

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	3.7 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	-
Number of I/O	32
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4064zc-37t48c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

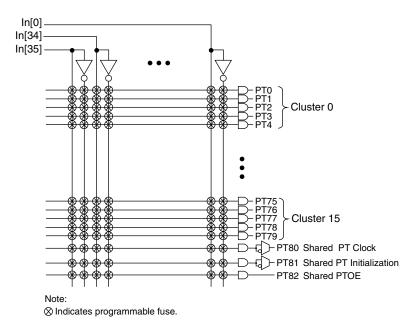
Table 2. ispMACH 4000Z Family Selection Guide

	ispMACH 4032ZC	ispMACH 4064ZC	ispMACH 4128ZC	ispMACH 4256ZC
Macrocells	32	64	128	256
I/O + Dedicated Inputs	32+4/32+4	32+4/32+12/ 64+10/64+10	64+10/96+4	64+10/96+6/ 128+4
t _{PD} (ns)	3.5	3.7	4.2	4.5
t _S (ns)	2.2	2.5	2.7	2.9
t _{CO} (ns)	3.0	3.2	3.5	3.8
f _{MAX} (MHz)	267	250	220	200
Supply Voltage (V)	1.8	1.8	1.8	1.8
Max. Standby Icc (μA)	20	25	35	55
Pins/Package	48 TQFP 56 csBGA	48 TQFP 56 csBGA 100 TQFP 132 csBGA	100 TQFP 132csBGA	100 TQFP 132 csBGA 176 TQFP

ispMACH 4000 Introduction

The high performance ispMACH 4000 family from Lattice offers a SuperFAST CPLD solution. The family is a blend of Lattice's two most popular architectures: the ispLSI® 2000 and ispMACH 4A. Retaining the best of both families, the ispMACH 4000 architecture focuses on significant innovations to combine the highest performance with low power in a flexible CPLD family.

The ispMACH 4000 combines high speed and low power with the flexibility needed for ease of design. With its robust Global Routing Pool and Output Routing Pool, this family delivers excellent First-Time-Fit, timing predictability, routing, pin-out retention and density migration.


The ispMACH 4000 family offers densities ranging from 32 to 512 macrocells. There are multiple density-I/O combinations in Thin Quad Flat Pack (TQFP), Chip Scale BGA (csBGA) and Fine Pitch Thin BGA (ftBGA) packages ranging from 44 to 256 pins/balls. Table 1 shows the macrocell, package and I/O options, along with other key parameters.

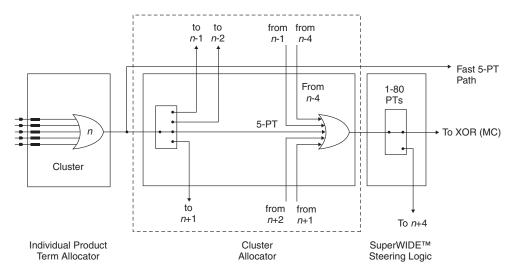
The ispMACH 4000 family has enhanced system integration capabilities. It supports 3.3V (4000V), 2.5V (4000B) and 1.8V (4000C/Z) supply voltages and 3.3V, 2.5V and 1.8V interface voltages. Additionally, inputs can be safely driven up to 5.5V when an I/O bank is configured for 3.3V operation, making this family 5V tolerant. The ispMACH 4000 also offers enhanced I/O features such as slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. The ispMACH 4000 family members are 3.3V/ 2.5V/1.8V in-system programmable through the IEEE Standard 1532 interface. IEEE Standard 1149.1 boundary scan testing capability also allows product testing on automated test equipment. The 1532 interface signals TCK, TMS, TDI and TDO are referenced to V_{CC} (logic core).

Overview

The ispMACH 4000 devices consist of multiple 36-input, 16-macrocell Generic Logic Blocks (GLBs) interconnected by a Global Routing Pool (GRP). Output Routing Pools (ORPs) connect the GLBs to the I/O Blocks (IOBs), which contain multiple I/O cells. This architecture is shown in Figure 1.

Figure 3. AND Array

Enhanced Logic Allocator


Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term cluster is associated with a macrocell. The cluster size for the ispMACH 4000 family is 4+1 (total 5) product terms. The software automatically considers the availability and distribution of product term clusters as it fits the functions within a GLB. The logic allocator is designed to provide three speed paths: 5-PT fast bypass path, 20-PT Speed Locking path and an up to 80-PT path. The availability of these three paths lets designers trade timing variability for increased performance.

The enhanced Logic Allocator of the ispMACH 4000 family consists of the following blocks:

- Product Term Allocator
- Cluster Allocator
- Wide Steering Logic

Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.

Figure 4. Macrocell Slice

Product Term Allocator

The product term allocator assigns product terms from a cluster to either logic or control applications as required by the design being implemented. Product terms that are used as logic are steered into a 5-input OR gate associated with the cluster. Product terms that used for control are steered either to the macrocell or I/O cell associated with the cluster. Table 3 shows the available functions for each of the five product terms in the cluster. The OR gate output connects to the associated I/O cell, providing a fast path for narrow combinatorial functions, and to the logic allocator.

