

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	-
Number of I/O	32
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	56-LFBGA, CSPBGA
Supplier Device Package	56-CSBGA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4064zc-75m56c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

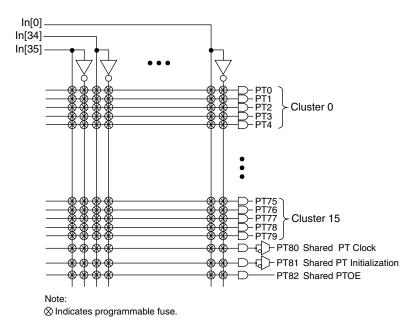
Table 2. ispMACH 4000Z Family Selection Guide

	ispMACH 4032ZC	ispMACH 4064ZC	ispMACH 4128ZC	ispMACH 4256ZC
Macrocells	32	64	128	256
I/O + Dedicated Inputs	32+4/32+4	32+4/32+12/ 64+10/64+10	64+10/96+4	64+10/96+6/ 128+4
t _{PD} (ns)	3.5	3.7	4.2	4.5
t _S (ns)	2.2	2.5	2.7	2.9
t _{CO} (ns)	3.0	3.2	3.5	3.8
f _{MAX} (MHz)	267	250	220	200
Supply Voltage (V)	1.8	1.8	1.8	1.8
Max. Standby Icc (μA)	20	25	35	55
Pins/Package	48 TQFP 56 csBGA	48 TQFP 56 csBGA 100 TQFP 132 csBGA	100 TQFP 132csBGA	100 TQFP 132 csBGA 176 TQFP

ispMACH 4000 Introduction

The high performance ispMACH 4000 family from Lattice offers a SuperFAST CPLD solution. The family is a blend of Lattice's two most popular architectures: the ispLSI® 2000 and ispMACH 4A. Retaining the best of both families, the ispMACH 4000 architecture focuses on significant innovations to combine the highest performance with low power in a flexible CPLD family.

The ispMACH 4000 combines high speed and low power with the flexibility needed for ease of design. With its robust Global Routing Pool and Output Routing Pool, this family delivers excellent First-Time-Fit, timing predictability, routing, pin-out retention and density migration.


The ispMACH 4000 family offers densities ranging from 32 to 512 macrocells. There are multiple density-I/O combinations in Thin Quad Flat Pack (TQFP), Chip Scale BGA (csBGA) and Fine Pitch Thin BGA (ftBGA) packages ranging from 44 to 256 pins/balls. Table 1 shows the macrocell, package and I/O options, along with other key parameters.

The ispMACH 4000 family has enhanced system integration capabilities. It supports 3.3V (4000V), 2.5V (4000B) and 1.8V (4000C/Z) supply voltages and 3.3V, 2.5V and 1.8V interface voltages. Additionally, inputs can be safely driven up to 5.5V when an I/O bank is configured for 3.3V operation, making this family 5V tolerant. The ispMACH 4000 also offers enhanced I/O features such as slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. The ispMACH 4000 family members are 3.3V/ 2.5V/1.8V in-system programmable through the IEEE Standard 1532 interface. IEEE Standard 1149.1 boundary scan testing capability also allows product testing on automated test equipment. The 1532 interface signals TCK, TMS, TDI and TDO are referenced to V_{CC} (logic core).

Overview

The ispMACH 4000 devices consist of multiple 36-input, 16-macrocell Generic Logic Blocks (GLBs) interconnected by a Global Routing Pool (GRP). Output Routing Pools (ORPs) connect the GLBs to the I/O Blocks (IOBs), which contain multiple I/O cells. This architecture is shown in Figure 1.

Figure 3. AND Array

Enhanced Logic Allocator

Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term cluster is associated with a macrocell. The cluster size for the ispMACH 4000 family is 4+1 (total 5) product terms. The software automatically considers the availability and distribution of product term clusters as it fits the functions within a GLB. The logic allocator is designed to provide three speed paths: 5-PT fast bypass path, 20-PT Speed Locking path and an up to 80-PT path. The availability of these three paths lets designers trade timing variability for increased performance.

