

Welcome to **E-XFL.COM**

Understanding <u>Embedded - CPLDs (Complex Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

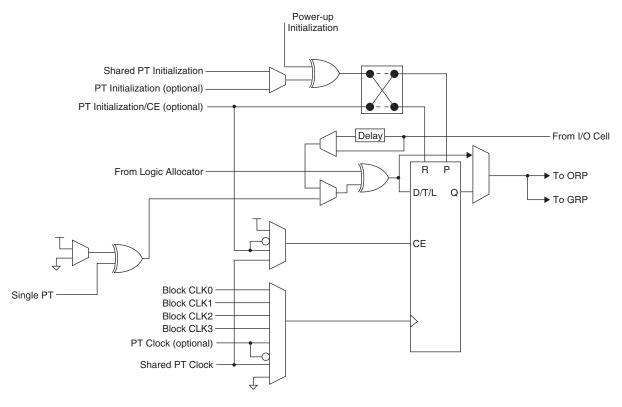
Applications of Embedded - CPLDs

D. t. ii.	
Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	3.7 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	-
Number of I/O	64
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	132-LFBGA, CSPBGA
Supplier Device Package	132-CSBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4064zc-37m132c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 5. Product Term Expansion Capability


Expansion Chains	Macrocells Associated with Expansion Chain (with Wrap Around)	Max PT/ Macrocell
Chain-0	M0 M4 M8 M12 M0	75
Chain-1	M1 M5 M9 M13 M1	80
Chain-2	M2 M6 M10 M14 M2	75
Chain-3	M3 M7 M11 M15 M3	70

Every time the super cluster allocator is used, there is an incremental delay of t_{EXP}. When the super cluster allocator is used, all destinations other than the one being steered to, are given the value of ground (i.e., if the super cluster is steered to M (n+4), then M (n) is ground).

Macrocell

The 16 macrocells in the GLB are driven by the 16 outputs from the logic allocator. Each macrocell contains a programmable XOR gate, a programmable register/latch, along with routing for the logic and control functions. Figure 5 shows a graphical representation of the macrocell. The macrocells feed the ORP and GRP. A direct input from the I/O cell allows designers to use the macrocell to construct high-speed input registers. A programmable delay in this path allows designers to choose between the fastest possible set-up time and zero hold time.

Figure 5. Macrocell

Enhanced Clock Multiplexer

The clock input to the flip-flop can select any of the four block clocks along with the shared PT clock, and true and complement forms of the optional individual term clock. An 8:1 multiplexer structure is used to select the clock. The eight sources for the clock multiplexer are as follows:

- Block CLK0
- Block CLK1

- Block CLK2
- Block CLK3
- PT Clock
- PT Clock Inverted
- Shared PT Clock
- Ground

Clock Enable Multiplexer

Each macrocell has a 4:1 clock enable multiplexer. This allows the clock enable signal to be selected from the following four sources:

- PT Initialization/CE
- PT Initialization/CE Inverted
- Shared PT Clock
- Logic High

Initialization Control

The ispMACH 4000 family architecture accommodates both block-level and macrocell-level set and reset capability. There is one block-level initialization term that is distributed to all macrocell registers in a GLB. At the macrocell level, two product terms can be "stolen" from the cluster associated with a macrocell to be used for set/reset functionality. A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, providing flexibility.

Note that the reset/preset swapping selection feature affects power-up reset as well. All flip-flops power up to a known state for predictable system initialization. If a macrocell is configured to SET on a signal from the block-level initialization, then that macrocell will be SET during device power-up. If a macrocell is configured to RESET on a signal from the block-level initialization or is not configured for set/reset, then that macrocell will RESET on power-up. To guarantee initialization values, the V_{CC} rise must be monotonic, and the clock must be inactive until the reset delay time has elapsed.

GLB Clock Generator

Each ispMACH 4000 device has up to four clock pins that are also routed to the GRP to be used as inputs. These pins drive a clock generator in each GLB, as shown in Figure 6. The clock generator provides four clock signals that can be used anywhere in the GLB. These four GLB clock signals can consist of a number of combinations of the true and complement edges of the global clock signals.

Figure 6. GLB Clock Generator

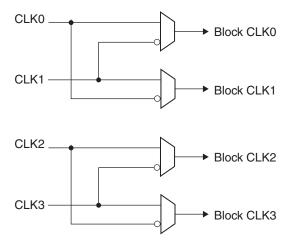
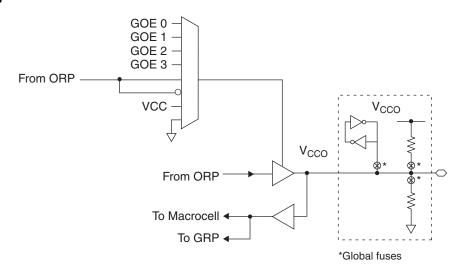


Table 10. ORP Combinations for I/O Blocks with 12 I/Os

I/O Cell	Available Macrocells
I/O 0	M0, M1, M2, M3, M4, M5, M6, M7
I/O 1	M1, M2, M3, M4, M5, M6, M7, M8
I/O 2	M2, M3, M4, M5, M6, M7, M8, M9
I/O 3	M4, M5, M6, M7, M8, M9, M10, M11
I/O 4	M5, M6, M7, M8, M9, M10, M11, M12
I/O 5	M6, M7, M8, M9, M10, M11, M12, M13
I/O 6	M8, M9, M10, M11, M12, M13, M14, M15
I/O 7	M9, M10, M11, M12, M13, M14, M15, M0
I/O 8	M10, M11, M12, M13, M14, M15, M0, M1
I/O 9	M12, M13, M14, M15, M0, M1, M2, M3
I/O 10	M13, M14, M15, M0, M1, M2, M3, M4
I/O 11	M14, M15, M0, M1, M2, M3, M4, M5

ORP Bypass and Fast Output Multiplexers

The ORP bypass and fast-path output multiplexer is a 4:1 multiplexer and allows the 5-PT fast path to bypass the ORP and be connected directly to the pin with either the regular output or the inverted output. This multiplexer also allows the register output to bypass the ORP to achieve faster t_{CO}.