Table 3. Individual PT Steering

Product Term	Logic	Control
PT <i>n</i>	Logic PT	Single PT for XOR/OR
PT <i>n</i> +1	Logic PT	Individual Clock (PT Clock)
PT <i>n</i> +2	Logic PT	Individual Initialization or Individual Clock Enable (PT Initialization/CE)
PT <i>n</i> +3	Logic PT	Individual Initialization (PT Initialization)
PT <i>n</i> +4	Logic PT	Individual OE (PTOE)

Cluster Allocator

The cluster allocator allows clusters to be steered to neighboring macrocells, thus allowing the creation of functions with more product terms. Table 4 shows which clusters can be steered to which macrocells. Used in this manner, the cluster allocator can be used to form functions of up to 20 product terms. Additionally, the cluster allocator accepts inputs from the wide steering logic. Using these inputs, functions up to 80 product terms can be created.

Table 4. Available Clusters for Each Macrocell

Macrocell	Available Clusters						
M0	_	C0	C1	C2			
M1	C0	C1	C2	C3			
M2	C1	C2	C3	C4			
M3	C2	C3	C4	C5			
M4	C3	C4	C5	C6			
M5	C4	C5	C6	C7			
M6	C5	C6	C7	C8			
M7	C6	C7	C8	C9			
M8	C7	C8	C9	C10			
M9	C8	C9	C10	C11			
M10	C9	C10	C11	C12			
M11	C10	C11	C12	C13			
M12	C11	C12	C13	C14			
M13	C12	C13	C14	C15			
M14	C13	C14	C15	_			
M15	C14	C15	_	_			

Wide Steering Logic

The wide steering logic allows the output of the cluster allocator n to be connected to the input of the cluster allocator n+4. Thus, cluster chains can be formed with up to 80 product terms, supporting wide product term functions and allowing performance to be increased through a single GLB implementation. Table 5 shows the product term chains.

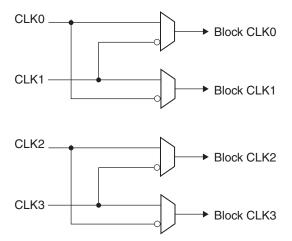
- Block CLK2
- Block CLK3
- PT Clock
- PT Clock Inverted
- Shared PT Clock
- Ground

Clock Enable Multiplexer

Each macrocell has a 4:1 clock enable multiplexer. This allows the clock enable signal to be selected from the following four sources:

- PT Initialization/CE
- PT Initialization/CE Inverted
- Shared PT Clock
- Logic High

Initialization Control


The ispMACH 4000 family architecture accommodates both block-level and macrocell-level set and reset capability. There is one block-level initialization term that is distributed to all macrocell registers in a GLB. At the macrocell level, two product terms can be "stolen" from the cluster associated with a macrocell to be used for set/reset functionality. A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, providing flexibility.

Note that the reset/preset swapping selection feature affects power-up reset as well. All flip-flops power up to a known state for predictable system initialization. If a macrocell is configured to SET on a signal from the block-level initialization, then that macrocell will be SET during device power-up. If a macrocell is configured to RESET on a signal from the block-level initialization or is not configured for set/reset, then that macrocell will RESET on power-up. To guarantee initialization values, the V_{CC} rise must be monotonic, and the clock must be inactive until the reset delay time has elapsed.

GLB Clock Generator

Each ispMACH 4000 device has up to four clock pins that are also routed to the GRP to be used as inputs. These pins drive a clock generator in each GLB, as shown in Figure 6. The clock generator provides four clock signals that can be used anywhere in the GLB. These four GLB clock signals can consist of a number of combinations of the true and complement edges of the global clock signals.

Figure 6. GLB Clock Generator

Absolute Maximum Ratings^{1, 2, 3}

	ispMACH 4000C/Z (1.8V)	ispMACH 4000B (2.5V)	ispMACH 4000V (3.3V)
Supply Voltage (V _{CC})	0.5 to 2.5V	0.5 to 5.5V	0.5 to 5.5V
Output Supply Voltage (V _{CCO})	0.5 to 4.5V	0.5 to 4.5V	0.5 to 4.5V
Input or I/O Tristate Voltage Applied ^{4, 5}	0.5 to 5.5V	0.5 to 5.5V	0.5 to 5.5V
Storage Temperature	65 to 150°C	65 to 150°C	65 to 150°C
Junction Temperature (T _i) with Power Applie	ed55 to 150°C	55 to 150°C	55 to 150°C

- Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional
 operation of the device at these or any other conditions above those indicated in the operational sections of this specification
 is not implied.
- 2. Compliance with Lattice Thermal Management document is required.
- 3. All voltages referenced to GND.
- 4. Undershoot of -2V and overshoot of (V_{IH} (MAX) + 2V), up to a total pin voltage of 6.0V, is permitted for a duration of < 20ns.
- 5. Maximum of 64 I/Os per device with VIN > 3.6V is allowed.

Recommended Operating Conditions

Symbol		Parameter			Units
		ispMACH 4000C	1.65	1.95	V
	Supply Voltage for 1.8V Devices	ispMACH 4000Z	1.7	1.9	V
V _{CC}		ispMACH 4000Z, Extended Functional Voltage Operation	1.61, 2	1.9	V
	Supply Voltage for 2.5V Devices			2.7	V
	Supply Voltage for 3.3V Devices			3.6	V
	Junction Temperature (Commercial)		0	90	С
Tj	Junction Temperature (Industrial)		-40	105	С
	Junction Temperature (Extended)		-40	130	С

^{1.} Devices operating at 1.6V can expect performance degradation up to 35%.