The enhanced Logic Allocator of the ispMACH 4000 family consists of the following blocks:

- Product Term Allocator
- Cluster Allocator
- Wide Steering Logic

Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.

Figure 4. Macrocell Slice

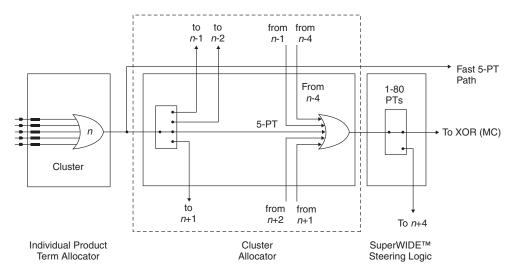
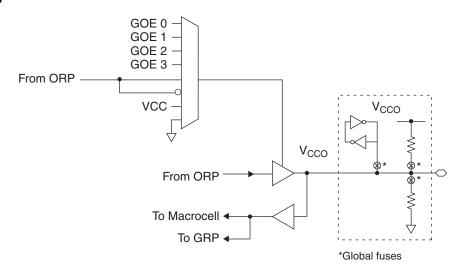


Table 10. ORP Combinations for I/O Blocks with 12 I/Os

I/O Cell	Available Macrocells
I/O 0	M0, M1, M2, M3, M4, M5, M6, M7
I/O 1	M1, M2, M3, M4, M5, M6, M7, M8
I/O 2	M2, M3, M4, M5, M6, M7, M8, M9
I/O 3	M4, M5, M6, M7, M8, M9, M10, M11
I/O 4	M5, M6, M7, M8, M9, M10, M11, M12
I/O 5	M6, M7, M8, M9, M10, M11, M12, M13
I/O 6	M8, M9, M10, M11, M12, M13, M14, M15
I/O 7	M9, M10, M11, M12, M13, M14, M15, M0
I/O 8	M10, M11, M12, M13, M14, M15, M0, M1
I/O 9	M12, M13, M14, M15, M0, M1, M2, M3
I/O 10	M13, M14, M15, M0, M1, M2, M3, M4
I/O 11	M14, M15, M0, M1, M2, M3, M4, M5

ORP Bypass and Fast Output Multiplexers

The ORP bypass and fast-path output multiplexer is a 4:1 multiplexer and allows the 5-PT fast path to bypass the ORP and be connected directly to the pin with either the regular output or the inverted output. This multiplexer also allows the register output to bypass the ORP to achieve faster t_{CO}.


Output Enable Routing Multiplexers

The OE Routing Pool provides the corresponding local output enable (OE) product term to the I/O cell.

I/O Cell

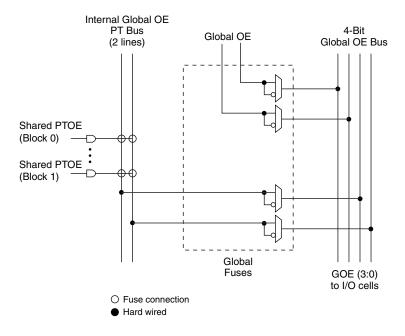

The I/O cell contains the following programmable elements: output buffer, input buffer, OE multiplexer and bus maintenance circuitry. Figure 8 details the I/O cell.

Figure 8. I/O Cell

Each output supports a variety of output standards dependent on the V_{CCO} supplied to its I/O bank. Outputs can also be configured for open drain operation. Each input can be programmed to support a variety of standards, independent of the V_{CCO} supplied to its I/O bank. The I/O standards supported are:

Figure 10. Global OE Generation for ispMACH 4032

Zero Power/Low Power and Power Management

The ispMACH 4000 family is designed with high speed low power design techniques to offer both high speed and low power. With an advanced E² low power cell and non sense-amplifier design approach (full CMOS logic approach), the ispMACH 4000 family offers SuperFAST pin-to-pin speeds, while simultaneously delivering low standby power without needing any "turbo bits" or other power management schemes associated with a traditional sense-amplifier approach.

