 1)	28	30	E8	45, 63, 83	58, 67, 81, 94, 105
GND	12, 34	13, 37	H3, C8	1, 26, 51, 76	1, 33, 65, 97
GND (Bank 0)	5	5	D3	7, 18, 32, 96	10, 24, 40, 113, 123
GND (Bank 1)	27	29	G8	46, 57, 68, 82	49, 59, 74, 88, 104
NC	_	_	4032Z : A8, B10, E1, E3, F8, F10, J1, K3	_	_

^{1.} All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with the bank shown.

^{2.} Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

^{3.} Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.

ispMACH 4256V/B/C/Z, 4384V/B/C, 4512V/B/C, Logic Signal Connections: 176-Pin TQFP (Cont.)

Bank		ispMACH 42	56V/B/C/Z	ispMACH 4	384V/B/C	ispMACH 4512V/B/C		
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	
19	0	D4	D^2	E4	E^2	G4	G^2	
20	0	D2	D^1	E2	E^1	G2	G^1	
21	0	D0	D^0	E0	E^0	G0	G^0	
22	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-	
23	0	E0	E^0	H0	H^0	J0	J^0	
24	0	E2	E^1	H2	H^1	J2	J^1	
25	0	E4	E^2	H4	H^2	J4	J^2	
26	0	E6	E^3	H6	H^3	J6	J^3	
27	0	E8	E^4	H8	H^4	J8	J^4	
28	0	E10	E^5	H10	H^5	J10	J^5	
29	0	E12	E^6	H12	H^6	J12	J^6	
30	0	E14	E^7	H14	H^7	J14	J^7	
31	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-	
32	0	F0	F^0	J0	J^0	N0	N^0	
33	0	F2	F^1	J2	J^1	N2	N^1	
34	0	F4	F^2	J4	J^2	N4	N^2	
35	0	F6	F^3	J6	J^3	N6	N^3	
36	0	F8	F^4	J8	J^4	N8	N^4	
37	0	F10	F^5	J10	J^5	N10	N^5	
38	0	F12	F^6	J12	J^6	N12	N^6	
39	0	F14	F^7	J14	J^7	N14	N^7	
40	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-	
41	-	TCK	-	TCK	-	TCK	-	
42	-	VCC	-	VCC	-	VCC	-	
43	-	NC	-	NC	-	NC	-	
44	-	NC	-	NC	-	NC	-	
45	-	NC	-	NC	-	NC	-	
46	-	GND	-	GND (Bank 0)	-	GND	-	
47	0	G14	G^7	K14	K^7	O14	O^7	
48	0	G12	G^6	K12	K^6	O12	O^6	
49	0	G10	G^5	K10	K^5	O10	O^5	
50	0	G8	G^4	K8	K^4	O8	0^4	
51	0	G6	G^3	K6	K^3	O6	O^3	
52	0	G4	G^2	K4	K^2	O4	O^2	
53	0	G2	G^1	K2	K^1	O2	O^1	
54	0	G0	G^0	K0	K^0	00	O^0	
55	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-	
56	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-	
57	0	H14	H^7	L14	L^7	P14	P^7	
58	0	H12	H^6	L12	L^6	P12	P^6	
59	0	H10	H^5	L10	L^5	P10	P^5	

ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C Logic Signal Connections: 256-Ball ftBGA/fpBGA (Cont.)