Erase Reprogram Specifications

Parameter	Min.	Max.	Units
Erase/Reprogram Cycle	1,000	_	Cycles

Note: Valid over commercial temperature range.

Hot Socketing Characteristics 1,2,3

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
l	Input or I/O Leakage Current	$0 \le V_{IN} \le 3.0V, Tj = 105^{\circ}C$	_	±30	±150	μΑ
IDK	liput of 1/O Leakage Outlett	$0 \le V_{IN} \le 3.0V$, Tj = 130°C	_	±30	±200	μΑ

^{1.} Insensitive to sequence of V_{CC} or V_{CCO} . However, assumes monotonic rise/fall rates for V_{CC} and V_{CCO} , provided $(V_{IN} - V_{CCO}) \le 3.6V$.

^{2.} Applicable for devices with 2004 date codes and later. Contact factory for ordering instructions.

^{2.} $0 < V_{CC} < V_{CC}$ (MAX), $0 < V_{CCO} < V_{CCO}$ (MAX).

^{3.} I_{DK} is additive to I_{PU} , I_{PD} or I_{BH} . Device defaults to pull-up until fuse circuitry is active.

Supply Current, ispMACH 4000Z (Cont.)

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
ispMACH 4	1256ZC					
		Vcc = 1.8V, T _A = 25°C	_	341	_	μΑ
ICC ^{1, 2, 3, 5}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 70^{\circ}C$	_	361	_	μΑ
	$Vcc = 1.9V, T_A = 85^{\circ}C$ — 3	372	_	μΑ		
		Vcc = 1.9V, T _A = 125°C	_	468	_	μΑ
		Vcc = 1.8V, T _A = 25°C	_	13	_	μΑ
ICC ^{4, 5}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 70^{\circ}C$	_	32	55	μΑ
ICC ^{*, °}	Standby Fower Supply Current	$Vcc = 1.9V, T_A = 85^{\circ}C$	_	43	90	μΑ
		Vcc = 1.9V, T _A = 125°C	_	135	_	μΑ

^{1.} $T_A = 25$ °C, frequency = 1.0 MHz.

Device configured with 16-bit counters.
 I_{CC} varies with specific device configuration and operating frequency.

^{4.} V_{CCO} = 3.6V, V_{IN} = 0V or V_{CCO} , bus maintenance turned off. V_{IN} above V_{CCO} will add transient current above the specified standby I_{CC} .

^{5.} Includes V_{CCO} current without output loading.

ispMACH 4000V/B/C Internal Timing Parameters

Over Recommended Operating Conditions

		-	-5 -7!		75	5 -10		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
In/Out Dela	ys							
t _{IN}	Input Buffer Delay	_	0.95	_	1.50	_	2.00	ns
t _{GOE}	Global OE Pin Delay	_	4.04	_	6.04	_	7.04	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay	_	1.83	_	2.28	_	3.28	ns
t _{BUF}	Delay through Output Buffer	_	1.00	_	1.50	_	1.50	ns
t _{EN}	Output Enable Time	_	0.96	_	0.96	_	0.96	ns
t _{DIS}	Output Disable Time	_	0.96	_	0.96	_	0.96	ns
Routing/GI	B Delays						ı	
t _{ROUTE}	Delay through GRP	_	1.51	_	2.26	_	3.26	ns
t _{MCELL}	Macrocell Delay	_	1.05	_	1.45	_	1.95	ns
t _{INREG}	Input Buffer to Macrocell Register Delay	_	0.56	_	0.96	_	1.46	ns
t _{FBK}	Internal Feedback Delay	_	0.00	_	0.00	_	0.00	ns
t _{PDb}	5-PT Bypass Propagation Delay	_	1.54	_	2.24	_	3.24	ns
t _{PDi}	Macrocell Propagation Delay	_	0.94	_	1.24	_	1.74	ns
	atch Delays			l .	J.		J.	J.
t _S	D-Register Setup Time (Global Clock)	1.32	_	1.57	_	1.57	_	ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	1.32	_	1.32	_	1.32	_	ns
t _{ST}	T-Register Setup Time (Global Clock)	1.52	_	1.77	_	1.77	_	ns
t _{ST_PT}	T-Register Setup Time (Product Term Clock)	1.32	_	1.32	_	1.32	_	ns
t _H	D-Register Hold Time	1.68	_	2.93	_	3.93	_	ns
t _{HT}	T-Register Hold Time	1.68	_	2.93	_	3.93	_	ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	1.52	_	1.57	_	1.57	_	ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45	_	1.45	_	ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	0.68	_	1.18	_	1.18	_	ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	0.68	_	1.18	_	1.18	_	ns
t _{COi}	Register Clock to Output/Feedback MUX Time	_	0.52	_	0.67	_	1.17	ns
t _{CES}	Clock Enable Setup Time	2.25	_	2.25	_	2.25	_	ns
t _{CEH}	Clock Enable Hold Time	1.88	_	1.88	_	1.88	_	ns
t _{SL}	Latch Setup Time (Global Clock)	1.32	_	1.57	_	1.57	_	ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	1.32	_	1.32	_	1.32	_	ns
t _{HL}	Latch Hold Time	1.17	_	1.17	_	1.17	_	ns
t _{GOi}	Latch Gate to Output/Feedback MUX Time	_	0.33	_	0.33	_	0.33	ns
t _{PDLi}	Propagation Delay through Transparent Latch to Output/ Feedback MUX	_	0.25	_	0.25	_	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	0.28	_	0.28	_	0.28	_	ns
t _{SRR}	Asynchronous Reset or Set Recovery Time	1.67	_	1.67	_	1.67	_	ns
Control De	lays	•			•		•	•
t _{BCLK}	GLB PT Clock Delay	T —	1.12		1.12	_	0.62	ns
t _{PTCLK}	Macrocell PT Clock Delay	1 —	0.87	_	0.87	_	0.87	ns
t _{BSR}	GLB PT Set/Reset Delay	_	1.83	_	1.83	_	1.83	ns
t _{PTSR}	Macrocell PT Set/Reset Delay	<u> </u>	2.51	_	3.41	_	3.41	ns