The zero power ispMACH 4000Z is based on the 1.8V ispMACH 4000C family. With innovative circuit design changes, the ispMACH 4000Z family is able to achieve the industry's "lowest static power".

IEEE 1149.1-Compliant Boundary Scan Testability

All ispMACH 4000 devices have boundary scan cells and are compliant to the IEEE 1149.1 standard. This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic notes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test node data to be captured and shifted out for verification. In addition, these devices can be linked into a board-level serial scan path for more board-level testing. The test access port operates with an LVCMOS interface that corresponds to the power supply voltage.

I/O Quick Configuration

To facilitate the most efficient board test, the physical nature of the I/O cells must be set before running any continuity tests. As these tests are fast, by nature, the overhead and time that is required for configuration of the I/Os' physical nature should be minimal so that board test time is minimized. The ispMACH 4000 family of devices allows this by offering the user the ability to quickly configure the physical nature of the I/O cells. This quick configuration takes milliseconds to complete, whereas it takes seconds for the entire device to be programmed. Lattice's ispVM[®] System programming software can either perform the quick configuration through the PC parallel port, or can generate the ATE or test vectors necessary for a third-party test system.

IEEE 1532-Compliant In-System Programming

Programming devices in-system provides a number of significant benefits including: rapid prototyping, lower inventory levels, higher quality and the ability to make in-field modifications. All ispMACH 4000 devices provide In-System Programming (ISP™) capability through the Boundary Scan Test Access Port. This capability has been implemented in a manner that ensures that the port remains complaint to the IEEE 1149.1 standard. By using IEEE 1149.1 as the communication interface through which ISP is achieved, users get the benefit of a standard, well-defined interface. All ispMACH 4000 devices are also compliant with the IEEE 1532 standard.

The ispMACH 4000 devices can be programmed across the commercial temperature and voltage range. The PC-based Lattice software facilitates in-system programming of ispMACH 4000 devices. The software takes the JEDEC file output produced by the design implementation software, along with information about the scan chain, and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain via the parallel port of a PC. Alternatively, the software can output files in formats understood by common automated test equipment. This equipment can then be used to program ispMACH 4000 devices during the testing of a circuit board.

User Electronic Signature

The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the device, stored in E²CMOS memory. The ispMACH 4000 device contains 32 UES bits that can be configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.

Security Bit

A programmable security bit is provided on the ispMACH 4000 devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.

Hot Socketing

The ispMACH 4000 devices are well-suited for applications that require hot socketing capability. Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The isp-MACH 4000 devices provide this capability for input voltages in the range 0V to 3.0V.

Density Migration

The ispMACH 4000 family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

I/O Recommended Operating Conditions

	V _{CCO} (V) ¹				
Standard	Min.	Max.			
LVTTL	3.0	3.6			
LVCMOS 3.3	3.0	3.6			
Extended LVCMOS 3.3 ²	2.7	3.6			
LVCMOS 2.5	2.3	2.7			
LVCMOS 1.8	1.65	1.95			
PCI 3.3	3.0	3.6			

^{1.} Typical values for $\rm V_{\rm CCO}$ are the average of the min. and max. values.

DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{IL} , I _{IH} ^{1, 4}	Input Leakage Current (ispMACH 4000Z)	$0 \le V_{IN} < V_{CCO}$	_	0.5	1	μΑ
I _{IH} ¹	Input High Leakage Current (isp-MACH 4000Z)	$V_{CCO} < V_{IN} \le 5.5V$	_	_	10	μΑ
I _{IL} , I _{IH} ¹	Input Leakage Current (ispMACH	$0 \le V_{IN} \le 3.6V, T_j = 105^{\circ}C$	_	_	10	μΑ
'IL', 'IH	4000V/B/C)	$0 \le V_{IN} \le 3.6V, T_j = 130^{\circ}C$	_	_	15	μΑ
I _{IH} ^{1,2}	Input High Leakage Current (isp-	$3.6V < V_{IN} \le 5.5V$, $T_j = 105^{\circ}C$ $3.0V \le V_{CCO} \le 3.6V$	_	_	20	μΑ
ЧH	MACH 4000V/B/C)	$3.6V < V_{IN} \le 5.5V$, $T_j = 130^{\circ}C$ $3.0V \le V_{CCO} \le 3.6V$	_	_	50	μΑ
I	I/O Weak Pull-up Resistor Current (ispMACH 4000Z)	$0 \le V_{IN} \le 0.7 V_{CCO}$	-30	_	-150	μΑ
I _{PU}	I/O Weak Pull-up Resistor Current (ispMACH 4000V/B/C)	$0 \le V_{IN} \le 0.7 V_{CCO}$	-30	_	-200	μΑ
I _{PD}	I/O Weak Pull-down Resistor Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{IH}$ (MIN)	30	_	150	μΑ
I _{BHLS}	Bus Hold Low Sustaining Current	$V_{IN} = V_{IL} (MAX)$	30		_	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCO}$	-30	_	_	μΑ
I _{BHLO}	Bus Hold Low Overdrive Current	$0V \le V_{IN} \le V_{BHT}$	_	_	150	μΑ
I _{BHHO}	Bus Hold High Overdrive Current	$V_{BHT} \le V_{IN} \le V_{CCO}$	_	_	-150	μΑ
V_{BHT}	Bus Hold Trip Points	_	V _{CCO} * 0.35	_	V _{CCO} * 0.65	V
C ₁	I/O Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V	_	8	_	pf
01	1/O Capacitance	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	_	U	_	рі
C_2	Clock Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V	_	6	_	pf
02	Clock Capacitance	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	_	J	_	ρı
C ₃	Global Input Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V	_	6	_	pf
0 3	Global Input Gapasitario	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	_		_	Pi

^{1.} Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

^{2.} ispMACH 4000Z only.

^{2. 5}V tolerant inputs and I/O should only be placed in banks where 3.0V \leq V $_{CCO}$ \leq 3.6V.

^{3.} $T_A = 25^{\circ}C$, f = 1.0MHz

^{4.} I_{II} excursions of up to 1.5μA maximum per pin above the spec limit may be observed for certain voltage conditions on no more than 10% of the device's I/O pins.

Supply Current, ispMACH 4000V/B/C

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
ispMACH 4	032V/B/C	•				
		Vcc = 3.3V	_	11.8	_	mA
ICC ^{1,2,3}	Operating Power Supply Current	Vcc = 2.5V	_	11.8	_	mA
		Vcc = 1.8V	_	1.8	_	mA
		Vcc = 3.3V	_	11.3	_	mA
ICC⁴	Standby Power Supply Current	Vcc = 2.5V	_	11.3	_	mA
		Vcc = 1.8V	_	1.3	_	mA
ispMACH 4	064V/B/C	•	•	•		
		Vcc = 3.3V	_	12	_	mA
ICC ^{1,2,3}	Operating Power Supply Current	Vcc = 2.5V	_	12	_	mA
		Vcc = 1.8V	_	2	_	mA
		Vcc = 3.3V	_	11.5	_	mA
ICC ⁵	Standby Power Supply Current	Vcc = 2.5V	_	11.5	_	mA
		Vcc = 1.8V	_	1.5	_	mA
ispMACH 4	128V/B/C			1	ı	I
		Vcc = 3.3V	_	12		mA
ICC ^{1,2,3}	Operating Power Supply Current	Vcc = 2.5V	_	12	_	mA
		Vcc = 1.8V	_	2	_	mA
		Vcc = 3.3V	_	11.5	_	mA
ICC⁴	Standby Power Supply Current	Vcc = 2.5V	_	11.5	_	mA
		Vcc = 1.8V	_	1.5	_	mA
ispMACH 4	256V/B/C			ı	l	
-		Vcc = 3.3V	_	12.5	_	mA
I _{CC} ^{1,2,3}	Operating Power Supply Current	Vcc = 2.5V	_	12.5	_	mA
		Vcc = 1.8V	_	2.5	_	mA
		Vcc = 3.3V	_	12	_	mA
I _{CC} ⁴	Standby Power Supply Current	Vcc = 2.5V	_	12	_	mA
		Vcc = 1.8V	_	2	_	mA
ispMACH 4	384V/B/C			ı	l	
-		Vcc = 3.3V		13.5	_	mA
I _{CC} ^{1,2,3}	Operating Power Supply Current	Vcc = 2.5V	_	13.5	_	mA
		Vcc = 1.8V	_	3.5	_	mA
		Vcc = 3.3V	_	12.5	_	mA
I _{CC} ⁴	Standby Power Supply Current	Vcc = 2.5V	_	12.5	_	mA
30		Vcc = 1.8V	_	2.5	_	mA
ispMACH 4	512V/B/C			1	<u>I</u>	
•		Vcc = 3.3V	_	14	_	mA
I _{CC} ^{1,2,3}	Operating Power Supply Current	Vcc = 2.5V	_	14	_	mA
		Vcc = 1.8V	_	4	_	mA