Output Enable Routing Multiplexers

The OE Routing Pool provides the corresponding local output enable (OE) product term to the I/O cell.

I/O Cell

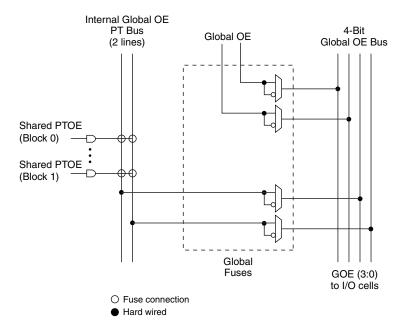

The I/O cell contains the following programmable elements: output buffer, input buffer, OE multiplexer and bus maintenance circuitry. Figure 8 details the I/O cell.

Figure 8. I/O Cell

Each output supports a variety of output standards dependent on the V_{CCO} supplied to its I/O bank. Outputs can also be configured for open drain operation. Each input can be programmed to support a variety of standards, independent of the V_{CCO} supplied to its I/O bank. The I/O standards supported are:

Figure 10. Global OE Generation for ispMACH 4032

Zero Power/Low Power and Power Management

The ispMACH 4000 family is designed with high speed low power design techniques to offer both high speed and low power. With an advanced E² low power cell and non sense-amplifier design approach (full CMOS logic approach), the ispMACH 4000 family offers SuperFAST pin-to-pin speeds, while simultaneously delivering low standby power without needing any "turbo bits" or other power management schemes associated with a traditional sense-amplifier approach.

The zero power ispMACH 4000Z is based on the 1.8V ispMACH 4000C family. With innovative circuit design changes, the ispMACH 4000Z family is able to achieve the industry's "lowest static power".

IEEE 1149.1-Compliant Boundary Scan Testability

All ispMACH 4000 devices have boundary scan cells and are compliant to the IEEE 1149.1 standard. This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic notes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test node data to be captured and shifted out for verification. In addition, these devices can be linked into a board-level serial scan path for more board-level testing. The test access port operates with an LVCMOS interface that corresponds to the power supply voltage.

I/O Quick Configuration

To facilitate the most efficient board test, the physical nature of the I/O cells must be set before running any continuity tests. As these tests are fast, by nature, the overhead and time that is required for configuration of the I/Os' physical nature should be minimal so that board test time is minimized. The ispMACH 4000 family of devices allows this by offering the user the ability to quickly configure the physical nature of the I/O cells. This quick configuration takes milliseconds to complete, whereas it takes seconds for the entire device to be programmed. Lattice's ispVM[®] System programming software can either perform the quick configuration through the PC parallel port, or can generate the ATE or test vectors necessary for a third-party test system.

IEEE 1532-Compliant In-System Programming

Programming devices in-system provides a number of significant benefits including: rapid prototyping, lower inventory levels, higher quality and the ability to make in-field modifications. All ispMACH 4000 devices provide In-System Programming (ISP™) capability through the Boundary Scan Test Access Port. This capability has been implemented in a manner that ensures that the port remains complaint to the IEEE 1149.1 standard. By using IEEE 1149.1 as the communication interface through which ISP is achieved, users get the benefit of a standard, well-defined interface. All ispMACH 4000 devices are also compliant with the IEEE 1532 standard.

The ispMACH 4000 devices can be programmed across the commercial temperature and voltage range. The PC-based Lattice software facilitates in-system programming of ispMACH 4000 devices. The software takes the JEDEC file output produced by the design implementation software, along with information about the scan chain, and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain via the parallel port of a PC. Alternatively, the software can output files in formats understood by common automated test equipment. This equipment can then be used to program ispMACH 4000 devices during the testing of a circuit board.

User Electronic Signature

The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the device, stored in E²CMOS memory. The ispMACH 4000 device contains 32 UES bits that can be configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.

Security Bit

A programmable security bit is provided on the ispMACH 4000 devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.

Hot Socketing

The ispMACH 4000 devices are well-suited for applications that require hot socketing capability. Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The isp-MACH 4000 devices provide this capability for input voltages in the range 0V to 3.0V.

Density Migration

The ispMACH 4000 family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

I/O Recommended Operating Conditions

	V _{CCO} (V) ¹				
Standard	Min.	Max.			
LVTTL	3.0	3.6			
LVCMOS 3.3	3.0	3.6			
Extended LVCMOS 3.3 ²	2.7	3.6			
LVCMOS 2.5	2.3	2.7			
LVCMOS 1.8	1.65	1.95			
PCI 3.3	3.0	3.6			

