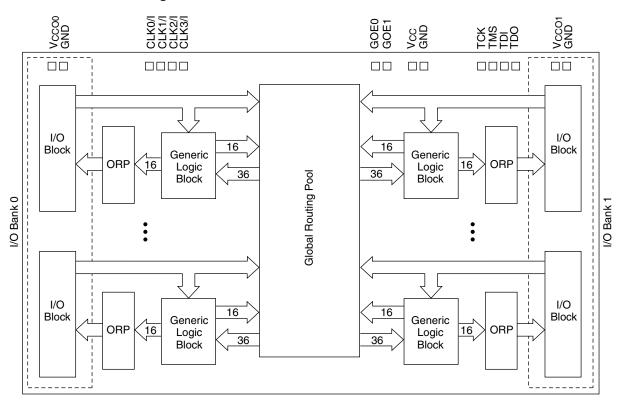


Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.


Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	-
Number of I/O	64
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	132-LFBGA, CSPBGA
Supplier Device Package	132-CSBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4064zc-5m132c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1. Functional Block Diagram

The I/Os in the ispMACH 4000 are split into two banks. Each bank has a separate I/O power supply. Inputs can support a variety of standards independent of the chip or bank power supply. Outputs support the standards compatible with the power supply provided to the bank. Support for a variety of standards helps designers implement designs in mixed voltage environments. In addition, 5V tolerant inputs are specified within an I/O bank that is connected to V_{CCO} of 3.0V to 3.6V for LVCMOS 3.3, LVTTL and PCI interfaces.

ispMACH 4000 Architecture

There are a total of two GLBs in the ispMACH 4032, increasing to 32 GLBs in the ispMACH 4512. Each GLB has 36 inputs. All GLB inputs come from the GRP and all outputs from the GLB are brought back into the GRP to be connected to the inputs of any other GLB on the device. Even if feedback signals return to the same GLB, they still must go through the GRP. This mechanism ensures that GLBs communicate with each other with consistent and predictable delays. The outputs from the GLB are also sent to the ORP. The ORP then sends them to the associated I/O cells in the I/O block.

Generic Logic Block

The ispMACH 4000 GLB consists of a programmable AND array, logic allocator, 16 macrocells and a GLB clock generator. Macrocells are decoupled from the product terms through the logic allocator and the I/O pins are decoupled from macrocells through the ORP. Figure 2 illustrates the GLB.

Product Term Allocator

The product term allocator assigns product terms from a cluster to either logic or control applications as required by the design being implemented. Product terms that are used as logic are steered into a 5-input OR gate associated with the cluster. Product terms that used for control are steered either to the macrocell or I/O cell associated with the cluster. Table 3 shows the available functions for each of the five product terms in the cluster. The OR gate output connects to the associated I/O cell, providing a fast path for narrow combinatorial functions, and to the logic allocator.

Table 3. Individual PT Steering

Product Term	Logic	Control
PT <i>n</i>	Logic PT	Single PT for XOR/OR
PT <i>n</i> +1	Logic PT	Individual Clock (PT Clock)
PT <i>n</i> +2	Logic PT	Individual Initialization or Individual Clock Enable (PT Initialization/CE)
PT <i>n</i> +3	Logic PT	Individual Initialization (PT Initialization)
PT <i>n</i> +4	Logic PT	Individual OE (PTOE)

Cluster Allocator

The cluster allocator allows clusters to be steered to neighboring macrocells, thus allowing the creation of functions with more product terms. Table 4 shows which clusters can be steered to which macrocells. Used in this manner, the cluster allocator can be used to form functions of up to 20 product terms. Additionally, the cluster allocator accepts inputs from the wide steering logic. Using these inputs, functions up to 80 product terms can be created.

Table 4. Available Clusters for Each Macrocell

Macrocell		Available	Clusters	
M0	_	C0	C1	C2
M1	C0	C1	C2	C3
M2	C1	C2	C3	C4
M3	C2	C3	C4	C5
M4	C3	C4	C5	C6
M5	C4	C5	C6	C7
M6	C5	C6	C7	C8
M7	C6	C7	C8	C9
M8	C7	C8	C9	C10
M9	C8	C9	C10	C11
M10	C9	C10	C11	C12
M11	C10	C11	C12	C13
M12	C11	C12	C13	C14
M13	C12	C13	C14	C15
M14	C13	C14	C15	_
M15	C14	C15	_	_

Wide Steering Logic

The wide steering logic allows the output of the cluster allocator n to be connected to the input of the cluster allocator n+4. Thus, cluster chains can be formed with up to 80 product terms, supporting wide product term functions and allowing performance to be increased through a single GLB implementation. Table 5 shows the product term chains.

IEEE 1532-Compliant In-System Programming

Programming devices in-system provides a number of significant benefits including: rapid prototyping, lower inventory levels, higher quality and the ability to make in-field modifications. All ispMACH 4000 devices provide In-System Programming (ISP™) capability through the Boundary Scan Test Access Port. This capability has been implemented in a manner that ensures that the port remains complaint to the IEEE 1149.1 standard. By using IEEE 1149.1 as the communication interface through which ISP is achieved, users get the benefit of a standard, well-defined interface. All ispMACH 4000 devices are also compliant with the IEEE 1532 standard.

The ispMACH 4000 devices can be programmed across the commercial temperature and voltage range. The PC-based Lattice software facilitates in-system programming of ispMACH 4000 devices. The software takes the JEDEC file output produced by the design implementation software, along with information about the scan chain, and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain via the parallel port of a PC. Alternatively, the software can output files in formats understood by common automated test equipment. This equipment can then be used to program ispMACH 4000 devices during the testing of a circuit board.

User Electronic Signature

The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the device, stored in E²CMOS memory. The ispMACH 4000 device contains 32 UES bits that can be configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.

Security Bit

A programmable security bit is provided on the ispMACH 4000 devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.

Hot Socketing

The ispMACH 4000 devices are well-suited for applications that require hot socketing capability. Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The isp-MACH 4000 devices provide this capability for input voltages in the range 0V to 3.0V.