ispMACH 4000V/B/C Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

		-5		-75		-10		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{GPTOE}	Global PT OE Delay	_	5.58		5.58	_	5.78	ns
t _{PTOE}	Macrocell PT OE Delay	_	3.58		4.28		4.28	ns

Timing v.3.2

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the Timing Model in this data sheet for further details.

ispMACH 4000Z Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

		-45		-5 -75		'5		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PTOE}	Macrocell PT OE Delay	_	2.50	_	2.70	_	2.00	ns

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for further details.

Timing v.2.2

ispMACH 4000V/B/C Timing Adders¹

Adder	Base		-2	25	-2	27	-	3	-3	35	
Туре	Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Optional Delay	Adders			•		•		•		•	•
t _{INDIO}	t _{INREG}	Input register delay	_	0.95	_	1.00	_	1.00	_	1.00	ns
t _{EXP}	t _{MCELL}	Product term expander delay	_	0.33	_	0.33	_	0.33	_	0.33	ns
t _{ORP}	_	Output routing pool delay	_	0.05	_	0.05	_	0.05	_	0.05	ns
t _{BLA}	t _{ROUTE}	Additional block loading adder	_	0.03	_	0.05	_	0.05	_	0.05	ns
t _{IOI} Input Adjust	ers										•
LVTTL_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVTTL standard	_	0.60	_	0.60	_	0.60	_	0.60	ns
LVCMOS33_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 3.3 standard	_	0.60	_	0.60	_	0.60	_	0.60	ns
LVCMOS25_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 2.5 standard	_	0.60	_	0.60	_	0.60	_	0.60	ns
LVCMOS18_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 1.8 standard	_	0.00	_	0.00	_	0.00	_	0.00	ns
PCI_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using PCI compatible input	_	0.60	_	0.60	_	0.60	_	0.60	ns
t _{IOO} Output Adju	isters										•
LVTTL_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as TTL buffer	_	0.20	_	0.20	_	0.20	_	0.20	ns
LVCMOS33_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as 3.3V buffer	_	0.20	_	0.20	_	0.20	_	0.20	ns
LVCMOS25_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as 2.5V buffer	_	0.10	_	0.10	_	0.10	_	0.10	ns
LVCMOS18_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as 1.8V buffer	_	0.00	_	0.00	_	0.00	_	0.00	ns
PCI_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as PCI compatible buffer	_	0.20	_	0.20	_	0.20	_	0.20	ns
Slow Slew	t _{BUF} , t _{EN}	Output configured for slow slew rate	_	1.00	_	1.00	_	1.00	_	1.00	ns

Timing v.3.2

Note: Open drain timing is the same as corresponding LVCMOS timing.

1. Refer to TN1004, ispMACH 4000 Timing Model Design and Usage Guidelines for information regarding use of these adders.

ispMACH 4000V/B/C Timing Adders¹ (Cont.)

Adder	Base		-	5	-7	75	-1	10	
Туре	Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Optional Delay	Adders								
t _{INDIO}	t _{INREG}	Input register delay	_	1.00	_	1.00	_	1.00	ns
t _{EXP}	t _{MCELL}	Product term expander delay	_	0.33	_	0.33	_	0.33	ns
t _{ORP}	_	Output routing pool delay	_	0.05	_	0.05	_	0.05	ns
t _{BLA}	t _{ROUTE}	Additional block loading adder	_	0.05	_	0.05	_	0.05	ns
t _{IOI} Input Adjust	ers								
LVTTL_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVTTL standard	_	0.60	_	0.60	_	0.60	ns
LVCMOS33_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 3.3 standard		0.60	_	0.60	_	0.60	ns
LVCMOS25_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 2.5 standard	_	0.60	_	0.60	_	0.60	ns
LVCMOS18_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 1.8 standard	_	0.00	_	0.00	_	0.00	ns
PCI_in	$t_{\text{IN}}, t_{\text{GCLK_IN}}, \\ t_{\text{GOE}}$	Using PCI compatible input	_	0.60	_	0.60	_	0.60	ns
t _{IOO} Output Adju	ısters								
LVTTL_out	t_{BUF} , t_{EN} , t_{DIS}	Output configured as TTL buffer	_	0.20	_	0.20	_	0.20	ns
LVCMOS33_out	t_{BUF} , t_{EN} , t_{DIS}	Output configured as 3.3V buffer	_	0.20	_	0.20	_	0.20	ns
LVCMOS25_out	t_{BUF} , t_{EN} , t_{DIS}	Output configured as 2.5V buffer	_	0.10	_	0.10	_	0.10	ns
LVCMOS18_out	t_{BUF} , t_{EN} , t_{DIS}	Output configured as 1.8V buffer	_	0.00	_	0.00	_	0.00	ns
PCI_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as PCI compatible buffer		0.20	_	0.20	_	0.20	ns
Slow Slew	t _{BUF} , t _{EN}	Output configured for slow slew rate	_	1.00	_	1.00	_	1.00	ns

Timing v.3.2

Note: Open drain timing is the same as corresponding LVCMOS timing.