^{1.} Typical values for $\rm V_{\rm CCO}$ are the average of the min. and max. values.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{IL} , I _{IH} ^{1, 4}	Input Leakage Current (ispMACH 4000Z)	$0 \le V_{IN} < V_{CCO}$	_	0.5	1	μΑ
I _{IH} ¹	Input High Leakage Current (isp-MACH 4000Z)	$V_{CCO} < V_{IN} \le 5.5V$	_	_	10	μΑ
I _{IL} , I _{IH} ¹	Input Leakage Current (ispMACH	$0 \le V_{IN} \le 3.6V, T_j = 105^{\circ}C$	_	_	10	μΑ
'IL', 'IH	4000V/B/C)	$0 \le V_{IN} \le 3.6V, T_j = 130^{\circ}C$	_	_	15	μΑ
I _{IH} ^{1,2}	Input High Leakage Current (isp-	$3.6V < V_{IN} \le 5.5V$, $T_j = 105^{\circ}C$ $3.0V \le V_{CCO} \le 3.6V$	_	_	20	μΑ
ΊΗ	MACH 4000V/B/C)	$3.6V < V_{IN} \le 5.5V$, $T_j = 130^{\circ}C$ $3.0V \le V_{CCO} \le 3.6V$	_	_	50	μΑ
I	I/O Weak Pull-up Resistor Current (ispMACH 4000Z)	$0 \le V_{IN} \le 0.7 V_{CCO}$	-30	_	-150	μΑ
I _{PU}	I/O Weak Pull-up Resistor Current (ispMACH 4000V/B/C)	$0 \le V_{IN} \le 0.7 V_{CCO}$	-30	_	-200	μΑ
I _{PD}	I/O Weak Pull-down Resistor Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{IH}$ (MIN)	30	_	150	μΑ
I _{BHLS}	Bus Hold Low Sustaining Current	$V_{IN} = V_{IL} (MAX)$	30		_	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCO}$	-30	_	_	μΑ
I _{BHLO}	Bus Hold Low Overdrive Current	$0V \le V_{IN} \le V_{BHT}$	_	_	150	μΑ
I _{BHHO}	Bus Hold High Overdrive Current	$V_{BHT} \le V_{IN} \le V_{CCO}$	_	_	-150	μΑ
V_{BHT}	Bus Hold Trip Points	_	V _{CCO} * 0.35	_	V _{CCO} * 0.65	V
C ₁	I/O Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V	_	8	_	pf
01	1/O Capacitance	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	_	U	_	рі
C_2	Clock Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V	_	6	_	pf
02	Clock Capacitarios	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	_	J	_	ρı
C ₃	Global Input Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V	_	6	_	pf
0 3	Global Input Gapasitario	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	_		_	Pi

^{1.} Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

^{2.} ispMACH 4000Z only.

^{2. 5}V tolerant inputs and I/O should only be placed in banks where 3.0V \leq V $_{CCO} \leq$ 3.6V.

^{3.} $T_A = 25^{\circ}C$, f = 1.0MHz

^{4.} I_{II} excursions of up to 1.5μA maximum per pin above the spec limit may be observed for certain voltage conditions on no more than 10% of the device's I/O pins.

ispMACH 4000Z External Switching Characteristics (Cont.)

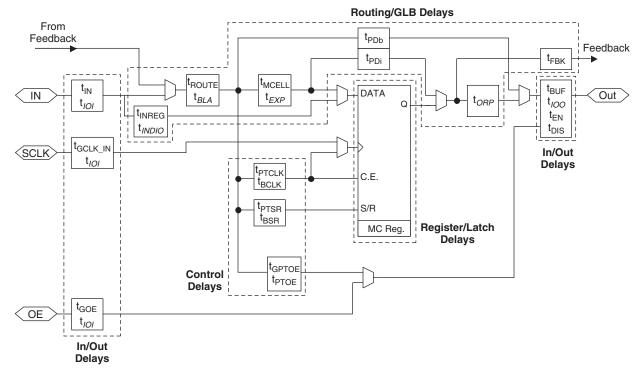
Over Recommended Operating Conditions

		-4	-45		5	-75		
Parameter	Description ^{1, 2, 3}	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PD}	5-PT bypass combinatorial propagation delay	_	4.5	_	5.0	_	7.5	ns
t _{PD_MC}	20-PT combinatorial propagation delay through macrocell	_	5.8	_	6.0	_	8.0	ns
t _S	GLB register setup time before clock	2.9	_	3.0	_	4.5	_	ns
t _{ST}	GLB register setup time before clock with T-type register	3.1	_	3.2	_	4.7	_	ns
t _{SIR}	GLB register setup time before clock, input register path	1.3	_	1.3	_	1.4	_	ns
t _{SIRZ}	GLB register setup time before clock with zero hold	2.6	_	2.6	_	2.7	_	ns
t _H	GLB register hold time after clock	0.0	_	0.0	_	0.0	_	ns
t _{HT}	GLB register hold time after clock with T-type register	0.0	_	0.0	_	0.0	_	ns
t _{HIR}	GLB register hold time after clock, input register path	1.3	_	1.3	_	1.3	_	ns
t _{HIRZ}	GLB register hold time after clock, input register path with zero hold	0.0	_	0.0	_	0.0	_	ns
t _{CO}	GLB register clock-to-output delay	_	3.8	_	4.2	_	4.5	ns
t _R	External reset pin to output delay	_	7.5	_	7.5	_	9.0	ns
t _{RW}	External reset pulse duration	2.0	_	2.0	_	4.0	_	ns
t _{PTOE/DIS}	Input to output local product term output enable/disable	_	8.2	_	8.5	_	9.0	ns
t _{GPTOE/DIS}	Input to output global product term output enable/disable	_	10.0	_	10.0	_	10.5	ns
t _{GOE/DIS}	Global OE input to output enable/disable	_	5.5	_	6.0	_	7.0	ns
t _{CW}	Global clock width, high or low	1.8	_	2.0	_	2.8	_	ns
t _{GW}	Global gate width low (for low transparent) or high (for high transparent)		_	2.0	_	2.8	_	ns
t _{WIR}	Input register clock width, high or low	1.8	_	2.0	_	2.8	_	ns
f _{MAX} ⁴	Clock frequency with internal feedback		200	_	200	_	168	MHz
f _{MAX} (Ext.)	clock frequency with external feedback, [1 / (t _S + t _{CO})]		150	_	139		111	MHz

^{1.} Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate other standards.

Timing v.2.2

^{2.} Measured using standard switching GRP loading of 1 and 1 output switching.


^{3.} Pulse widths and clock widths less than minimum will cause unknown behavior.