Supply Current, ispMACH 4000Z (Cont.)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
ispMACH 4	1256ZC					
		Vcc = 1.8V, T _A = 25°C	_	341	_	μΑ
ICC ^{1, 2, 3, 5}	Operating Power Supply Current	_	361	_	μΑ	
		$Vcc = 1.9V, T_A = 85^{\circ}C$	_	372	_	μΑ
		Vcc = 1.9V, T _A = 125°C	_	468	_	μΑ
		Vcc = 1.8V, T _A = 25°C	_	13	_	μΑ
ICC ^{4, 5}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 70^{\circ}C$	_	32	55	μΑ
100	Standby Fower Supply Current	$Vcc = 1.9V, T_A = 85^{\circ}C$	_	43	90	μΑ
		Vcc = 1.9V, T _A = 125°C	_	135	_	μΑ

^{1.} $T_A = 25$ °C, frequency = 1.0 MHz.

Device configured with 16-bit counters.
I_{CC} varies with specific device configuration and operating frequency.

^{4.} V_{CCO} = 3.6V, V_{IN} = 0V or V_{CCO} , bus maintenance turned off. V_{IN} above V_{CCO} will add transient current above the specified standby I_{CC} .

^{5.} Includes V_{CCO} current without output loading.

I/O DC Electrical Characteristics

	V _{IL}		V _{IH}		V _{OL}	V _{OH}	l _{OL} ¹	I _{OH} ¹
Standard	Min (V)	Max (V)	Min (V)	Max (V)	Max (V)	Min (V)	(mA)	(mA)
LVTTL	-0.3	0.80	2.0	5.5	0.40	V _{CCO} - 0.40	8.0	-4.0
LVIIL	-0.5	0.00	2.0	5.5	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 3.3	-0.3	0.80	2.0	5.5	0.40	V _{CCO} - 0.40	8.0	-4.0
LV CIVICS 3.3	-0.5	0.00	2.0	5.5	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 2.5	-0.3	0.70	1.70	3.6	0.40	V _{CCO} - 0.40	8.0	-4.0
LVCIVIOS 2.5	-0.3	0.70	1.70	5.0	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 1.8	-0.3	0.63	1.17	3.6	0.40	V _{CCO} - 0.45	2.0	-2.0
(4000V/B)	-0.3	0.03	1.17	3.0	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 1.8	-0.3	0.35 * V _{CC}	0.65 * V _{CC}	3.6	0.40	V _{CCO} - 0.45	2.0	-2.0
(4000C/Z)	-0.5	0.55 V _{CC}	0.03 VCC	5.0	0.20	V _{CCO} - 0.20	0.1	-0.1
PCI 3.3 (4000V/B)	-0.3	1.08	1.5	5.5	0.1 V _{CCO}	0.9 V _{CCO}	1.5	-0.5
PCI 3.3 (4000C/Z)	-0.3	0.3 * 3.3 * (V _{CC} / 1.8)	0.5 * 3.3 * (V _{CC} / 1.8)	5.5	0.1 V _{CCO}	0.9 V _{CCO}	1.5	-0.5

^{1.} The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of the I/O bank, as shown in the logic signals connection table, shall not exceed *n**8mA. Where *n* is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank.

ispMACH 4000V/B/C Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

		-5		-75		-10		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{GPTOE}	Global PT OE Delay	_	5.58		5.58	_	5.78	ns
t _{PTOE}	Macrocell PT OE Delay	_	3.58		4.28		4.28	ns

Timing v.3.2

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the Timing Model in this data sheet for further details.

ispMACH 4064V/B/C/Z, 4128V/B/C/Z, 4256V/B/C/Z Logic Signal Connections: 100-Pin TQFP (Cont.)