1. Refer to TN1004, ispMACH 4000 Timing Model Design and Usage Guidelines for information regarding use of these adders.

Switching Test Conditions

Figure 12 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 11.

Figure 12. Output Test Load, LVTTL and LVCMOS Standards

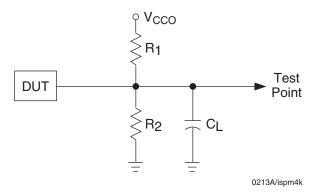


Table 11. Test Fixture Required Components

Test Condition	R ₁	R ₂	C _L ¹	Timing Ref.	V _{cco}
				LVCMOS 3.3 = 1.5V	LVCMOS 3.3 = 3.0V
LVCMOS I/O, (L -> H, H -> L)	106Ω	106Ω	35pF	LVCMOS 2.5 = V _{CCO} /2	LVCMOS 2.5 = 2.3V
				LVCMOS 1.8 = V _{CCO} /2	LVCMOS 1.8 = 1.65V
LVCMOS I/O (Z -> H)	∞	106Ω	35pF	1.5V	3.0V
LVCMOS I/O (Z -> L)	106Ω	× ×	35pF	1.5V	3.0V
LVCMOS I/O (H -> Z)	∞	106Ω	5pF	V _{OH} - 0.3	3.0V
LVCMOS I/O (L -> Z)	106Ω	× ×	5pF	V _{OL} + 0.3	3.0V

^{1.} C_L includes test fixtures and probe capacitance.

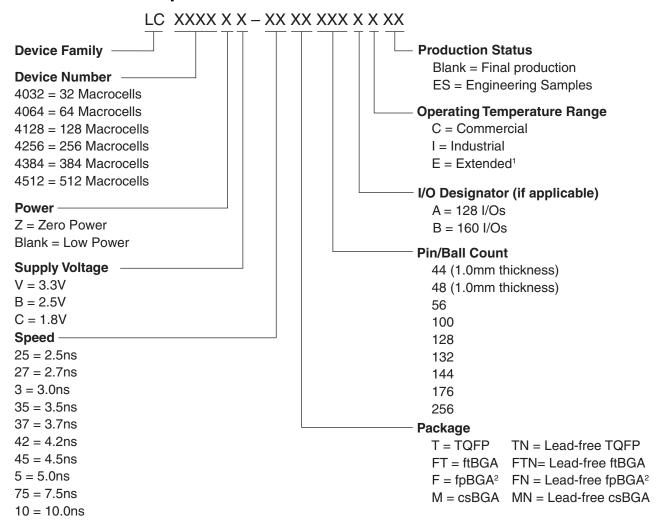
ispMACH 4000V/B/C/Z Power Supply and NC Connections¹

Signal	44-pin TQFP ²	48-pin TQFP ²	56-ball csBGA ³	100-pin TQFP ²	128-pin TQFP ²
VCC	11, 33	12, 36	K2, A9	25, 40, 75, 90	32, 51, 96, 115
VCCO0 VCCO (Bank 0)	6	6	F3	13, 33, 95	3, 17, 30, 41, 122
VCCO1 VCCO (Bank 1)	28	30	E8	45, 63, 83	58, 67, 81, 94, 105
GND	12, 34	13, 37	H3, C8	1, 26, 51, 76	1, 33, 65, 97
GND (Bank 0)	5	5	D3	7, 18, 32, 96	10, 24, 40, 113, 123
GND (Bank 1)	27	29	G8	46, 57, 68, 82	49, 59, 74, 88, 104
NC	_	_	4032Z : A8, B10, E1, E3, F8, F10, J1, K3	_	_

^{1.} All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with the bank shown.

^{2.} Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

^{3.} Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.


ispMACH 4064V/B/C/Z, 4128V/B/C/Z, 4256V/B/C/Z Logic Signal Connections: 100-Pin TQFP