Density Migration

The ispMACH 4000 family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

I/O Recommended Operating Conditions

	V _{CCO} (V) ¹			
Standard	Min.	Max.		
LVTTL	3.0	3.6		
LVCMOS 3.3	3.0	3.6		
Extended LVCMOS 3.3 ²	2.7	3.6		
LVCMOS 2.5	2.3	2.7		
LVCMOS 1.8	1.65	1.95		
PCI 3.3	3.0	3.6		

^{1.} Typical values for $\rm V_{\rm CCO}$ are the average of the min. and max. values.

DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{IL} , I _{IH} ^{1, 4}	Input Leakage Current (ispMACH 4000Z)	$0 \le V_{IN} < V_{CCO}$	_	0.5	1	μΑ
I _{IH} ¹	Input High Leakage Current (isp-MACH 4000Z)	$V_{CCO} < V_{IN} \le 5.5V$	_	_	10	μΑ
I _{IL} , I _{IH} ¹	Input Leakage Current (ispMACH	$0 \le V_{IN} \le 3.6V, T_j = 105^{\circ}C$	_	_	10	μΑ
'IL', 'IH	4000V/B/C)	$0 \le V_{IN} \le 3.6V, T_j = 130^{\circ}C$	_	_	15	μΑ
I _{IH} ^{1,2}	Input High Leakage Current (isp-	$3.6V < V_{IN} \le 5.5V$, $T_j = 105^{\circ}C$ $3.0V \le V_{CCO} \le 3.6V$	_	_	20	μΑ
ΊΗ	MACH 4000V/B/C)	$3.6V < V_{IN} \le 5.5V$, $T_j = 130^{\circ}C$ $3.0V \le V_{CCO} \le 3.6V$	_	_	50	μΑ
I	I/O Weak Pull-up Resistor Current (ispMACH 4000Z)	$0 \le V_{IN} \le 0.7 V_{CCO}$	-30	_	-150	μΑ
I _{PU}	I/O Weak Pull-up Resistor Current (ispMACH 4000V/B/C)	$0 \le V_{IN} \le 0.7 V_{CCO}$	-30	_	-200	μΑ
I _{PD}	I/O Weak Pull-down Resistor Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{IH}$ (MIN)	30	_	150	μΑ
I _{BHLS}	Bus Hold Low Sustaining Current	$V_{IN} = V_{IL} (MAX)$	30		_	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCO}$	-30	_	_	μΑ
I _{BHLO}	Bus Hold Low Overdrive Current	$0V \le V_{IN} \le V_{BHT}$	_	_	150	μΑ
I _{BHHO}	Bus Hold High Overdrive Current	$V_{BHT} \le V_{IN} \le V_{CCO}$	_	_	-150	μΑ
V_{BHT}	Bus Hold Trip Points	_	V _{CCO} * 0.35	_	V _{CCO} * 0.65	V
C ₁	I/O Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V	_	8	_	pf
01	1/O Capacitance	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	_	U	_	рі
C_2	Clock Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V	_	6	_	pf
02	Clock Capacitarios	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	_	J	_	ρı
C ₃	Global Input Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V	_	6	_	pf
0 3	Global Input Gapasitario	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	_		_	Pi

^{1.} Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

^{2.} ispMACH 4000Z only.

^{2. 5}V tolerant inputs and I/O should only be placed in banks where 3.0V \leq V $_{CCO} \leq$ 3.6V.

^{3.} $T_A = 25^{\circ}C$, f = 1.0MHz

^{4.} I_{II} excursions of up to 1.5μA maximum per pin above the spec limit may be observed for certain voltage conditions on no more than 10% of the device's I/O pins.

Supply Current, ispMACH 4000Z (Cont.)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
ispMACH 4	1256ZC					<u>.I</u>
		Vcc = 1.8V, T _A = 25°C	_	341	_	μΑ
ICC ^{1, 2, 3, 5}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 70^{\circ}C$	_	361	_	μΑ
	Operating Fower Supply Current	$Vcc = 1.9V, T_A = 85^{\circ}C$	_	372	_	μΑ
		Vcc = 1.9V, T _A = 125°C	_	468	_	μΑ
		Vcc = 1.8V, T _A = 25°C	_	13	_	μΑ
ICC ^{4, 5}	Charadha Daviar Connala Connant	$Vcc = 1.9V, T_A = 70^{\circ}C$	_	32	55	μΑ
100	Standby Power Supply Current	$Vcc = 1.9V, T_A = 85^{\circ}C$	_	43	90	μΑ
		Vcc = 1.9V, T _A = 125°C	_	135	_	μΑ

^{1.} $T_A = 25$ °C, frequency = 1.0 MHz.

Device configured with 16-bit counters.
I_{CC} varies with specific device configuration and operating frequency.

^{4.} V_{CCO} = 3.6V, V_{IN} = 0V or V_{CCO} , bus maintenance turned off. V_{IN} above V_{CCO} will add transient current above the specified standby I_{CC} .

^{5.} Includes V_{CCO} current without output loading.

I/O DC Electrical Characteristics

		V _{IL}	V _{IH}		V _{OL}	V _{OH}	l _{OL} ¹	I _{OH} ¹
Standard	Min (V)	Max (V)	Min (V)	Max (V)	Max (V)	Min (V)	(mA)	(mA)
LVTTL	-0.3	0.80	2.0	5.5	0.40	V _{CCO} - 0.40	8.0	-4.0
LVIIL	-0.5	0.00	2.0	5.5	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 3.3	-0.3	0.80	2.0	5.5	0.40	V _{CCO} - 0.40	8.0	-4.0
EVOIVIOU 3.3	-0.5	0.00	2.0	5.5	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 2.5	-0.3	0.70	1.70	3.6	0.40	V _{CCO} - 0.40	8.0	-4.0
EVOIVIOU 2.5	-0.0	0.70	1.70	3.0	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 1.8	-0.3	0.63	1.17	3.6	0.40	V _{CCO} - 0.45	2.0	-2.0
(4000V/B)	-0.5	0.03	1.17	3.0	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 1.8	-0.3	0.35 * V _{CC}	0.65 * V _{CC}	3.6	0.40	V _{CCO} - 0.45	2.0	-2.0
(4000C/Z)	-0.5	0.55 V _{CC}	0.03 VCC	3.0	0.20	V _{CCO} - 0.20	0.1	-0.1
PCI 3.3 (4000V/B)	-0.3	1.08	1.5	5.5	0.1 V _{CCO}	0.9 V _{CCO}	1.5	-0.5
PCI 3.3 (4000C/Z)	-0.3	0.3 * 3.3 * (V _{CC} / 1.8)	0.5 * 3.3 * (V _{CC} / 1.8)	5.5	0.1 V _{CCO}	0.9 V _{CCO}	1.5	-0.5

^{1.} The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of the I/O bank, as shown in the logic signals connection table, shall not exceed *n**8mA. Where *n* is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank.