^{4.} Standard 16-bit counter using GRP feedback.

Timing Model

The task of determining the timing through the ispMACH 4000 family, like any CPLD, is relatively simple. The timing model provided in Figure 11 shows the specific delay paths. Once the implementation of a given function is determined either conceptually or from the software report file, the delay path of the function can easily be determined from the timing model. The Lattice design tools report the timing delays based on the same timing model for a particular design. Note that the internal timing parameters are given for reference only, and are not tested. The external timing parameters are tested and guaranteed for every device. For more information on the timing model and usage, refer to TN1004, ispMACH 4000 Timing Model Design and Usage Guidelines.

Figure 11. ispMACH 4000 Timing Model

Note: Italicized items are optional delay adders.

ispMACH 4000V/B/C Timing Adders¹

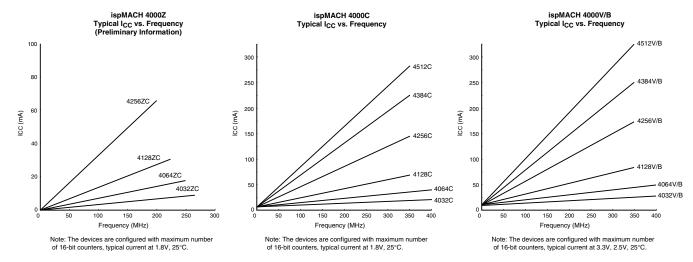
Adder	Base		-2	25	-2	27	-	3	-3	35		
Туре	Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units	
Optional Delay Adders												
t _{INDIO}	t _{INREG}	Input register delay	_	0.95	_	1.00	_	1.00	_	1.00	ns	
t _{EXP}	t _{MCELL}	Product term expander delay	_	0.33	_	0.33	_	0.33	_	0.33	ns	
t _{ORP}	_	Output routing pool delay	_	0.05	_	0.05	_	0.05	_	0.05	ns	
t _{BLA}	t _{ROUTE}	Additional block loading adder	_	0.03	_	0.05	_	0.05	_	0.05	ns	
t _{IOI} Input Adjust	ers					,					•	
LVTTL_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVTTL standard	_	0.60	_	0.60	_	0.60	_	0.60	ns	
LVCMOS33_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 3.3 standard	_	0.60	_	0.60	_	0.60	_	0.60	ns	
LVCMOS25_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 2.5 standard	_	0.60	_	0.60	_	0.60	_	0.60	ns	
LVCMOS18_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 1.8 standard	_	0.00	_	0.00	_	0.00	_	0.00	ns	
PCI_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using PCI compatible input	_	0.60	_	0.60	_	0.60	_	0.60	ns	
t _{IOO} Output Adju	isters					,					•	
LVTTL_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as TTL buffer	_	0.20	_	0.20	_	0.20	_	0.20	ns	
LVCMOS33_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as 3.3V buffer	_	0.20	_	0.20	_	0.20	_	0.20	ns	
LVCMOS25_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as 2.5V buffer	_	0.10	_	0.10	_	0.10	_	0.10	ns	
LVCMOS18_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as 1.8V buffer	_	0.00	_	0.00	_	0.00	_	0.00	ns	
PCI_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as PCI compatible buffer	_	0.20	_	0.20	_	0.20	_	0.20	ns	
Slow Slew	t _{BUF} , t _{EN}	Output configured for slow slew rate	_	1.00	_	1.00	_	1.00	_	1.00	ns	

Timing v.3.2

Note: Open drain timing is the same as corresponding LVCMOS timing.

1. Refer to TN1004, ispMACH 4000 Timing Model Design and Usage Guidelines for information regarding use of these adders.

ispMACH 4000Z Timing Adders (Cont.)¹


Adder	Base		-4	1 5	-	-5 -75		75				
Туре	Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units			
Optional Delay Adders												
t _{INDIO}	t _{INREG}	Input register delay	_	1.30	_	1.30	_	1.30	ns			
t _{EXP}	t _{MCELL}	Product term expander delay	_	0.45	_	0.45	_	0.50	ns			
t _{ORP}	_	Output routing pool delay	_	0.40	_	0.40	_	0.40	ns			
t _{BLA}	t _{ROUTE}	Additional block load- ing adder	_	0.05	_	0.05	_	0.05	ns			
t _{IOI} Input Adjust	ers				I.			•	I.			
LVTTL_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVTTL standard	_	0.60	_	0.60	_	0.60	ns			
LVCMOS33_in	t _{IN,} t _{GCLK_IN} , t _{GOE}	Using LVCMOS 3.3 standard	_	0.60	_	0.60	_	0.60	ns			
LVCMOS25_in	t _{IN,} t _{GCLK_IN} , t _{GOE}	Using LVCMOS 2.5 standard	_	0.60	_	0.60	_	0.60	ns			
LVCMOS18_in	t _{IN,} t _{GCLK_IN} , t _{GOE}	Using LVCMOS 1.8 standard	_	0.00	_	0.00	_	0.00	ns			
PCI_in	t _{IN,} t _{GCLK_IN} , t _{GOE}	Using PCI compatible input	_	0.60	_	0.60	_	0.60	ns			
t _{IOO} Output Adju	ısters							•				
LVTTL_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as TTL buffer	_	0.20	_	0.20	_	0.20	ns			
LVCMOS33_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as 3.3V buffer	_	0.20	_	0.20	_	0.20	ns			
LVCMOS25_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as 2.5V buffer	_	0.10	_	0.10	_	0.10	ns			
LVCMOS18_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as 1.8V buffer	_	0.00	_	0.00	_	0.00	ns			
PCI_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as PCI compatible buffer	_	0.20	_	0.20	_	0.20	ns			
Slow Slew	t _{BUF,} t _{EN}	Output configured for slow slew rate	_	1.00	_	1.00	_	1.00	ns			

Timing v.2.2

Note: Open drain timing is the same as corresponding LVCMOS timing.