Bank		ispMACH 4064V/B/C/Z		ispMACH 4128V/B/C/Z		ispMACH 4256V/B/C/Z	
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	GLB/MC/Pad ORP		ORP
83	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
84	1	D3	D^3	H6	H^3	P12	P^3
85	1	D2	D^2	H4	H^2	P10	P^2
86	1	D1	D^1	H2	H^1	P6	P^1
87	1	D0/GOE1	D^0	H0/GOE1	H^0	P2/OE1	P^0
88	1	CLK3/I	-	CLK3/I	-	CLK3/I	-
89	0	CLK0/I	-	CLK0/I	-	CLK0/I	-
90	-	VCC	-	VCC	-	VCC	-
91	0	A0/GOE0	A^0	A0/GOE0	A^0	A2/GOE0	A^0
92	0	A1	A^1	A2	A^1	A6	A^1
93	0	A2	A^2	A4	A^2	A10	A^2
94	0	A3	A^3	A6	A^3	A12	A^3
95	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
96	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
97	0	A4	A^4	A8	A^4	B2	B^0
98	0	A5	A^5	A10	A^5	B6	B^1
99	0	A6	A^6	A12	A^6	B10	B^2
100	0	A7	A^7	A14	A^7	B12	B^3

^{*}This pin is input only.

ispMACH 4128V/B/C Logic Signal Connections: 128-Pin TQFP

		ispMACH 41	28V/B/C
Pin Number	Bank Number	GLB/MC/Pad	ORP
1	0	GND	-
2	0	TDI	-
3	0	VCCO (Bank 0)	-
4	0	B0	B^0
5	0	B1	B^1
6	0	B2	B^2
7	0	B4	B^3
8	0	B5	B^4
9	0	B6	B^5
10	0	GND (Bank 0)	-
11	0	B8	B^6
12	0	B9	B^7
13	0	B10	B^8
14	0	B12	B^9
15	0	B13	B^10
16	0	B14	B^11
17	0	VCCO (Bank 0)	-
18	0	C14	C^11

ispMACH 4064Z, 4128Z and 4256Z Logic Signal Connections: 132-Ball csBGA (Cont.)

		ispMAC	1 4064Z	ispMACH	ispMACH 4128Z		l 4256Z
Ball Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
P8	1	NC ¹	-	NC ¹	-	l ¹	-
M8	1	NC	-	E0	E^0	I2	I^1
P9	1	C0	C^0	E1	E^1	14	I^2
N9	1	C1	C^1	E2	E^2	16	I^3
M9	1	C2	C^2	E4	E^3	18	I^4
N10	1	C3	C^3	E5	E^4	I10	I^5
P10	1	NC	-	E6	E^5	l12	I^6
M10	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
N11	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
P11	1	NC	-	E8	E^6	J2	J^1
M11	1	C4	C^4	E9	E^7	J4	J^2
P12	1	C5	C^5	E10	E^8	J6	J^3
N12	1	C6	C^6	E12	E^9	J8	J^4
P13	1	C7	C^7	E13	E^10	J10	J^5
P14	1	NC	-	E14	E^11	J12	J^6
N14	-	GND	-	GND	-	GND	-
N13	-	TMS	-	TMS	-	TMS	-
M14	1	NC	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
M12	1	NC	-	F0	F^0	K12	K^6
M13	1	C8	C^8	F1	F^1	K10	K^5
L14	1	C9	C^9	F2	F^2	K8	K^4
L12	1	C10	C^10	F4	F^3	K6	K^3
L13	1	C11	C^11	F5	F^4	K4	K^2
K14	1	NC	-	F6	F^5	K2	K^1
K13	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
K12	1	NC	-	F8	F^6	L12	L^6
J13	1	C12	C^12	F9	F^7	L10	L^5
J14	1	C13	C^13	F10	F^8	L8	L^4
J12	1	C14	C^14	F12	F^9	L6	L^3
H14	1	C15	C^15	F13	F^10	L4	L^2
H13	1	I	-	F14	F^11	L2	L^1
H12	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
G13	1	NC	-	G14	G^11	M2	M^1
G14	1	NC	-	G13	G^10	M4	M^2
G12	1	D15	D^15	G12	G^9	M6	M^3
F14	1	D14	D^14	G10	G^8	M8	M^4
F13	1	D13	D^13	G9	G^7	M10	M^5
F12	1	D12	D^12	G8	G^6	M12	M^6
E13	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
E14	1	NC	-	G6	G^5	N2	N^1
E12	1	D11	D^11	G5	G^4	N4	N^2