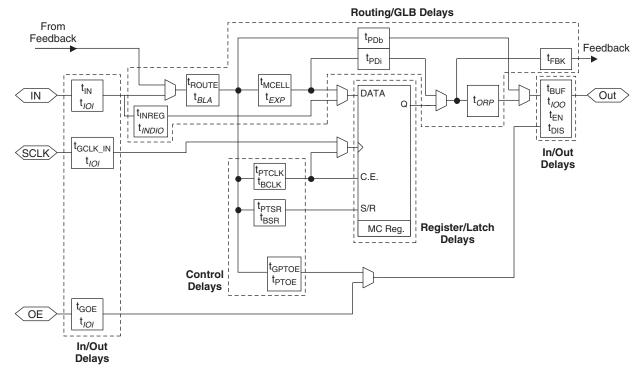
Timing v.3.2

ispMACH 4000V/B/C External Switching Characteristics

		-2	25	-27		-	-3 -35		35	
Parameter	Description ^{1, 2, 3}	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PD}	5-PT bypass combinatorial propagation delay	_	2.5	_	2.7	_	3.0	_	3.5	ns
t _{PD_MC}	20-PT combinatorial propagation delay through macrocell	_	3.2	_	3.5	_	3.8	_	4.2	ns
t _S	GLB register setup time before clock	1.8		1.8		2.0		2.0	_	ns
t _{ST}	GLB register setup time before clock with T-type register	2.0	_	2.0	_	2.2	_	2.2	_	ns
t _{SIR}	GLB register setup time before clock, input register path	0.7	_	1.0	_	1.0	_	1.0	_	ns
t _{SIRZ}	GLB register setup time before clock with zero hold	1.7	_	2.0	_	2.0	_	2.0	_	ns
t _H	GLB register hold time after clock	0.0	_	0.0	_	0.0	_	0.0	_	ns
t _{HT}	GLB register hold time after clock with T-type register	0.0	_	0.0	_	0.0	_	0.0	_	ns
t _{HIR}	GLB register hold time after clock, input register path	0.9	_	1.0	_	1.0	_	1.0	_	ns
t _{HIRZ}	GLB register hold time after clock, input register path with zero hold	0.0	_	0.0	_	0.0	_	0.0	_	ns
t _{CO}	GLB register clock-to-output delay		2.2	_	2.7	_	2.7	_	2.7	ns
t _R	External reset pin to output delay	_	3.5	_	4.0	_	4.4	_	4.5	ns
t _{RW}	External reset pulse duration	1.5		1.5	_	1.5		1.5	-	ns
t _{PTOE/DIS}	Input to output local product term output enable/disable	_	4.0	_	4.5	_	5.0	_	5.5	ns
t _{GPTOE/DIS}	Input to output global product term output enable/disable	-	5.0	_	6.5	_	8.0	_	8.0	ns
t _{GOE/DIS}	Global OE input to output enable/disable	_	3.0	_	3.5	_	4.0	_	4.5	ns
t _{CW}	Global clock width, high or low	1.1		1.3	_	1.3	_	1.3	_	ns
t _{GW}	Global gate width low (for low transparent) or high (for high transparent)	1.1	_	1.3	_	1.3	_	1.3	_	ns
t _{WIR}	Input register clock width, high or low	1.1	_	1.3	_	1.3	_	1.3	_	ns
f _{MAX} ⁴	Clock frequency with internal feedback		400		333	_	322	_	322	MHz
f _{MAX} (Ext.)	Clock frequency with external feedback, [1/ (t _S + t _{CO})]	_	250	_	222	_	212	_	212	MHz

^{1.} Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate other standards.

^{2.} Measured using standard switching circuit, assuming GRP loading of 1 and 1 output switching.


^{3.} Pulse widths and clock widths less than minimum will cause unknown behavior.

^{4.} Standard 16-bit counter using GRP feedback.

Timing Model

The task of determining the timing through the ispMACH 4000 family, like any CPLD, is relatively simple. The timing model provided in Figure 11 shows the specific delay paths. Once the implementation of a given function is determined either conceptually or from the software report file, the delay path of the function can easily be determined from the timing model. The Lattice design tools report the timing delays based on the same timing model for a particular design. Note that the internal timing parameters are given for reference only, and are not tested. The external timing parameters are tested and guaranteed for every device. For more information on the timing model and usage, refer to TN1004, ispMACH 4000 Timing Model Design and Usage Guidelines.