Ball	I/O	ispMACH 4256 128-I/O	V/B/C	ispMACH 4256 160-I/O	V/B/C	ispMACH 4384	V/B/C	ispMACH 4512	V/B/C
Number	Bank	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
J6	0	E14	E^7	E10	E^7	H14	H^7	J14	J^7
K3	0	NC	-	E12	E^8	G0	G^0	10	I^0
K4	0	NC	-	E14	E^9	G2	G^1	14	I^1
L1	0	NC	-	NC	-	l14	I^7	K0	K^0
L2	0	NC	-	NC	-	l12	I^6	K2	K^1
M1	0	NC	-	NC	-	NC	-	K4	K^2
-	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
-	0	-	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
M2	0	NC	-	NC	-	NC	-	K6	K^3
N1	0	NC	-	NC	-	I10	I^5	K8	K^4
M3	0	NC	-	NC	-	18	I^4	K10	K^5
M4	0	NC	-	F0	F^0	G4	G^2	18	I^2
N2	0	NC	-	F1	F^1	G6	G^3	l12	I^3
K5	0	F0	F^0	F2	F^2	J0	J^0	N0	N^0
P1	0	F2	F^1	F4	F^3	J2	J^1	N2	N^1
K6	0	F4	F^2	F6	F^4	J4	J^2	N4	N^2
N3	0	F6	F^3	F8	F^5	J6	J^3	N6	N^3
L5	0	F8	F^4	F9	F^6	J8	J^4	N8	N^4
P2	0	F10	F^5	F10	F^7	J10	J^5	N10	N^5
L6	0	F12	F^6	F12	F^8	J12	J^6	N12	N^6
R1	0	F14	F^7	F14	F^9	J14	J^7	N14	N^7
-	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
P3	-	TCK	-	TCK	-	TCK	-	TCK	-
-	-	VCC	-	VCC	-	VCC	-	VCC	-
-	-	GND	-	GND	-	GND	-	GND	-
-	0	-	-	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
T2	0	NC	-	G14	G^9	16	I^3	K12	K^6
M5	0	NC	-	G12	G^8	14	I^2	K14	K^7
N4	0	G14	G^7	G10	G^7	K14	K^7	O14	O^7
Т3	0	G12	G^6	G9	G^6	K12	K^6	O12	O^6
R3	0	G10	G^5	G8	G^5	K10	K^5	O10	O^5
M6	0	G8	G^4	G6	G^4	K8	K^4	O8	0^4
P4	0	G6	G^3	G4	G^3	K6	K^3	O6	O^3
L7	0	G4	G^2	G2	G^2	K4	K^2	O4	0^2
N5	0	G2	G^1	G1	G^1	K2	K^1	O2	0^1
M7	0	G0	G^0	G0	G^0	K0	K^0	00	O^0
P5	0	NC	-	NC	-	G8	G^4	MO	M^0
R4	0	NC	-	NC	-	G10	G^5	M4	M^1
T4	0	NC	-	NC	-	NC	-	L0	L^0
-	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
-	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-

ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C Logic Signal Connections: 256-Ball ftBGA/fpBGA (Cont.)

Ball	I/O	ispMACH 4256 128-I/O	V/B/C	ispMACH 4256 160-I/O	V/B/C	ispMACH 4384	V/B/C	ispMACH 4512	V/B/C
Number	Bank	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
R14	1	J10	J^5	J10	J^7	N10	N^5	BX10	BX^5
P13	1	J12	J^6	J12	J^8	N12	N^6	BX12	BX^6
N13	1	J14	J^7	J14	J^9	N14	N^7	BX14	BX^7
M12	1	NC	-	NC	-	P4	P^2	FX0	FX^0
T15	1	NC	-	NC	-	P6	P^3	FX2	FX^1
-	-	VCC	-	VCC	-	VCC	-	VCC	-
-	-	GND	-	GND	-	GND	-	GND	-
-	1	-	-	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
P14	-	TMS	-	TMS	-	TMS	-	TMS	-
-	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
L12	1	NC	-	NC	-	NC	-	FX4	FX^2
R16	1	NC	-	NC	-	P8	P^4	FX6	FX^3
N14	1	NC	-	NC	-	P10	P^5	FX8	FX^4
P15	1	K14	K^7	K14	K^9	O14	O^7	CX14	CX^7
L11	1	K12	K^6	K12	K^8	012	O^6	CX12	CX^6
P16	1	K10	K^5	K10	K^7	O10	O^5	CX10	CX^5
K11	1	K8	K^4	K9	K^6	O8	0^4	CX8	CX^4
M14	1	K6	K^3	K8	K^5	O6	O^3	CX6	CX^3
K12	1	K4	K^2	K6	K^4	O4	O^2	CX4	CX^2
N15	1	K2	K^1	K4	K^3	O2	O^1	CX2	CX^1
N16	1	K0	K^0	K2	K^2	00	O^0	CX0	CX^0
M15	1	NC	-	K1	K^1	BX6	BX^3	HX0	HX^0
M13	1	NC	-	K0	K^0	BX4	BX^2	HX4	HX^1
-	1	-	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
-	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
M16	1	NC	-	NC	-	NC	-	FX10	FX^5
L15	1	NC	-	NC	-	P12	P^6	FX12	FX^6
L16	1	NC	-	NC	-	P14	P^7	FX14	FX^7
J11	1	NC	-	L14	L^9	BX2	BX^1	HX8	HX^2
K15	1	NC	-	L12	L^8	BX0	BX^0	HX12	HX^3
J12	1	L14	L^7	L10	L^7	AX14	AX^7	GX14	GX^7
K13	1	L12	L^6	L9	L^6	AX12	AX^6	GX12	GX^6
K14	1	L10	L^5	L8	L^5	AX10	AX^5	GX10	GX^5
K16	1	L8	L^4	L6	L^4	AX8	AX^4	GX8	GX^4
J16	1	L6	L^3	L4	L^3	AX6	AX^3	GX6	GX^3
J15	1	L4	L^2	L2	L^2	AX4	AX^2	GX4	GX^2
H16	1	L2	L^1	L1	L^1	AX2	AX^1	GX2	GX^1
J13	1	L0	L^0	L0	L^0	AX0	AX^0	GX0	GX^0
-	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
-	1	-	-	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
J14	1	MO	M^0	MO	M^0	DX0	DX^0	JX0	JX^0

ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C Logic Signal Connections: 256-Ball ftBGA/fpBGA (Cont.)

Ball	I/O	ispMACH 4256 128-I/O	V/B/C	ispMACH 4256 160-I/O	V/B/C	ispMACH 4384V/B/C		ispMACH 4512	V/B/C
Number	Bank	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
E7	0	NC	-	B1	B^1	F8	F^4	D12	D^3
A3	0	B0	B^0	B2	B^2	B0	B^0	В0	B^0
F7	0	B2	B^1	B4	B^3	B2	B^1	B2	B^1
B4	0	B4	B^2	B6	B^4	B4	B^2	B4	B^2
C5	0	B6	B^3	B8	B^5	B6	B^3	B6	B^3
A2	0	B8	B^4	B9	B^6	B8	B^4	B8	B^4
E6	0	B10	B^5	B10	B^7	B10	B^5	B10	B^5
В3	0	B12	B^6	B12	B^8	B12	B^6	B12	B^6
C4	0	B14	B^7	B14	B^9	B14	B^7	B14	B^7
D4	0	NC	-	NC	-	D10	D^5	F0	F^0
E5	0	NC	-	NC	-	D8	D^4	F2	F^1
-	-	VCC	-	VCC	-	VCC	-	VCC	-
-	-	-	-	-	-	GND	-	GND	-
-	0	-	-	-	-	GND (Bank 0)	-	GND (Bank 0)	-

Note: VCC, VCCO and GND are tied together to their respective common signal on the package substrate. See Power Supply and NC Connections table for VCC/ VCCO/GND pin definitions.

ispMACH 4000C (1.8V) Industrial Devices (Cont.)

Family	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	1/0	Grade
	LC4384C-5FT256I	384	1.8	5	ftBGA	256	192	ı
	LC4384C-75FT256I	384	1.8	7.5	ftBGA	256	192	I
	LC4384C-10FT256I	384	1.8	10	ftBGA	256	192	I
	LC4384C-5F256I ¹	384	1.8	5	fpBGA	256	192	I
LC4384C	LC4384C-75F256I ¹	384	1.8	7.5	fpBGA	256	192	I
	LC4384C-10F256I ¹	384	1.8	10	fpBGA	256	192	I
	LC4384C-5T176I	384	1.8	5	TQFP	176	128	I
	LC4384C-75T176I	384	1.8	7.5	TQFP	176	128	I
	LC4384C-10T176I	384	1.8	10	TQFP	176	128	I
	LC4512C-5FT256I	512	1.8	5	ftBGA	256	208	I
	LC4512C-75FT256I	512	1.8	7.5	ftBGA	256	208	I
	LC4512C-10FT256I	512	1.8	10	ftBGA	256	208	I
	LC4512C-5F256I ¹	512	1.8	5	fpBGA	256	208	I
LC4512C	LC4512C-75F256I ¹	512	1.8	7.5	fpBGA	256	208	I
	LC4512C-10F256I ¹	512	1.8	10	fpBGA	256	208	I
	LC4512C-5T176I	512	1.8	5	TQFP	176	128	I
	LC4512C-75T176I	512	1.8	7.5	TQFP	176	128	I
	LC4512C-10T176I	512	1.8	10	TQFP	176	128	I