	Bank	ispMACH 40	64V/B/C/Z	ispMACH 41	28V/B/C/Z	ispMACH 42	256V/B/C/Z
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
1	-	GND	-	GND	-	GND	-
2	-	TDI	-	TDI	-	TDI	-
3	0	A8	A^8	В0	B^0	C12	C^3
4	0	A9	A^9	B2	B^1	C10	C^2
5	0	A10	A^10	B4	B^2	C6	C^1
6	0	A11	A^11	B6	B^3	C2	C^0
7	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
8	0	A12	A^12	B8	B^4	D12	D^3
9	0	A13	A^13	B10	B^5	D10	D^2
10	0	A14	A^14	B12	B^6	D6	D^1
11	0	A15	A^15	B13	B^7	D4	D^0
12*	0	I	-	I	-	I	-
13	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
14	0	B15	B^15	C14	C^7	E4	E^0
15	0	B14	B^14	C12	C^6	E6	E^1
16	0	B13	B^13	C10	C^5	E10	E^2
17	0	B12	B^12	C8	C^4	E12	E^3
18	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
19	0	B11	B^11	C6	C^3	F2	F^0
20	0	B10	B^10	C5	C^2	F6	F^1
21	0	B9	B^9	C4	C^1	F10	F^2
22	0	B8	B^8	C2	C^0	F12	F^3
23*	0	I	-	I	-	I	-
24	-	TCK	-	TCK	-	TCK	-
25	-	VCC	-	VCC	-	VCC	-
26	-	GND	-	GND	-	GND	-
27*	0	I	-	I	-	I	-
28	0	B7	B^7	D13	D^7	G12	G^3
29	0	B6	B^6	D12	D^6	G10	G^2
30	0	B5	B^5	D10	D^5	G6	G^1
31	0	B4	B^4	D8	D^4	G2	G^0
32	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
33	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
34	0	B3	B^3	D6	D^3	H12	H^3
35	0	B2	B^2	D4	D^2	H10	H^2
36	0	B1	B^1	D2	D^1	H6	H^1
37	0	В0	B^0	D0	D^0	H2	H^0
38	0	CLK1/I	-	CLK1/I	-	CLK1/I	-
39	1	CLK2/I	-	CLK2/I	-	CLK2/I	-
40	-	VCC	-	VCC	-	VCC	-
41	1	C0	C^0	E0	E^0	12	I^0

ispMACH 4128V and 4256V Logic Signal Connections: 144-Pin TQFP

		ispMAC	H 4128V	ispMAC	H 4256V
Pin Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
1	-	GND	-	GND	-
2	-	TDI	-	TDI	-
3	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-
4	0	B0	B^0	C12	C^6
5	0	B1	B^1	C10	C^5
6	0	B2	B^2	C8	C^4
7	0	B4	B^3	C6	C^3
8	0	B5	B^4	C4	C^2
9	0	B6	B^5	C2	C^1
10	0	GND (Bank 0)	-	GND (Bank 0)	-
11	0	B8	B^6	D14	D^7
12	0	B9	B^7	D12	D^6
13	0	B10	B^8	D10	D^5
14	0	B12	B^9	D8	D^4
15	0	B13	B^10	D6	D^3
16	0	B14	B^11	D4	D^2
17	-	NC ²	-	l ²	-
18	0	GND (Bank 0) ¹	-	NC ¹	-
19	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-
20	0	NC ²	-	l ²	-
21	0	C14	C^11	E2	E^1
22	0	C13	C^10	E4	E^2
23	0	C12	C^9	E6	E^3
24	0	C10	C^8	E8	E^4
25	0	C9	C^7	E10	E^5
26	0	C8	C^6	E12	E^6
27	0	GND (Bank 0)	-	GND (Bank 0)	-
28	0	C6	C^5	F2	F^1
29	0	C5	C^4	F4	F^2
30	0	C4	C^3	F6	F^3
31	0	C2	C^2	F8	F^4
32	0	C1	C^1	F10	F^5
33	0	C0	C^0	F12	F^6
34	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-
35	-	TCK	-	TCK	-
36	-	VCC	-	VCC	-
37	-	GND	-	GND	-
38	0	NC ²	-	l ²	-
39	0	D14	D^11	G12	G^6
40	0	D13	D^10	G10	G^5
41	0	D12	D^9	G8	G^4
42	0	D10	D^8	G6	G^3

Part Number Description

- 1. For automotive AEC-Q100 compliant devices, refer to the LA-ispMACH 4000V/Z Automotive Family Data Sheet (DS1017).
- 2. Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000 Family Speed Grade Offering

	-25	-27	-3	-35	-37	-42	-45	-;	5		-75		-10
	Com	Ind	Com	Ind	Ext	Ind							
ispMACH 4032V/B/C												1	
ispMACH 4064V/B/C												1	
ispMACH 4128V/B/C												1	
ispMACH 4256V/B/C													
ispMACH 4384V/B/C													
ispMACH 4512V/B/C													
ispMACH 4032ZC												1	
ispMACH 4064ZC												1	
ispMACH 4128ZC												1	
ispMACH 4256ZC													

1. 3.3V only.

ispMACH 4000C (1.8V) Industrial Devices (Cont.)

Family	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	1/0	Grade
	LC4384C-5FT256I	384	1.8	5	ftBGA	256	192	ı
	LC4384C-75FT256I	384	1.8	7.5	ftBGA	256	192	I
	LC4384C-10FT256I	384	1.8	10	ftBGA	256	192	I
	LC4384C-5F256I ¹	384	1.8	5	fpBGA	256	192	I
LC4384C	LC4384C-75F256I ¹	384	1.8	7.5	fpBGA	256	192	I
	LC4384C-10F256I ¹	384	1.8	10	fpBGA	256	192	I
	LC4384C-5T176I	384	1.8	5	TQFP	176	128	I
	LC4384C-75T176I	384	1.8	7.5	TQFP	176	128	I
	LC4384C-10T176I	384	1.8	10	TQFP	176	128	I
	LC4512C-5FT256I	512	1.8	5	ftBGA	256	208	I
	LC4512C-75FT256I	512	1.8	7.5	ftBGA	256	208	I
	LC4512C-10FT256I	512	1.8	10	ftBGA	256	208	I
	LC4512C-5F256I ¹	512	1.8	5	fpBGA	256	208	I
LC4512C	LC4512C-75F256I ¹	512	1.8	7.5	fpBGA	256	208	I
	LC4512C-10F256I ¹	512	1.8	10	fpBGA	256	208	I
	LC4512C-5T176I	512	1.8	5	TQFP	176	128	I
	LC4512C-75T176I	512	1.8	7.5	TQFP	176	128	I
	LC4512C-10T176I	512	1.8	10	TQFP	176	128	I