Figure 11. ispMACH 4000 Timing Model

Note: Italicized items are optional delay adders.

ispMACH 4000V/B/C Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

		-	5	-7	'5	-1	0	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{GPTOE}	Global PT OE Delay	_	5.58		5.58	_	5.78	ns
t _{PTOE}	Macrocell PT OE Delay	_	3.58		4.28		4.28	ns

Timing v.3.2

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the Timing Model in this data sheet for further details.

ispMACH 4032V/B/C and 4064V/B/C Logic Signal Connections: 44-Pin TQFP

		ispMACH 40	032V/B/C	ispMACH 40	64V/B/C
Pin Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
1	-	TDI	-	TDI	-
2	0	A5	A^5	A10	A^5
3	0	A6	A^6	A12	A^6
4	0	A7	A^7	A14	A^7
5	0	GND (Bank 0)	-	GND (Bank 0)	-
6	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-
7	0	A8	A^8	B0	B^0
8	0	A9	A^9	B2	B^1
9	0	A10	A^10	B4	B^2
10	-	TCK	-	TCK	-
11	-	VCC	-	VCC	-
12	-	GND	-	GND	-
13	0	A12	A^12	B8	B^4
14	0	A13	A^13	B10	B^5
15	0	A14	A^14	B12	B^6
16	0	A15	A^15	B14	B^7
17	1	CLK2/I	-	CLK2/I	-
18	1	B0	B^0	C0	C^0
19	1	B1	B^1	C2	C^1
20	1	B2	B^2	C4	C^2
21	1	B3	B^3	C6	C^3
22	1	B4	B^4	C8	C^4
23	-	TMS	-	TMS	-
24	1	B5	B^5	C10	C^5
25	1	B6	B^6	C12	C^6
26	1	B7	B^7	C14	C^7
27	1	GND (Bank 1)	-	GND (Bank 1)	-
28	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-
29	1	B8	B^8	D0	D^0
30	1	B9	B^9	D2	D^1
31	1	B10	B^10	D4	D^2
32	-	TDO	-	TDO	-
33	-	VCC	-	VCC	-
34	-	GND	-	GND	-
35	1	B12	B^12	D8	D^4
36	1	B13	B^13	D10	D^5
37	1	B14	B^14	D12	D^6
38	1	B15/GOE1	B^15	D14/GOE1	D^7
39	0	CLK0/I	-	CLK0/I	-
40	0	A0/GOE0	A^0	A0/GOE0	A^0
41	0	A1	A^1	A2	A^1

ispMACH 4064V/B/C/Z, 4128V/B/C/Z, 4256V/B/C/Z Logic Signal Connections: 100-Pin TQFP (Cont.)

	Bank	ispMACH 40	64V/B/C/Z	ispMACH 41	ispMACH 4128V/B/C/Z		256V/B/C/Z
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
83	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
84	1	D3	D^3	H6	H^3	P12	P^3
85	1	D2	D^2	H4	H^2	P10	P^2
86	1	D1	D^1	H2	H^1	P6	P^1
87	1	D0/GOE1	D^0	H0/GOE1	H^0	P2/OE1	P^0
88	1	CLK3/I	-	CLK3/I	-	CLK3/I	-
89	0	CLK0/I	-	CLK0/I	-	CLK0/I	-
90	-	VCC	-	VCC	-	VCC	-
91	0	A0/GOE0	A^0	A0/GOE0	A^0	A2/GOE0	A^0
92	0	A1	A^1	A2	A^1	A6	A^1
93	0	A2	A^2	A4	A^2	A10	A^2
94	0	A3	A^3	A6	A^3	A12	A^3
95	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
96	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
97	0	A4	A^4	A8	A^4	B2	B^0
98	0	A5	A^5	A10	A^5	B6	B^1
99	0	A6	A^6	A12	A^6	B10	B^2
100	0	A7	A^7	A14	A^7	B12	B^3

^{*}This pin is input only.

ispMACH 4128V/B/C Logic Signal Connections: 128-Pin TQFP

		ispMACH 4128V/B/C			
Pin Number	Bank Number	GLB/MC/Pad	ORP		
1	0	GND	-		
2	0	TDI	-		
3	0	VCCO (Bank 0)	-		
4	0	B0	B^0		
5	0	B1	B^1		
6	0	B2	B^2		
7	0	B4	B^3		
8	0	B5	B^4		
9	0	B6	B^5		
10	0	GND (Bank 0)	-		
11	0	B8	B^6		
12	0	B9	B^7		
13	0	B10	B^8		
14	0	B12	B^9		
15	0	B13	B^10		
16	0	B14	B^11		
17	0	VCCO (Bank 0)	-		
18	0	C14 C^11			

ispMACH 4128V/B/C Logic Signal Connections: 128-Pin TQFP (Cont.)

		ispMACH 4	128V/B/C
Pin Number	Bank Number	GLB/MC/Pad	ORP
19	0	C13	C^10
20	0	C12	C^9
21	0	C10	C^8
22	0	C9	C^7
23	0	C8	C^6
24	0	GND (Bank 0)	-
25	0	C6	C^5
26	0	C5	C^4
27	0	C4	C^3
28	0	C2	C^2
29	0	C0	C^0
30	0	VCCO (Bank 0)	-
31	0	TCK	-
32	0	VCC	-
33	0	GND	-
34	0	D14	D^11
35	0	D13	D^10
36	0	D12	D^9
37	0	D10	D^8
38	0	D9	D^7
39	0	D8	D^6
40	0	GND (Bank 0)	-
41	0	VCCO (Bank 0)	-
42	0	D6	D^5
43	0	D5	D^4
44	0	D4	D^3
45	0	D2	D^2
46	0	D1	D^1
47	0	D0	D^0
48	0	CLK1/I	-
49	1	GND (Bank 1)	-
50	1	CLK2/I	-
51	1	VCC	-
52	1	E0	E^0
53	1	E1	E^1
54	1	E2	E^2
55	1	E4	E^3
56	1	E5	E^4
57	1	E6	E^5
58	1	VCCO (Bank 1)	-
59	1	GND (Bank 1)	-
60	1	E8	E^6
61	1	E9	E^7

ispMACH 4128V/B/C Logic Signal Connections: 128-Pin TQFP (Cont.)