1. Refer to TN1004, <u>ispMACH 4000 Timing Model Design and Usage Guidelines</u> for information regarding use of these adders.

Power Consumption

Power Estimation Coefficients¹

Device	A	В
ispMACH 4032V/B	11.3	0.010
ispMACH 4032C	1.3	0.010
ispMACH 4064V/B	11.5	0.010
ispMACH 4064C	1.5	0.010
ispMACH 4128V/B	11.5	0.011
ispMACH 4128C	1.5	0.011
ispMACH 4256V/B	12	0.011
ispMACH 4256C	2	0.011
ispMACH 4384V/B	12.5	0.013
ispMACH 4384C	2.5	0.013
ispMACH 4512V/B	13	0.013
ispMACH 4512C	3	0.013
ispMACH 4032ZC	0.010	0.010
ispMACH 4064ZC	0.011	0.010
ispMACH 4128ZC	0.012	0.010
ispMACH 4256ZC	0.013	0.010

For further information about the use of these coefficients, refer to TN1005, <u>Power Esti-mation in ispMACH 4000V/B/C/Z Devices</u>.

ispMACH 4000V/B/C/Z Power Supply and NC Connections¹

Signal	44-pin TQFP ²	48-pin TQFP ²	56-ball csBGA ³	100-pin TQFP ²	128-pin TQFP ²
VCC	11, 33	12, 36	K2, A9	25, 40, 75, 90	32, 51, 96, 115
VCCO0 VCCO (Bank 0)	6	6	F3	13, 33, 95	3, 17, 30, 41, 122
VCCO1 VCCO (Bank 1)	28	30	E8	45, 63, 83	58, 67, 81, 94, 105
GND	12, 34	13, 37	H3, C8	1, 26, 51, 76	1, 33, 65, 97
GND (Bank 0)	5	5	D3	7, 18, 32, 96	10, 24, 40, 113, 123
GND (Bank 1)	27	29	G8	46, 57, 68, 82	49, 59, 74, 88, 104
NC	_	_	4032Z : A8, B10, E1, E3, F8, F10, J1, K3	_	_

^{1.} All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with the bank shown.

^{2.} Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

^{3.} Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.

ispMACH 4064V/B/C/Z, 4128V/B/C/Z, 4256V/B/C/Z Logic Signal Connections: 100-Pin TQFP (Cont.)

	Bank	ispMACH 40	64V/B/C/Z	ispMACH 41	28V/B/C/Z	ispMACH 42	56V/B/C/Z
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
42	1	C1	C^1	E2	E^1	16	I^1
43	1	C2	C^2	E4	E^2	I10	I^2
44	1	C3	C^3	E6	E^3	l12	I^3
45	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
46	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
47	1	C4	C^4	E8	E^4	J2	J^0
48	1	C5	C^5	E10	E^5	J6	J^1
49	1	C6	C^6	E12	E^6	J10	J^2
50	1	C7	C^7	E14	E^7	J12	J^3
51	-	GND	-	GND	-	GND	-
52	-	TMS	-	TMS	-	TMS	-
53	1	C8	C^8	F0	F^0	K12	K^3
54	1	C9	C^9	F2	F^1	K10	K^2
55	1	C10	C^10	F4	F^2	K6	K^1
56	1	C11	C^11	F6	F^3	K2	K^0
57	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
58	1	C12	C^12	F8	F^4	L12	L^3
59	1	C13	C^13	F10	F^5	L10	L^2
60	1	C14	C^14	F12	F^6	L6	L^1
61	1	C15	C^15	F13	F^7	L4	L^0
62*	1	I	-	I	-	I	-
63	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
64	1	D15	D^15	G14	G^7	M4	M^0
65	1	D14	D^14	G12	G^6	M6	M^1
66	1	D13	D^13	G10	G^5	M10	M^2
67	1	D12	D^12	G8	G^4	M12	M^3
68	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
69	1	D11	D^11	G6	G^3	N2	N^0
70	1	D10	D^10	G5	G^2	N6	N^1
71	1	D9	D^9	G4	G^1	N10	N^2
72	1	D8	D^8	G2	G^0	N12	N^3
73*	1	I	-	I	-	I	-
74	-	TDO	-	TDO	-	TDO	-
75	-	VCC	-	VCC	-	VCC	-
76	-	GND	-	GND	-	GND	-
77*	1	I	-	I	-	I	-
78	1	D7	D^7	H13	H^7	O12	O^3
79	1	D6	D^6	H12	H^6	O10	O^2
80	1	D5	D^5	H10	H^5	O6	O^1
81	1	D4	D^4	H8	H^4	02	O^0
82	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-

ispMACH 4064V/B/C/Z, 4128V/B/C/Z, 4256V/B/C/Z Logic Signal Connections: 100-Pin TQFP (Cont.)