^{1.} Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000B (2.5V) Commercial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032B-25T48C	32	2.5	2.5	TQFP	48	32	С
	LC4032B-5T48C	32	2.5	5	TQFP	48	32	С
LC4032B	LC4032B-75T48C	32	2.5	7.5	TQFP	48	32	С
LC4032B	LC4032B-25T44C	32	2.5	2.5	TQFP	44	30	С
	LC4032B-5T44C	32	2.5	5	TQFP	44	30	С
	LC4032B-75T44C	32	2.5	7.5	TQFP	44	30	С
	LC4064B-25T100C	64	2.5	2.5	TQFP	100	64	С
	LC4064B-5T100C	64	2.5	5	TQFP	100	64	С
	LC4064B-75T100C	64	2.5	7.5	TQFP	100	64	С
	LC4064B-25T48C	64	2.5	2.5	TQFP	48	32	С
LC4064B	LC4064B-5T48C	64	2.5	5	TQFP	48	32	С
	LC4064B-75T48C	64	2.5	7.5	TQFP	48	32	С
	LC4064B-25T44C	64	2.5	2.5	TQFP	44	30	С
	LC4064B-5T44C	64	2.5	5	TQFP	44	30	С
	LC4064B-75T44C	64	2.5	7.5	TQFP	44	30	С
	LC4128B-27T128C	128	2.5	2.7	TQFP	128	92	С
	LC4128B-5T128C	128	2.5	5	TQFP	128	92	С
LC4128B	LC4128B-75T128C	128	2.5	7.5	TQFP	128	92	С
LU4120D	LC4128B-27T100C	128	2.5	2.7	TQFP	100	64	С
	LC4128B-5T100C	128	2.5	5	TQFP	100	64	С
	LC4128B-75T100C	128	2.5	7.5	TQFP	100	64	С

Lead-Free Packaging

ispMACH 4000Z (Zero Power, 1.8V) Lead-Free Commercial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032ZC-35MN56C	32	1.8	3.5	Lead-free csBGA	56	32	С
	LC4032ZC-5MN56C	32	1.8	5	Lead-free csBGA	56	32	С
LC4032ZC	LC4032ZC-75MN56C	32	1.8	7.5	Lead-free csBGA	56	32	С
LU4032ZU	LC4032ZC-35TN48C	32	1.8	3.5	Lead-free TQFP	48	32	С
	LC4032ZC-5TN48C	32	1.8	5	Lead-free TQFP	48	32	С
	LC4032ZC-75TN48C	32	1.8	7.5	Lead-free TQFP	48	32	С
	LC4064ZC-37MN132C	64	1.8	3.7	Lead-free csBGA	132	64	С
	LC4064ZC-5MN132C	64	1.8	5	Lead-free csBGA	132	64	С
	LC4064ZC-75MN132C	64	1.8	7.5	Lead-free csBGA	132	64	С
	LC4064ZC-37TN100C	64	1.8	3.7	Lead-free TQFP	100	64	С
	LC4064ZC-5TN100C	64	1.8	5	Lead-free TQFP	100	64	С
LC4064ZC	LC4064ZC-75TN100C	64	1.8	7.5	Lead-free TQFP	100	64	С
LO40042C	LC4064ZC-37MN56C	64	1.8	3.7	Lead-free csBGA	56	32	С
	LC4064ZC-5MN56C	64	1.8	5	Lead-free csBGA	56	32	С
	LC4064ZC-75MN56C	64	1.8	7.5	Lead-free csBGA	56	32	С
	LC4064ZC-37TN48C	64	1.8	3.7	Lead-free TQFP	48	32	С
	LC4064ZC-5TN48C	64	1.8	5	Lead-free TQFP	48	32	С
	LC4064ZC-75TN48C	64	1.8	7.5	Lead-free TQFP	48	32	С
	LC4128ZC-42MN132C	128	1.8	4.2	Lead-free csBGA	132	96	С
LC4128ZC	LC4128ZC-75MN132C	128	1.8	7.5	Lead-free csBGA	132	96	С
LC41282C	LC4128ZC-42TN100C	128	1.8	4.2	Lead-free TQFP	100	64	С
	LC4128ZC-75TN100C	128	1.8	7.5	Lead-free TQFP	100	64	С
	LC4256ZC-45TN176C	256	1.8	4.5	Lead-free TQFP	176	128	С
	LC4256ZC-75TN176C	256	1.8	7.5	Lead-free TQFP	176	128	С
LC4256ZC	LC4256ZC-45MN132C	256	1.8	4.5	Lead-free csBGA	132	96	С
LU42302U	LC4256ZC-75MN132C	256	1.8	7.5	Lead-free csBGA	132	96	С
	LC4256ZC-45TN100C	256	1.8	4.5	Lead-free TQFP	100	64	С
	LC4256ZC-75TN100C	256	1.8	7.5	Lead-free TQFP	100	64	С

ispMACH 4000Z (Zero Power, 1.8V) Lead-Free Industrial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032ZC-5MN56I	32	1.8	5	Lead-free csBGA	56	32	I
LC4032ZC	LC4032ZC-75MN56I	32	1.8	7.5	Lead-free csBGA	56	32	I
LO403220	LC4032ZC-5TN48I	32	1.8	5	Lead-free TQFP	48	32	I
	LC4032ZC-75TN48I	32	1.8	7.5	Lead-free TQFP	48	32	I

ispMACH 4000C (1.8V) Lead-Free Commercial Devices (Cont.)