		ispMACH 41	28V/B/C
Pin Number	Bank Number	GLB/MC/Pad	ORP
105	1	VCCO (Bank 1)	-
106	1	H6	H^5
107	1	H5	H^4
108	1	H4	H^3
109	1	H2	H^2
110	1	H1	H^1
111	1	H0/GOE1	H^0
112	1	CLK3/I	-
113	0	GND (Bank 0)	-
114	0	CLK0/I	-
115	0	VCC	-
116	0	A0/GOE0	A^0
117	0	A1	A^1
118	0	A2	A^2
119	0	A4	A^3
120	0	A5	A^4
121	0	A6	A^5
122	0	VCCO (Bank 0)	-
123	0	GND (Bank 0)	-
124	0	A8	A^6
125	0	A9	A^7
126	0	A10	A^8
127	0	A12	A^9
128	0	A14	A^11

ispMACH 4064Z, 4128Z and 4256Z Logic Signal Connections: 132-Ball csBGA

		ispMAC	H 4064Z	ispMAC	H 4128Z	ispMACH 4256Z		
Ball Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	
B1	-	GND	-	GND	-	GND	-	
B2	-	TDI	-	TDI	-	TDI	-	
C1	0	NC	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-	
C3	0	NC	-	B0	B^0	C12	C^6	
C2	0	A8	A^8	B1	B^1	C10	C^5	
D1	0	A9	A^9	B2	B^2	C8	C^4	
D3	0	A10	A^10	B4	B^3	C6	C^3	
D2	0	A11	A^11	B5	B^4	C4	C^2	
E1	0	NC		B6	B^5	C2	C^1	
E2	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-	

ispMACH 4064Z, 4128Z and 4256Z Logic Signal Connections: 132-Ball csBGA (Cont.)

		ispMACH	1 4064Z	ispMACH	1 4128Z	ispMACH	1 4256Z
Ball Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
E3	0	NC	-	B8	B^6	D12	D^6
F2	0	A12	A^12	B9	B^7	D10	D^5
F1	0	A13	A^13	B10	B^8	D8	D^4
F3	0	A14	A^14	B12	B^9	D6	D^3
G1	0	A15	A^15	B13	B^10	D4	D^2
G2	0	I	-	B14	B^11	D2	D^1
G3	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
H2	0	NC	-	C14	C^11	E2	E^1
H1	0	B15	B^15	C13	C^10	E4	E^2
H3	0	B14	B^14	C12	C^9	E6	E^3
J1	0	B13	B^13	C10	C^8	E8	E^4
J2	0	B12	B^12	C9	C^7	E10	E^5
J3	0	NC	-	C8	C^6	E12	E^6
K2	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
K1	0	NC	-	C6	C^5	F2	F^1
K3	0	B11	B^11	C5	C^4	F4	F^2
L2	0	B10	B^10	C4	C^3	F6	F^3
L1	0	B9	B^9	C2	C^2	F8	F^4
L3	0	B8	B^8	C1	C^1	F10	F^5
M1	0	I	-	C0	C^0	F12	F^6
M2	0	NC	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
N1	-	TCK	-	TCK	-	TCK	-
P1	-	VCC	-	VCC	-	VCC	-
P2	-	GND	-	GND	-	GND	-
N2	0	I	-	D14	D^11	G12	G^6
P3	0	B7	B^7	D13	D^10	G10	G^5
M3	0	B6	B^6	D12	D^9	G8	G^4
N3	0	B5	B^5	D10	D^8	G6	G^3
P4	0	B4	B^4	D9	D^7	G4	G^2
M4	0	NC	-	D8	D^6	G2	G^1
N4	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
P5	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
N5	0	NC	-	D6	D^5	H12	H^6
M5	0	B3	B^3	D5	D^4	H10	H^5
N6	0	B2	B^2	D4	D^3	H8	H^4
P6	0	B1	B^1	D2	D^2	H6	H^3
M6	0	B0	B^0	D1	D^1	H4	H^2
P7	0	NC	-	D0	D^0	H2	H^1
N7	0	CLK1/I	-	CLK1/I	-	CLK1/I	
M7	1	CLK2/I	_	CLK2/I		CLK2/I	
N8	-	VCC	-	VCC	-	VCC	-

ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C Logic Signal Connections: 256-Ball ftBGA/fpBGA (Cont.)

Ball	I/O	ispMACH 4256 128-I/O	V/B/C	ispMACH 4256 160-I/O	V/B/C	ispMACH 4384	V/B/C	ispMACH 4512	V/B/C
Number	Bank	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
R5	0	NC	-	NC	-	NC	-	L4	L^1
T5	0	NC	-	NC	-	12	I^1	L8	L^2
R6	0	NC	-	NC	-	10	I^0	L12	L^3
T6	0	NC	-	H14	H^9	G12	G^6	M8	M^2
N7	0	NC	-	H12	H^8	G14	G^7	M12	M^3
P7	0	H14	H^7	H10	H^7	L14	L^7	P14	P^7
R7	0	H12	H^6	H9	H^6	L12	L^6	P12	P^6
L8	0	H10	H^5	H8	H^5	L10	L^5	P10	P^5
T7	0	H8	H^4	H6	H^4	L8	L^4	P8	P^4
M8	0	H6	H^3	H4	H^3	L6	L^3	P6	P^3
N8	0	H4	H^2	H2	H^2	L4	L^2	P4	P^2
R8	0	H2	H^1	H1	H^1	L2	L^1	P2	P^1
P8	0	H0	H^0	H0	H^0	L0	L^0	P0	P^0
-	-	GND	-	GND	-	GND	-	GND	-
Т8	0	CLK1/I	-	CLK1/I	-	CLK1/I	-	CLK1/I	-
-	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
N9	1	CLK2/I	-	CLK2/I	-	CLK2/I	-	CLK2/I	-
-	-	VCC	-	VCC	-	VCC	-	VCC	-
P9	1	10	I^0	10	I^0	MO	M^0	AX0	AX^0
R9	1	12	I^1	l1	I^1	M2	M^1	AX2	AX^1
T9	1	14	I^2	12	I^2	M4	M^2	AX4	AX^2
T10	1	16	I^3	14	I^3	M6	M^3	AX6	AX^3
R10	1	18	I^4	16	I^4	M8	M^4	AX8	AX^4
M9	1	I10	I^5	18	I^5	M10	M^5	AX10	AX^5
P10	1	l12	I^6	19	I^6	M12	M^6	AX12	AX^6
L9	1	l14	I^7	I10	I^7	M14	M^7	AX14	AX^7
N10	1	NC	-	l12	I^8	BX14	BX^7	DX0	DX^0
T11	1	NC	-	l14	I^9	BX12	BX^6	DX4	DX^1
R11	1	NC	-	NC	-	P0	P^0	EX0	EX^0
T12	1	NC	-	NC	-	P2	P^1	EX4	EX^1
N12	1	NC	-	NC	-	NC	-	EX8	EX^2
-	1	VCCO (Bank 1)	ı	VCCO (Bank 1)	•	VCCO (Bank 1)	-	VCCO (Bank 1)	-
-	1	GND (Bank 1)	ı	GND (Bank 1)	ı	GND (Bank 1)	-	GND (Bank 1)	-
R12	1	NC	ı	NC	-	NC	-	EX12	EX^3
T13	1	NC	Ī	J0	J^0	BX10	BX^5	DX8	DX^2
P12	1	NC	-	J1	J^1	BX8	BX^4	DX12	DX^3
M10	1	J0	J^0	J2	J^2	N0	N^0	BX0	BX^0
R13	1	J2	J^1	J4	J^3	N2	N^1	BX2	BX^1
L10	1	J4	J^2	J6	J^4	N4	N^2	BX4	BX^2
T14	1	J6	J^3	J8	J^5	N6	N^3	BX6	BX^3
M11	1	J8	J^4	J9	J^6	N8	N^4	BX8	BX^4