Bank		ispMACH 40	ispMACH 4064V/B/C/Z		28V/B/C/Z	ispMACH 42	256V/B/C/Z
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
83	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
84	1	D3	D^3	H6	H^3	P12	P^3
85	1	D2	D^2	H4	H^2	P10	P^2
86	1	D1	D^1	H2	H^1	P6	P^1
87	1	D0/GOE1	D^0	H0/GOE1	H^0	P2/OE1	P^0
88	1	CLK3/I	-	CLK3/I	-	CLK3/I	-
89	0	CLK0/I	-	CLK0/I	-	CLK0/I	-
90	-	VCC	-	VCC	-	VCC	-
91	0	A0/GOE0	A^0	A0/GOE0	A^0	A2/GOE0	A^0
92	0	A1	A^1	A2	A^1	A6	A^1
93	0	A2	A^2	A4	A^2	A10	A^2
94	0	A3	A^3	A6	A^3	A12	A^3
95	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
96	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
97	0	A4	A^4	A8	A^4	B2	B^0
98	0	A5	A^5	A10	A^5	B6	B^1
99	0	A6	A^6	A12	A^6	B10	B^2
100	0	A7	A^7	A14	A^7	B12	B^3

^{*}This pin is input only.

ispMACH 4128V/B/C Logic Signal Connections: 128-Pin TQFP

		ispMACH 41	28V/B/C	
Pin Number	Bank Number	GLB/MC/Pad	ORP	
1	0	GND	-	
2	0	TDI	-	
3	0	VCCO (Bank 0)	-	
4	0	B0	B^0	
5	0	B1	B^1	
6	0	B2	B^2	
7	0	B4	B^3	
8	0	B5	B^4	
9	0	B6	B^5	
10	0	GND (Bank 0)	-	
11	0	B8	B^6	
12	0	B9	B^7	
13	0	B10	B^8	
14	0	B12	B^9	
15	0	B13	B^10	
16	0	B14	B^11	
17	0	VCCO (Bank 0)	-	
18	0	C14	C^11	

ispMACH 4128V/B/C Logic Signal Connections: 128-Pin TQFP (Cont.)

		ispMACH 41	28V/B/C
Pin Number	Bank Number	GLB/MC/Pad	ORP
105	1	VCCO (Bank 1)	-
106	1	H6	H^5
107	1	H5	H^4
108	1	H4	H^3
109	1	H2	H^2
110	1	H1	H^1
111	1	H0/GOE1	H^0
112	1	CLK3/I	-
113	0	GND (Bank 0)	-
114	0	CLK0/I	-
115	0	VCC	-
116	0	A0/GOE0	A^0
117	0	A1	A^1
118	0	A2	A^2
119	0	A4	A^3
120	0	A5	A^4
121	0	A6	A^5
122	0	VCCO (Bank 0)	-
123	0	GND (Bank 0)	-
124	0	A8	A^6
125	0	A9	A^7
126	0	A10	A^8
127	0	A12	A^9
128	0	A14	A^11

ispMACH 4064Z, 4128Z and 4256Z Logic Signal Connections: 132-Ball csBGA

		ispMAC	H 4064Z	ispMAC	H 4128Z	ispMACH 4256Z	
Ball Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
B1	-	GND	-	GND	-	GND	-
B2	-	TDI	-	TDI	-	TDI	-
C1	0	NC	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
C3	0	NC	-	B0	B^0	C12	C^6
C2	0	A8	A^8	B1	B^1	C10	C^5
D1	0	A9	A^9	B2	B^2	C8	C^4
D3	0	A10	A^10	B4	B^3	C6	C^3
D2	0	A11	A^11	B5	B^4	C4	C^2
E1	0	NC		B6	B^5	C2	C^1
E2	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-

ispMACH 4128V and 4256V Logic Signal Connections: 144-Pin TQFP (Cont.)

		ispMAC	ispMACH 4128V		H 4256V
Pin Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
129	-	VCC	-	VCC	-
130	0	A0/GOE0	A^0	A2/GOE0	A^1
131	0	A1	A^1	A4	A^2
132	0	A2	A^2	A6	A^3
133	0	A4	A^3	A8	A^4
134	0	A5	A^4	A10	A^5
135	0	A6	A^5	A12	A^6
136	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-
137	0	GND (Bank 0)	-	GND (Bank 0)	-
138	0	A8	A^6	B2	B^1
139	0	A9	A^7	B4	B^2
140	0	A10	A^8	B6	B^3
141	0	A12	A^9	B8	B^4
142	0	A13	A^10	B10	B^5
143	0	A14	A^11	B12	B^6
144	0	NC ²	-	l ²	-

^{1.} For device migration considerations, these NC pins are GND pins for I/O banks in ispMACH 4128V devices.

ispMACH 4256V/B/C/Z, 4384V/B/C, 4512V/B/C, Logic Signal Connections: 176-Pin TQFP

	Bank	ispMACH 42	256V/B/C/Z	ispMACH 4	384V/B/C	ispMACH 4	1512V/B/C
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
1	-	NC	-	NC	-	NC	-
2	-	GND	-	GND	-	GND	-
3	-	TDI	-	TDI	-	TDI	-
4	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
5	0	C14	C^7	C14	C^7	C14	C^7
6	0	C12	C^6	C12	C^6	C12	C^6
7	0	C10	C^5	C10	C^5	C10	C^5
8	0	C8	C^4	C8	C^4	C8	C^4
9	0	C6	C^3	C6	C^3	C6	C^3
10	0	C4	C^2	C4	C^2	C4	C^2
11	0	C2	C^1	C2	C^1	C2	C^1
12	0	C0	C^0	C0	C^0	C0	C^0
13	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
14	0	D14	D^7	E14	E^7	G14	G^7
15	0	D12	D^6	E12	E^6	G12	G^6
16	0	D10	D^5	E10	E^5	G10	G^5
17	0	D8	D^4	E8	E^4	G8	G^4
18	0	D6	D^3	E6	E^3	G6	G^3

^{2.} For device migration considerations, these NC pins are input signal pins in ispMACH 4256V devices.

Ordering Information

Note: ispMACH 4000 devices are all dual marked except the slowest commercial speed grade ispMACH 4000Z devices. For example, the commercial speed grade LC4128C-5T100C is also marked with the industrial grade -75I. The commercial grade is always one speed grade faster than the associated dual mark industrial grade. The slowest commercial speed grade ispMACH 4000Z devices are marked as commercial grade only.