^{1.} Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000B (2.5V) Commercial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032B-25T48C	32	2.5	2.5	TQFP	48	32	С
	LC4032B-5T48C	32	2.5	5	TQFP	48	32	С
LC4032B	LC4032B-75T48C	32	2.5	7.5	TQFP	48	32	С
LC4032D	LC4032B-25T44C	32	2.5	2.5	TQFP	44	30	С
	LC4032B-5T44C	32	2.5	5	TQFP	44	30	С
	LC4032B-75T44C	32	2.5	7.5	TQFP	44	30	С
	LC4064B-25T100C	64	2.5	2.5	TQFP	100	64	С
	LC4064B-5T100C	64	2.5	5	TQFP	100	64	С
	LC4064B-75T100C	64	2.5	7.5	TQFP	100	64	С
	LC4064B-25T48C	64	2.5	2.5	TQFP	48	32	С
LC4064B	LC4064B-5T48C	64	2.5	5	TQFP	48	32	С
	LC4064B-75T48C	64	2.5	7.5	TQFP	48	32	С
	LC4064B-25T44C	64	2.5	2.5	TQFP	44	30	С
	LC4064B-5T44C	64	2.5	5	TQFP	44	30	С
	LC4064B-75T44C	64	2.5	7.5	TQFP	44	30	С
	LC4128B-27T128C	128	2.5	2.7	TQFP	128	92	С
	LC4128B-5T128C	128	2.5	5	TQFP	128	92	С
LC4128B	LC4128B-75T128C	128	2.5	7.5	TQFP	128	92	С
LU4120D	LC4128B-27T100C	128	2.5	2.7	TQFP	100	64	С
	LC4128B-5T100C	128	2.5	5	TQFP	100	64	С
	LC4128B-75T100C	128	2.5	7.5	TQFP	100	64	С

ispMACH 4000V (3.3V) Commercial Devices (Cont.)

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4512V-35FT256C	512	3.3	3.5	ftBGA	256	208	С
	LC4512V-5FT256C	512	3.3	5	ftBGA	256	208	С
	LC4512V-75FT256C	512	3.3	7.5	ftBGA	256	208	С
	LC4512V-35F256C ¹	512	3.3	3.5	fpBGA	256	208	С
LC4512V	LC4512V-5F256C ¹	512	3.3	5	fpBGA	256	208	С
	LC4512V-75F256C1	512	3.3	7.5	fpBGA	256	208	С
	LC4512V-35T176C	512	3.3	3.5	TQFP	176	128	С
	LC4512V-5T176C	512	3.3	5	TQFP	176	128	С
	LC4512V-75T176C	512	3.3	7.5	TQFP	176	128	С

^{1.} Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000V (3.3V) Industrial Devices

Family	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032V-5T48I	32	3.3	5	TQFP	48	32	I
	LC4032V-75T48I	32	3.3	7.5	TQFP	48	32	I
LC4032V	LC4032V-10T48I	32	3.3	10	TQFP	48	32	1
LC4032V	LC4032V-5T44I	32	3.3	5	TQFP	44	30	I
	LC4032V-75T44I	32	3.3	7.5	TQFP	44	30	1
	LC4032V-10T44I	32	3.3	10	TQFP	44	30	I
	LC4064V-5T100I	64	3.3	5	TQFP	100	64	1
	LC4064V-75T100I	64	3.3	7.5	TQFP	100	64	1
	LC4064V-10T100I	64	3.3	10	TQFP	100	64	I
	LC4064V-5T48I	64	3.3	5	TQFP	48	32	1
LC4064V	LC4064V-75T48I	64	3.3	7.5	TQFP	48	32	I
	LC4064V-10T48I	64	3.3	10	TQFP	48	32	I
	LC4064V-5T44I	64	3.3	5	TQFP	44	30	1
	LC4064V-75T44I	64	3.3	7.5	TQFP	44	30	I
	LC4064V-10T44I	64	3.3	10	TQFP	44	30	I
	LC4128V-5T144I	128	3.3	5	TQFP	144	96	I
	LC4128V-75T144I	128	3.3	7.5	TQFP	144	96	I
	LC4128V-10T144I	128	3.3	10	TQFP	144	96	I
	LC4128V-5T128I	128	3.3	5	TQFP	128	92	1
LC4128V	LC4128V-75T128I	128	3.3	7.5	TQFP	128	92	I
	LC4128V-10T128I	128	3.3	10	TQFP	128	92	I
	LC4128V-5T100I	128	3.3	5	TQFP	100	64	I
	LC4128V-75T100I	128	3.3	7.5	TQFP	100	64	I
	LC4128V-10T100I	128	3.3	10	TQFP	100	64	I