ispMACH 4000C (1.8V) Industrial Devices

Family	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032C-5T48I	32	1.8	5	TQFP	48	32	I
	LC4032C-75T48I	32	1.8	7.5	TQFP	48	32	ı
1.040000	LC4032C-10T48I	32	1.8	10	TQFP	48	32	I
LC4032C	LC4032C-5T44I	32	1.8	5	TQFP	44	30	I
	LC4032C-75T44I	32	1.8	7.5	TQFP	44	30	I
	LC4032C-10T44I	32	1.8	10	TQFP	44	30	I
	LC4064C-5T100I	64	1.8	5	TQFP	100	64	ı
	LC4064C-75T100I	64	1.8	7.5	TQFP	100	64	I
	LC4064C-10T100I	64	1.8	10	TQFP	100	64	ı
	LC4064C-5T48I	64	1.8	5	TQFP	48	32	ı
LC4064C	LC4064C-75T48I	64	1.8	7.5	TQFP	48	32	I
	LC4064C-10T48I	64	1.8	10	TQFP	48	32	I
	LC4064C-5T44I	64	1.8	5	TQFP	44	30	I
	LC4064C-75T44I	64	1.8	7.5	TQFP	44	30	I
	LC4064C-10T44I	64	1.8	10	TQFP	44	30	I
	LC4128C-5T128I	128	1.8	5	TQFP	128	92	I
	LC4128C-75T128I	128	1.8	7.5	TQFP	128	92	I
1.044000	LC4128C-10T128I	128	1.8	10	TQFP	128	92	I
LC4128C	LC4128C-5T100I	128	1.8	5	TQFP	100	64	I
	LC4128C-75T100I	128	1.8	7.5	TQFP	100	64	ı
	LC4128C-10T100I	128	1.8	10	TQFP	100	64	ı
	LC4256C-5FT256AI	256	1.8	5	ftBGA	256	128	ı
	LC4256C-75FT256AI	256	1.8	7.5	ftBGA	256	128	I
	LC4256C-10FT256AI	256	1.8	10	ftBGA	256	128	ı
	LC4256C-5FT256BI	256	1.8	5	ftBGA	256	160	I
	LC4256C-75FT256BI	256	1.8	7.5	ftBGA	256	160	I
	LC4256C-10FT256BI	256	1.8	10	ftBGA	256	160	I
	LC4256C-5F256AI ¹	256	1.8	5	fpBGA	256	128	I
	LC4256C-75F256AI ¹	256	1.8	7.5	fpBGA	256	128	I
1.040560	LC4256C-10F256AI ¹	256	1.8	10	fpBGA	256	128	ı
LC4256C	LC4256C-5F256BI ¹	256	1.8	5	fpBGA	256	160	I
	LC4256C-75F256BI ¹	256	1.8	7.5	fpBGA	256	160	I
	LC4256C-10F256BI ¹	256	1.8	10	fpBGA	256	160	I
	LC4256C-5T176I	256	1.8	5	TQFP	176	128	I
	LC4256C-75T176I	256	1.8	7.5	TQFP	176	128	ı
	LC4256C-10T176I	256	1.8	10	TQFP	176	128	I
	LC4256C-5T100I	256	1.8	5	TQFP	100	64	ı
	LC4256C-75T100I	256	1.8	7.5	TQFP	100	64	I
	LC4256C-10T100I	256	1.8	10	TQFP	100	64	I

ispMACH 4000B (2.5V) Lead-Free Commercial Devices (Cont.)

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4384B-35FTN256C	384	2.5	3.5	Lead-Free ftBGA	256	192	С
	LC4384B-5FTN256C	384	2.5	5	Lead-Free ftBGA	256	192	С
	LC4384B-75FTN256C	384	2.5	7.5	Lead-Free ftBGA	256	192	С
	LC4384B-35FN256C1	384	2.5	3.5	Lead-Free fpBGA	256	192	С
LC4384B	LC4384B-5FN256C ¹	384	2.5	5	Lead-Free fpBGA	256	192	С
	LC4384B-75FN256C ¹	384	2.5	7.5	Lead-Free fpBGA	256	192	С
	LC4384B-35TN176C	384	2.5	3.5	Lead-Free TQFP	176	128	С
	LC4384B-5TN176C	384	2.5	5	Lead-Free TQFP	176	128	С
	LC4384B-75TN176C	384	2.5	7.5	Lead-Free TQFP	176	128	С
	LC4512B-35FTN256C	512	2.5	3.5	Lead-Free ftBGA	256	208	С
	LC4512B-5FTN256C	512	2.5	5	Lead-Free ftBGA	256	208	С
	LC4512B-75FTN256C	512	2.5	7.5	Lead-Free ftBGA	256	208	С
	LC4512B-35FN256C1	512	2.5	3.5	Lead-Free fpBGA	256	208	С
LC4512B	LC4512B-5FN256C1	512	2.5	5	Lead-Free fpBGA	256	208	С
	LC4512B-75FN256C ¹	512	2.5	7.5	Lead-Free fpBGA	256	208	С
	LC4512B-35TN176C	512	2.5	3.5	Lead-Free TQFP	176	128	С
	LC4512B-5TN176C	512	2.5	5	Lead-Free TQFP	176	128	С
	LC4512B-75TN176C	512	2.5	7.5	Lead-Free TQFP	176	128	С