Conventional Packaging

ispMACH 4000ZC (Zero Power, 1.8V) Commercial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032ZC-35M56C	32	1.8	3.5	csBGA	56	32	С
	LC4032ZC-5M56C	32	1.8	5	csBGA	56	32	С
LC4032ZC	LC4032ZC-75M56C	32	1.8	7.5	csBGA	56	32	С
LC40322C	LC4032ZC-35T48C	32	1.8	3.5	TQFP	48	32	С
	LC4032ZC-5T48C	32	1.8	5	TQFP	48	32	С
	LC4032ZC-75T48C	32	1.8	7.5	TQFP	48	32	С
	LC4064ZC-37M132C	64	1.8	3.7	csBGA	132	64	С
	LC4064ZC-5M132C	64	1.8	5	csBGA	132	64	С
	LC4064ZC-75M132C	64	1.8	7.5	csBGA	132	64	С
	LC4064ZC-37T100C	64	1.8	3.7	TQFP	100	64	С
	LC4064ZC-5T100C	64	1.8	5	TQFP	100	64	С
LC4064ZC	LC4064ZC-75T100C	64	1.8	7.5	TQFP	100	64	С
LC40642C	LC4064ZC-37M56C	64	1.8	3.7	csBGA	56	32	С
	LC4064ZC-5M56C	64	1.8	5	csBGA	56	32	С
	LC4064ZC-75M56C	64	1.8	7.5	csBGA	56	32	С
	LC4064ZC-37T48C	64	1.8	3.7	TQFP	48	32	С
	LC4064ZC-5T48C	64	1.8	5	TQFP	48	32	С
	LC4064ZC-75T48C	64	1.8	7.5	TQFP	48	32	С
	LC4128ZC-42M132C	128	1.8	4.2	csBGA	132	96	С
LC4128ZC	LC4128ZC-75M132C	128	1.8	7.5	csBGA	132	96	С
LU41202U	LC4128ZC-42T100C	128	1.8	4.2	TQFP	100	64	С
	LC4128ZC-75T100C	128	1.8	7.5	TQFP	100	64	С
	LC4256ZC-45T176C	256	1.8	4.5	TQFP	176	128	С
	LC4256ZC-75T176C	256	1.8	7.5	TQFP	176	128	С
LC4256ZC	LC4256ZC-45M132C	256	1.8	4.5	csBGA	132	96	С
LU4230ZU	LC4256ZC-75M132C	256	1.8	7.5	csBGA	132	96	С
	LC4256ZC-45T100C	256	1.8	4.5	TQFP	100	64	С
	LC4256ZC-75T100C	256	1.8	7.5	TQFP	100	64	С

ispMACH 4000ZC (1.8V, Zero Power) Industrial Devices

Device	Part Number	Macrocells	Voltage	tPD	Package	Pin/Ball Count	I/O	Grade
	LC4032ZC-5M56I	32	1.8	5	csBGA	56	32	I
LC4032ZC	LC4032ZC-75M56I	32	1.8	7.5	csBGA	56	32	I
LO40322C	LC4032ZC-5T48I	32	1.8	5	TQFP	48	32	I
	LC4032ZC-75T48I	32	1.8	7.5	TQFP	48	32	I

ispMACH 4000V (3.3V) Extended Temperature Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
LC4032V	LC4032V-75T48E	32	3.3	7.5	TQFP	48	32	Е
LU4032V	LC4032V-75T44E	32	3.3	7.5	TQFP	44	30	Е
	LC4064V-75T100E	64	3.3	7.5	TQFP	100	64	Е
LC4064V	LC4064V-75T48E	64	3.3	7.5	TQFP	48	32	Е
	LC4064V-75T44E	64	3.3	7.5	TQFP	44	30	Е
	LC4128V-75T144E	128	3.3	7.5	TQFP	144	96	Е
LC4128V	LC4128V-75T128E	128	3.3	7.5	TQFP	128	92	Е
	LC4128V-75T100E	128	3.3	7.5	TQFP	100	64	Е
	LC4256V-75T176E	256	3.3	7.5	TQFP	176	128	Е
LC4256V	LC4256V-75T144E	256	3.3	7.5	TQFP	144	96	Е
	LC4256V-75T100E	256	3.3	7.5	TQFP	100	64	Е

ispMACH 4000V (3.3V) Lead-Free Industrial Devices (Cont.)