Lead-Free Packaging

ispMACH 4000Z (Zero Power, 1.8V) Lead-Free Commercial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032ZC-35MN56C	32	1.8	3.5	Lead-free csBGA	56	32	С
	LC4032ZC-5MN56C	32	1.8	5	Lead-free csBGA	56	32	С
LC4032ZC	LC4032ZC-75MN56C	32	1.8	7.5	Lead-free csBGA	56	32	С
LU4032ZU	LC4032ZC-35TN48C	32	1.8	3.5	Lead-free TQFP	48	32	С
	LC4032ZC-5TN48C	32	1.8	5	Lead-free TQFP	48	32	С
	LC4032ZC-75TN48C	32	1.8	7.5	Lead-free TQFP	48	32	С
	LC4064ZC-37MN132C	64	1.8	3.7	Lead-free csBGA	132	64	С
	LC4064ZC-5MN132C	64	1.8	5	Lead-free csBGA	132	64	С
	LC4064ZC-75MN132C	64	1.8	7.5	Lead-free csBGA	132	64	С
	LC4064ZC-37TN100C	64	1.8	3.7	Lead-free TQFP	100	64	С
	LC4064ZC-5TN100C	64	1.8	5	Lead-free TQFP	100	64	С
LC4064ZC	LC4064ZC-75TN100C	64	1.8	7.5	Lead-free TQFP	100	64	С
LO40042C	LC4064ZC-37MN56C	64	1.8	3.7	Lead-free csBGA	56	32	С
	LC4064ZC-5MN56C	64	1.8	5	Lead-free csBGA	56	32	С
	LC4064ZC-75MN56C	64	1.8	7.5	Lead-free csBGA	56	32	С
	LC4064ZC-37TN48C	64	1.8	3.7	Lead-free TQFP	48	32	С
	LC4064ZC-5TN48C	64	1.8	5	Lead-free TQFP	48	32	С
	LC4064ZC-75TN48C	64	1.8	7.5	Lead-free TQFP	48	32	С
	LC4128ZC-42MN132C	128	1.8	4.2	Lead-free csBGA	132	96	С
LC4128ZC	LC4128ZC-75MN132C	128	1.8	7.5	Lead-free csBGA	132	96	С
LC41282C	LC4128ZC-42TN100C	128	1.8	4.2	Lead-free TQFP	100	64	С
	LC4128ZC-75TN100C	128	1.8	7.5	Lead-free TQFP	100	64	С
	LC4256ZC-45TN176C	256	1.8	4.5	Lead-free TQFP	176	128	С
	LC4256ZC-75TN176C	256	1.8	7.5	Lead-free TQFP	176	128	С
LC4256ZC	LC4256ZC-45MN132C	256	1.8	4.5	Lead-free csBGA	132	96	С
LU42302U	LC4256ZC-75MN132C	256	1.8	7.5	Lead-free csBGA	132	96	С
	LC4256ZC-45TN100C	256	1.8	4.5	Lead-free TQFP	100	64	С
	LC4256ZC-75TN100C	256	1.8	7.5	Lead-free TQFP	100	64	С

ispMACH 4000Z (Zero Power, 1.8V) Lead-Free Industrial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032ZC-5MN56I	32	1.8	5	Lead-free csBGA	56	32	I
LC4032ZC	LC4032ZC-75MN56I	32	1.8	7.5	Lead-free csBGA	56	32	I
LO403220	LC4032ZC-5TN48I	32	1.8	5	Lead-free TQFP	48	32	I
	LC4032ZC-75TN48I	32	1.8	7.5	Lead-free TQFP	48	32	I