^{1.} Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000B (2.5V) Lead-Free Industrial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032B-5TN48I	32	2.5	5	Lead-Free TQFP	48	32	I
	LC4032B-75TN48I	32	2.5	7.5	Lead-Free TQFP	48	32	I
LC4032B	LC4032B-10TN48I	32	2.5	10	Lead-Free TQFP	48	32	I
LC4032B	LC4032B-5TN44I	32	2.5	5	Lead-Free TQFP	44	30	I
	LC4032B-75TN44I	32	2.5	7.5	Lead-Free TQFP	44	30	I
	LC4032B-10TN44I	32	2.5	10	Lead-Free TQFP	44	30	I
	LC4064B-5TN100I	64	2.5	5	Lead-Free TQFP	100	64	I
	LC4064B-75TN100I	64	2.5	7.5	Lead-Free TQFP	100	64	I
	LC4064B-10TN100I	64	2.5	10	Lead-Free TQFP	100	64	I
	LC4064B-5TN48I	64	2.5	5	Lead-Free TQFP	48	32	I
LC4064B	LC4064B-75TN48I	64	2.5	7.5	Lead-Free TQFP	48	32	I
	LC4064B-10TN48I	64	2.5	10	Lead-Free TQFP	48	32	I
	LC4064B-5TN44I	64	2.5	5	Lead-Free TQFP	44	30	I
	LC4064B-75TN44I	64	2.5	7.5	Lead-Free TQFP	44	30	I
	LC4064B-10TN44I	64	2.5	10	Lead-Free TQFP	44	30	I

ispMACH 4000V (3.3V) Lead-Free Commercial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032V-25TN48C	32	3.3	2.5	Lead-free TQFP	48	32	С
	LC4032V-5TN48C	32	3.3	5	Lead-free TQFP	48	32	С
LC4032V	LC4032V-75TN48C	32	3.3	7.5	Lead-free TQFP	48	32	С
LC4032V	LC4032V-25TN44C	32	3.3	2.5	Lead-free TQFP	44	30	С
	LC4032V-5TN44C	32	3.3	5	Lead-free TQFP	44	30	С
	LC4032V-75TN44C	32	3.3	7.5	Lead-free TQFP	44	30	С
	LC4064V-25TN100C	64	3.3	2.5	Lead-free TQFP	100	64	С
	LC4064V-5TN100C	64	3.3	5	Lead-free TQFP	100	64	С
	LC4064V-75TN100C	64	3.3	7.5	Lead-free TQFP	100	64	С
	LC4064V-25TN48C	64	3.3	2.5	Lead-free TQFP	48	32	С
LC4064V	LC4064V-5TN48C	64	3.3	5	Lead-free TQFP	48	32	С
	LC4064V-75TN48C	64	3.3	7.5	Lead-free TQFP	48	32	С
	LC4064V-25TN44C	64	3.3	2.5	Lead-free TQFP	44	30	С
	LC4064V-5TN44C	64	3.3	5	Lead-free TQFP	44	30	С
	LC4064V-75TN44C	64	3.3	7.5	Lead-free TQFP	44	30	С
	LC4128V-27TN144C	128	3.3	2.7	Lead-free TQFP	144	96	С
	LC4128V-5TN144C	128	3.3	5	Lead-free TQFP	144	96	С
	LC4128V-75TN144C	128	3.3	7.5	Lead-free TQFP	144	96	С
	LC4128V-27TN128C	128	3.3	2.7	Lead-free TQFP	128	92	С
LC4128V	LC4128V-5TN128C	128	3.3	5	Lead-free TQFP	128	92	С
	LC4128V-75TN128C	128	3.3	7.5	Lead-free TQFP	128	92	С
	LC4128V-27TN100C	128	3.3	2.7	Lead-free TQFP	100	64	С
	LC4128V-5TN100C	128	3.3	5	Lead-free TQFP	100	64	С
	LC4128V-75TN100C	128	3.3	7.5	Lead-free TQFP	100	64	С

ispMACH 4000V (3.3V) Lead-Free Industrial Devices (Cont.)