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	1/0	Grade
	LC4256V-5FTN256AI	256	3.3	5	Lead-free ftBGA	256	128	I
1	LC4256V-75FTN256AI	256	3.3	7.5	Lead-free ftBGA	256	128	
1	LC4256V-10FTN256AI	256	3.3	10	Lead-free ftBGA	256	128	ı
1	LC4256V-5FTN256BI	256	3.3	5	Lead-free ftBGA	256	160	ı
I	LC4256V-75FTN256BI	256	3.3	7.5	Lead-free ftBGA	256	160	
I	LC4256V-10FTN256BI	256	3.3	10	Lead-free ftBGA	256	160	
I	LC4256V-5FN256AI ¹	256	3.3	5	Lead-free fpBGA	256	128	
I	LC4256V-75FN256AI ¹	256	3.3	7.5	Lead-free fpBGA	256	128	
I	LC4256V-10FN256AI ¹	256	3.3	10	Lead-free fpBGA	256	128	
1	LC4256V-5FN256BI ¹	256	3.3	5	Lead-free fpBGA	256	160	
LC4256V	LC4256V-75FN256BI ¹	256	3.3	7.5	Lead-free fpBGA	256	160	
1	LC4256V-10FN256BI ¹	256	3.3	10	Lead-free fpBGA	256	160	
1	LC4256V-5TN176I	256	3.3	5	Lead-free TQFP	176	128	ı
I	LC4256V-75TN176I	256	3.3	7.5	Lead-free TQFP	176	128	
1	LC4256V-10TN176I	256	3.3	10	Lead-free TQFP	176	128	l
I	LC4256V-5TN144I	256	3.3	5	Lead-free TQFP	144	96	ı
I	LC4256V-75TN144I	256	3.3	7.5	Lead-free TQFP	144	96	ı
1	LC4256V-10TN144I	256	3.3	10	Lead-free TQFP	144	96	ı
1	LC4256V-5TN100I	256	3.3	5	Lead-free TQFP	100	64	ı
1	LC4256V-75TN100I	256	3.3	7.5	Lead-free TQFP	100	64	ı
1	LC4256V-10TN100I	256	3.3	10	Lead-free TQFP	100	64	ı
	LC4384V-5FTN256I	384	3.3	5	Lead-free ftBGA	256	192	I
1	LC4384V-75FTN256I	384	3.3	7.5	Lead-free ftBGA	256	192	I
I	LC4384V-10FTN256I	384	3.3	10	Lead-free ftBGA	256	192	I
1	LC4384V-5FN256I ¹	384	3.3	5	Lead-free fpBGA	256	192	I
LC4384V	LC4384V-75FN256I ¹	384	3.3	7.5	Lead-free fpBGA	256	192	I
I	LC4384V-10FN256I ¹	384	3.3	10	Lead-free fpBGA	256	192	I
1	LC4384V-5TN176I	384	3.3	5	Lead-free TQFP	176	128	I
I	LC4384V-75TN176I	384	3.3	7.5	Lead-free TQFP	176	128	I
1	LC4384V-10TN176I	384	3.3	10	Lead-free TQFP	176	128	I
	LC4512V-5FTN256I	512	3.3	5	Lead-free ftBGA	256	208	I
I	LC4512V-75FTN256I	512	3.3	7.5	Lead-free ftBGA	256	208	I
1	LC4512V-10FTN256I	512	3.3	10	Lead-free ftBGA	256	208	I
	LC4512V-5FN256I ¹	512	3.3	5	Lead-free fpBGA	256	208	I
LC4512V	LC4512V-75FN256I ¹	512	3.3	7.5	Lead-free fpBGA	256	208	I
	LC4512V-10FN256I ¹	512	3.3	10	Lead-free fpBGA	256	208	I
	LC4512V-5TN176I	512	3.3	5	Lead-free TQFP	176	128	I
	LC4512V-75TN176I	512	3.3	7.5	Lead-free TQFP	176	128	I
Ì	LC4512V-10TN176I	512	3.3	10	Lead-free TQFP	176	128	

^{1.} Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
LC4032V	LC4032V-75TN48E	32	3.3	7.5	Lead-free TQFP	48	32	Е
LO4032V	LC4032V-75TN44E	32	3.3	7.5	Lead-free TQFP	44	30	Е
	LC4064V-75TN100E	64	3.3	7.5	Lead-free TQFP	100	64	Е
LC4064V	LC4064V-75TN48E	64	3.3	7.5	Lead-free TQFP	48	32	Е
	LC4064V-75TN44E	64	3.3	7.5	Lead-free TQFP	44	30	Е
	LC4128V-75TN144E	128	3.3	7.5	Lead-free TQFP	144	96	Е
LC4128V	LC4128V-75TN128E	128	3.3	7.5	Lead-free TQFP	128	92	Е
	LC4128V-75TN100E	128	3.3	7.5	Lead-free TQFP	100	64	Е
	LC4256V-75TN176E	256	3.3	7.5	Lead-free TQFP	176	128	Е
LC4256V	LC4256V-75TN144E	256	3.3	7.5	Lead-free TQFP	144	96	E
	LC4256V-75TN100E	256	3.3	7.5	Lead-free TQFP	100	64	E

For Further Information

In addition to this data sheet, the following technical notes may be helpful when designing with the ispMACH 4000V/B/C/Z family:

- TN1004, ispMACH 4000 Timing Model Design and Usage Guidelines
- TN1005, Power Estimation in ispMACH 4000V/B/C/Z Devices

Revision History

Date	Version	Change Summary
_	_	Previous Lattice releases.
July 2003	17z	Changed device status for LC4064ZC and LC4128ZC to production release and updated/added AC and DC parameters as well as ordering part numbers for LC4064ZC and LC4128ZC devices.
		Improved leakage current specifications for ispMACH 4000Z. For ispMACH 4000V/B/C IIL, IIH condition now includes 0V and 3.6V end points ($0 \le VIN \le 3.6V$).
		Added 132-ball chip scale BGA power supply and NC connections.
		Added 132-ball chip scale BGA logic signal connections for LC4064ZC, LC4128ZC and LC4256ZC devices.
		Added lead-free package designators.
October 2003	18z	Hot socketing characteristics footnote 1. has been enhanced; Insensitive to sequence of VCC or VCCO. However, assumes monotonic rise/fall rates for Vcc and Vcco, provided (VIN - VCCO) \leq 3.6V.
		Improved LC4064ZC t_S to 2.5ns, t_{ST} to 2.7ns and f_{MAX} (Ext.) to 175MHz, LC4128ZC t_{CO} to 3.5ns and f_{MAX} (Ext.) to 161MHz (version v.2.1).
		Improved associated internal timing numbers and timing adders (version v.2.1).
		Added ispMACH 4000V/B/C/Z ORP Reference Tables.
		Enhanced ORP information in device pinout tables consistent with the ORP Combinations for I/O Blocks tables (table 6, 7, 8 and 9 in page 9-11).
		Corrected GLB/MC/Pad information in the 256-fpBGA pinouts for the LC4256V/B/C 160-I/O version.
		Added the ispMACH 4000 Family Speed Grade Offering table.
		Added the ispMACH 4128ZC Industrial and Automotive Device OPNs
December 2003	19z	Added the ispMACH 4032ZC and 4064ZC Industrial and Automotive Device OPNs