ispMACH 4000V (3.3V) Lead-Free Commercial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032V-25TN48C	32	3.3	2.5	Lead-free TQFP	48	32	С
	LC4032V-5TN48C	32	3.3	5	Lead-free TQFP	48	32	С
LC4032V	LC4032V-75TN48C	32	3.3	7.5	Lead-free TQFP	48	32	С
LC4032V	LC4032V-25TN44C	32	3.3	2.5	Lead-free TQFP	44	30	С
	LC4032V-5TN44C	32	3.3	5	Lead-free TQFP	44	30	С
	LC4032V-75TN44C	32	3.3	7.5	Lead-free TQFP	44	30	С
	LC4064V-25TN100C	64	3.3	2.5	Lead-free TQFP	100	64	С
	LC4064V-5TN100C	64	3.3	5	Lead-free TQFP	100	64	С
	LC4064V-75TN100C	64	3.3	7.5	Lead-free TQFP	100	64	С
	LC4064V-25TN48C	64	3.3	2.5	Lead-free TQFP	48	32	С
LC4064V	LC4064V-5TN48C	64	3.3	5	Lead-free TQFP	48	32	С
	LC4064V-75TN48C	64	3.3	7.5	Lead-free TQFP	48	32	С
	LC4064V-25TN44C	64	3.3	2.5	Lead-free TQFP	44	30	С
	LC4064V-5TN44C	64	3.3	5	Lead-free TQFP	44	30	С
	LC4064V-75TN44C	64	3.3	7.5	Lead-free TQFP	44	30	С
	LC4128V-27TN144C	128	3.3	2.7	Lead-free TQFP	144	96	С
	LC4128V-5TN144C	128	3.3	5	Lead-free TQFP	144	96	С
	LC4128V-75TN144C	128	3.3	7.5	Lead-free TQFP	144	96	С
	LC4128V-27TN128C	128	3.3	2.7	Lead-free TQFP	128	92	С
LC4128V	LC4128V-5TN128C	128	3.3	5	Lead-free TQFP	128	92	С
	LC4128V-75TN128C	128	3.3	7.5	Lead-free TQFP	128	92	С
	LC4128V-27TN100C	128	3.3	2.7	Lead-free TQFP	100	64	С
	LC4128V-5TN100C	128	3.3	5	Lead-free TQFP	100	64	С
	LC4128V-75TN100C	128	3.3	7.5	Lead-free TQFP	100	64	С

ispMACH 4000V (3.3V) Lead-Free Commercial Devices (Cont.)

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4256V-3FTN256AC	256	3.3	3	Lead-free ftBGA	256	128	С
	LC4256V-5FTN256AC	256	3.3	5	Lead-free ftBGA	256	128	С
	LC4256V-75FTN256AC	256	3.3	7.5	Lead-free ftBGA	256	128	С
	LC4256V-3FTN256BC	256	3.3	3	Lead-free ftBGA	256	160	С
	LC4256V-5FTN256BC	256	3.3	5	Lead-free ftBGA	256	160	С
	LC4256V-75FTN256BC	256	3.3	7.5	Lead-free ftBGA	256	160	С
	LC4256V-3FN256AC1	256	3.3	3	Lead-free fpBGA	256	128	С
	LC4256V-5FN256AC1	256	3.3	5	Lead-free fpBGA	256	128	С
	LC4256V-75FN256AC1	256	3.3	7.5	Lead-free fpBGA	256	128	С
	LC4256V-3FN256BC1	256	3.3	3	Lead-free fpBGA	256	160	С
LC4256V	LC4256V-5FN256BC ¹	256	3.3	5	Lead-free fpBGA	256	160	С
	LC4256V-75FN256BC ¹	256	3.3	7.5	Lead-free fpBGA	256	160	С
	LC4256V-3TN176C	256	3.3	3	Lead-free TQFP	176	128	С
	LC4256V-5TN176C	256	3.3	5	Lead-free TQFP	176	128	С
	LC4256V-75TN176C	256	3.3	7.5	Lead-free TQFP	176	128	С
	LC4256V-3TN144C	256	3.3	3	Lead-free TQFP	144	96	С
	LC4256V-5TN144C	256	3.3	5	Lead-free TQFP	144	96	С
	LC4256V-75TN144C	256	3.3	7.5	Lead-free TQFP	144	96	С
	LC4256V-3TN100C	256	3.3	3	Lead-free TQFP	100	64	С
	LC4256V-5TN100C	256	3.3	5	Lead-free TQFP	100	64	С
	LC4256V-75TN100C	256	3.3	7.5	Lead-free TQFP	100	64	С
	LC4384V-35FTN256C	384	3.3	3.5	Lead-free ftBGA	256	192	С
	LC4384V-5FTN256C	384	3.3	5	Lead-free ftBGA	256	192	С
	LC4384V-75FTN256C	384	3.3	7.5	Lead-free ftBGA	256	192	С
	LC4384V-35FN256C1	384	3.3	3.5	Lead-free fpBGA	256	192	С
LC4384V	LC4384V-5FN256C ¹	384	3.3	5	Lead-free fpBGA	256	192	С
	LC4384V-75FN256C1	384	3.3	7.5	Lead-free fpBGA	256	192	С
	LC4384V-35TN176C	384	3.3	3.5	Lead-free TQFP	176	128	С
	LC4384V-5TN176C	384	3.3	5	Lead-free TQFP	176	128	С
	LC4384V-75TN176C	384	3.3	7.5	Lead-free TQFP	176	128	С
	LC4512V-35FTN256C	512	3.3	3.5	Lead-free ftBGA	256	208	С
	LC4512V-5FTN256C	512	3.3	5	Lead-free ftBGA	256	208	С
	LC4512V-75FTN256C	512	3.3	7.5	Lead-free ftBGA	256	208	С
	LC4512V-35FN256C1	512	3.3	3.5	Lead-free fpBGA	256	208	С
LC4512V	LC4512V-5FN256C ¹	512	3.3	5	Lead-free fpBGA	256	208	С
	LC4512V-75FN256C ¹	512	3.3	7.5	Lead-free fpBGA	256	208	С
	LC4512V-35TN176C	512	3.3	3.5	Lead-free TQFP	176	128	С
	LC4512V-5TN176C	512	3.3	5	Lead-free TQFP	176	128	С
	LC4512V-75TN176C	512	3.3	7.5	Lead-free TQFP	176	128	С