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4512C-35FTN256C	512	1.8	3.5	Lead-free ftBGA	256	208	С
	LC4512C-5FTN256C	512	1.8	5	Lead-free ftBGA	256	208	С
	LC4512C-75FTN256C	512	1.8	7.5	Lead-free ftBGA	256	208	С
	LC4512C-35FN256C1	512	1.8	3.5	Lead-free fpBGA	256	208	С
LC4512C	LC4512C-5FN256C1	512	1.8	5	Lead-free fpBGA	256	208	С
	LC4512C-75FN256C ¹	512	1.8	7.5	Lead-free fpBGA	256	208	С
	LC4512C-35TN176C	512	1.8	3.5	Lead-free TQFP	176	128	С
	LC4512C-5TN176C	512	1.8	5	Lead-free TQFP	176	128	С
	LC4512C-75TN176C	512	1.8	7.5	Lead-free TQFP	176	128	С

^{1.} Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000C (1.8V) Lead-Free Industrial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
LC4032C	LC4032C-5TN48I	32	1.8	5	Lead-free TQFP	48	32	I
	LC4032C-75TN48I	32	1.8	7.5	Lead-free TQFP	48	32	I
	LC4032C-10TN48I	32	1.8	10	Lead-free TQFP	48	32	I
	LC4032C-5TN44I	32	1.8	5	Lead-free TQFP	44	30	I
	LC4032C-75TN44I	32	1.8	7.5	Lead-free TQFP	44	30	I
	LC4032C-10TN44I	32	1.8	10	Lead-free TQFP	44	30	ı
LC4064C	LC4064C-5TN100I	64	1.8	5	Lead-free TQFP	100	64	I
	LC4064C-75TN100I	64	1.8	7.5	Lead-free TQFP	100	64	I
	LC4064C-10TN100I	64	1.8	10	Lead-free TQFP	100	64	ı
	LC4064C-5TN48I	64	1.8	5	Lead-free TQFP	48	32	I
	LC4064C-75TN48I	64	1.8	7.5	Lead-free TQFP	48	32	I
	LC4064C-10TN48I	64	1.8	10	Lead-free TQFP	48	32	ı
	LC4064C-5TN44I	64	1.8	5	Lead-free TQFP	44	30	I
	LC4064C-75TN44I	64	1.8	5	Lead-free TQFP	44	30	I
	LC4064C-10TN44I	64	1.8	10	Lead-free TQFP	44	30	ı
LC4128C	LC4128C-5TN128I	128	1.8	5	Lead-free TQFP	128	92	I
	LC4128C-75TN128I	128	1.8	7.5	Lead-free TQFP	128	92	ı
	LC4128C-10TN128I	128	1.8	10	Lead-free TQFP	128	92	I
	LC4128C-5TN100I	128	1.8	5	Lead-free TQFP	100	64	I
	LC4128C-75TN100I	128	1.8	7.5	Lead-free TQFP	100	64	ı
	LC4128C-10TN100I	128	1.8	10	Lead-free TQFP	100	64	I

Revision History (Cont.)

Date	Version	Change Summary			
January 2004	20z	ispMACH 4000Z data sheet status changed from preliminary to final. Documents production release of the ispMACH 4256Z device.			
		Added new feature - ispMACH 4000Z supports operation down to 1.6V.			
		Added lead-free packaging ordering part numbers for the ispMACH 4000Z/C/V devices.			
April 2004	21z	Updated I_{PU} (I/O Weak Pull-up Resistor Current) max. specification for the ispMACH 4000V/B/C; -150 μ A to -200 μ A.			
November 2004	22z	Added User Electronic Signature section.			
		Added ispMACH 4000B (2.5V) Lead-Free Ordering Part Numbers.			
December 2004	22z.1	Updated Further Information section.			
February 2006	22z.2	Clarification to ispMACH 4000Z Input Leakage (I _{IH}) specification.			
March 2007	22.3	Updated ispMACH 4000 Introduction section.			
		Updated Signal Descriptions table.			
June 2007	22.4	Updated Features bullets to include reference to "LA" automotive data sheet under the "Broad Device Offering" bullet.			
		Added footnote 1 to Part Number Description to reference the "LA" automotive data sheet.			
		Changed device temperature references from 'Automotive' to "Extended Temperature" for non-AEC-Q100 qualified devices.			
November 2007	23.0	Added 256-ftBGA package Ordering Part Number information per PCN#14A-07.			
May 2009	23.1	Correction to $t_{\rm CW}$, $t_{\rm GW}$, $t_{\rm WIR}$ and $f_{\rm MAX}$ parameters in ispMACH 4000Z External Switching Characteristics table.			
		Correction to t_{CW} , t_{GW} , t_{WIR} and f_{MAX} parameters in ispMACH 4000V/B/C External Switching Characteristics table.			