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	1/0	Grade
	LC4256V-5FTN256AI	256	3.3	5	Lead-free ftBGA	256	128	I
	LC4256V-75FTN256AI	256	3.3	7.5	Lead-free ftBGA	256	128	
1	LC4256V-10FTN256AI	256	3.3	10	Lead-free ftBGA	256	128	ı
1	LC4256V-5FTN256BI	256	3.3	5	Lead-free ftBGA	256	160	ı
I	LC4256V-75FTN256BI	256	3.3	7.5	Lead-free ftBGA	256	160	
I	LC4256V-10FTN256BI	256	3.3	10	Lead-free ftBGA	256	160	
I	LC4256V-5FN256AI ¹	256	3.3	5	Lead-free fpBGA	256	128	
I	LC4256V-75FN256AI ¹	256	3.3	7.5	Lead-free fpBGA	256	128	
I	LC4256V-10FN256AI ¹	256	3.3	10	Lead-free fpBGA	256	128	
1	LC4256V-5FN256BI ¹	256	3.3	5	Lead-free fpBGA	256	160	
LC4256V	LC4256V-75FN256BI ¹	256	3.3	7.5	Lead-free fpBGA	256	160	
1	LC4256V-10FN256BI ¹	256	3.3	10	Lead-free fpBGA	256	160	
1	LC4256V-5TN176I	256	3.3	5	Lead-free TQFP	176	128	ı
I	LC4256V-75TN176I	256	3.3	7.5	Lead-free TQFP	176	128	
1	LC4256V-10TN176I	256	3.3	10	Lead-free TQFP	176	128	l
I	LC4256V-5TN144I	256	3.3	5	Lead-free TQFP	144	96	ı
I	LC4256V-75TN144I	256	3.3	7.5	Lead-free TQFP	144	96	ı
1	LC4256V-10TN144I	256	3.3	10	Lead-free TQFP	144	96	ı
1	LC4256V-5TN100I	256	3.3	5	Lead-free TQFP	100	64	ı
1	LC4256V-75TN100I	256	3.3	7.5	Lead-free TQFP	100	64	ı
1	LC4256V-10TN100I	256	3.3	10	Lead-free TQFP	100	64	ı
	LC4384V-5FTN256I	384	3.3	5	Lead-free ftBGA	256	192	I
1	LC4384V-75FTN256I	384	3.3	7.5	Lead-free ftBGA	256	192	I
I	LC4384V-10FTN256I	384	3.3	10	Lead-free ftBGA	256	192	I
1	LC4384V-5FN256I ¹	384	3.3	5	Lead-free fpBGA	256	192	I
LC4384V	LC4384V-75FN256I ¹	384	3.3	7.5	Lead-free fpBGA	256	192	I
I	LC4384V-10FN256I ¹	384	3.3	10	Lead-free fpBGA	256	192	I
1	LC4384V-5TN176I	384	3.3	5	Lead-free TQFP	176	128	I
I	LC4384V-75TN176I	384	3.3	7.5	Lead-free TQFP	176	128	I
1	LC4384V-10TN176I	384	3.3	10	Lead-free TQFP	176	128	I
	LC4512V-5FTN256I	512	3.3	5	Lead-free ftBGA	256	208	I
I	LC4512V-75FTN256I	512	3.3	7.5	Lead-free ftBGA	256	208	I
1	LC4512V-10FTN256I	512	3.3	10	Lead-free ftBGA	256	208	I
	LC4512V-5FN256I ¹	512	3.3	5	Lead-free fpBGA	256	208	I
LC4512V	LC4512V-75FN256I ¹	512	3.3	7.5	Lead-free fpBGA	256	208	I
	LC4512V-10FN256I ¹	512	3.3	10	Lead-free fpBGA	256	208	I
	LC4512V-5TN176I	512	3.3	5	Lead-free TQFP	176	128	I
	LC4512V-75TN176I	512	3.3	7.5	Lead-free TQFP	176	128	I
Ì	LC4512V-10TN176I	512	3.3	10	Lead-free TQFP	176	128	

^{1.} Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000V (3.3V) Lead-Free Extended	Temperature Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
LC4032V	LC4032V-75TN48E	32	3.3	7.5	Lead-free TQFP	48	32	Е
LO4032V	LC4032V-75TN44E	32	3.3	7.5	Lead-free TQFP	44	30	Е
	LC4064V-75TN100E	64	3.3	7.5	Lead-free TQFP	100	64	Е
LC4064V	LC4064V-75TN48E	64	3.3	7.5	Lead-free TQFP	48	32	Е
	LC4064V-75TN44E	64	3.3	7.5	Lead-free TQFP	44	30	Е
	LC4128V-75TN144E	128	3.3	7.5	Lead-free TQFP	144	96	Е
LC4128V	LC4128V-75TN128E	128	3.3	7.5	Lead-free TQFP	128	92	Е
	LC4128V-75TN100E	128	3.3	7.5	Lead-free TQFP	100	64	Е
	LC4256V-75TN176E	256	3.3	7.5	Lead-free TQFP	176	128	Е
LC4256V	LC4256V-75TN144E	256	3.3	7.5	Lead-free TQFP	144	96	E
	LC4256V-75TN100E	256	3.3	7.5	Lead-free TQFP	100	64	E

For Further Information

In addition to this data sheet, the following technical notes may be helpful when designing with the ispMACH 4000V/B/C/Z family:

- TN1004, ispMACH 4000 Timing Model Design and Usage Guidelines
- TN1005, Power Estimation in ispMACH 4000V/B/C/Z Devices

Revision History

Date	Version	Change Summary
_	_	Previous Lattice releases.
July 2003	17z	Changed device status for LC4064ZC and LC4128ZC to production release and updated/added AC and DC parameters as well as ordering part numbers for LC4064ZC and LC4128ZC devices.
		Improved leakage current specifications for ispMACH 4000Z. For ispMACH 4000V/B/C IIL, IIH condition now includes 0V and 3.6V end points ($0 \le VIN \le 3.6V$).
		Added 132-ball chip scale BGA power supply and NC connections.
		Added 132-ball chip scale BGA logic signal connections for LC4064ZC, LC4128ZC and LC4256ZC devices.
		Added lead-free package designators.
October 2003	18z	Hot socketing characteristics footnote 1. has been enhanced; Insensitive to sequence of VCC or VCCO. However, assumes monotonic rise/fall rates for Vcc and Vcco, provided (VIN - VCCO) ≤ 3.6V.
		Improved LC4064ZC t_S to 2.5ns, t_{ST} to 2.7ns and f_{MAX} (Ext.) to 175MHz, LC4128ZC t_{CO} to 3.5ns and f_{MAX} (Ext.) to 161MHz (version v.2.1).
		Improved associated internal timing numbers and timing adders (version v.2.1).
		Added ispMACH 4000V/B/C/Z ORP Reference Tables.
		Enhanced ORP information in device pinout tables consistent with the ORP Combinations for I/O Blocks tables (table 6, 7, 8 and 9 in page 9-11).
		Corrected GLB/MC/Pad information in the 256-fpBGA pinouts for the LC4256V/B/C 160-I/O version.
		Added the ispMACH 4000 Family Speed Grade Offering table.
		Added the ispMACH 4128ZC Industrial and Automotive Device OPNs
December 2003	19z	Added the ispMACH 4032ZC and 4064ZC Industrial and Automotive Device OPNs