^{1.} Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000V (3.3V) Lead-Free Industrial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032V-5TN48I	32	3.3	5	Lead-free TQFP	48	32	I
	LC4032V-75TN48I	32	3.3	7.5	Lead-free TQFP	48	32	I
LC4032V	LC4032V-10TN48I	32	3.3	10	Lead-free TQFP	48	32	I
LC4032V	LC4032V-5TN44I	32	3.3	5	Lead-free TQFP	44	30	I
	LC4032V-75TN44I	32	3.3	7.5	Lead-free TQFP	44	30	I
	LC4032V-10TN44I	32	3.3	10	Lead-free TQFP	44	30	I
	LC4064V-5TN100I	64	3.3	5	Lead-free TQFP	100	64	I
	LC4064V-75TN100I	64	3.3	7.5	Lead-free TQFP	100	64	I
	LC4064V-10TN100I	64	3.3	10	Lead-free TQFP	100	64	I
	LC4064V-5TN48I	64	3.3	5	Lead-free TQFP	48	32	I
LC4064V	LC4064V-75TN48I	64	3.3	7.5	Lead-free TQFP	48	32	I
	LC4064V-10TN48I	64	3.3	10	Lead-free TQFP	48	32	I
	LC4064V-5TN44I	64	3.3	5	Lead-free TQFP	44	30	I
	LC4064V-75TN44I	64	3.3	7.5	Lead-free TQFP	44	30	I
	LC4064V-10TN44I	64	3.3	10	Lead-free TQFP	44	30	I
	LC4128V-5TN144I	128	3.3	5	Lead-free TQFP	144	96	I
	LC4128V-75TN144I	128	3.3	7.5	Lead-free TQFP	144	96	I
	LC4128V-10TN144I	128	3.3	10	Lead-free TQFP	144	96	I
	LC4128V-5TN128I	128	3.3	5	Lead-free TQFP	128	92	I
LC4128V	LC4128V-75TN128I	128	3.3	7.5	Lead-free TQFP	128	92	I
	LC4128V-10TN128I	128	3.3	10	Lead-free TQFP	128	92	I
	LC4128V-5TN100I	128	3.3	5	Lead-free TQFP	100	64	I
	LC4128V-75TN100I	128	3.3	7.5	Lead-free TQFP	100	64	I
	LC4128V-10TN100I	128	3.3	10	Lead-free TQFP	100	64	I