ispMACH 4256V/B/C/Z, 4384V/B/C, 4512V/B/C, Logic Signal Connections: 176-Pin TQFP (Cont.)

	Bank	ispMACH 42	56V/B/C/Z	ispMACH 4	384V/B/C	ispMACH 45	12V/B/C
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
60	0	H8	H^4	L8	L^4	P8	P^4
61	0	H6	H^3	L6	L^3	P6	P^3
62	0	H4	H^2	L4	L^2	P4	P^2
63	0	H2	H^1	L2	L^1	P2	P^1
64	0	H0	H^0	L0	L^0	P0	P^0
65	-	GND	-	GND	-	GND	-
66	0	CLK1/I	-	CLK1/I	-	CLK1/I	-
67	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
68	1	CLK2/I	-	CLK2/I	-	CLK2/I	-
69	-	VCC	-	VCC	-	VCC	-
70	1	10	I^0	MO	M^0	AX0	AX^0
71	1	I2	I^1	M2	M^1	AX2	AX^1
72	1	14	I^2	M4	M^2	AX4	AX^2
73	1	16	I^3	M6	M^3	AX6	AX^3
74	1	18	I^4	M8	M^4	AX8	AX^4
75	1	I10	I^5	M10	M^5	AX10	AX^5
76	1	l12	I^6	M12	M^6	AX12	AX^6
77	1	l14	I^7	M14	M^7	AX14	AX^7
78	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
79	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
80	1	J0	J^0	N0	N^0	BX0	BX^0
81	1	J2	J^1	N2	N^1	BX2	BX^1
82	1	J4	J^2	N4	N^2	BX4	BX^2
83	1	J6	J^3	N6	N^3	BX6	BX^3
84	1	J8	J^4	N8	N^4	BX8	BX^4
85	1	J10	J^5	N10	N^5	BX10	BX^5
86	1	J12	J^6	N12	N^6	BX12	BX^6
87	1	J14	J^7	N14	N^7	BX14	BX^7
88	-	VCC	-	VCC	-	VCC	-
89	-	NC	-	NC	-	NC	-
90	-	GND	-	GND	-	GND	-
91	-	TMS	-	TMS	-	TMS	-
92	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
93	1	K14	K^7	O14	O^7	CX14	CX^7
94	1	K12	K^6	O12	O^6	CX12	CX^6
95	1	K10	K^5	O10	O^5	CX10	CX^5
96	1	K8	K^4	O8	0^4	CX8	CX^4
97	1	K6	K^3	O6	O^3	CX6	CX^3
98	1	K4	K^2	O4	O^2	CX4	CX^2
99	1	K2	K^1	O2	O^1	CX2	CX^1
100	1	K0	K^0	00	O^0	CX0	CX^0


ispMACH 4256V/B/C/Z, 4384V/B/C, 4512V/B/C, Logic Signal Connections: 176-Pin TQFP (Cont.)

	Bank	ispMACH 42	56V/B/C/Z	ispMACH 4	384V/B/C	ispMACH 4	512V/B/C
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
101	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
102	1	L14	L^7	AX14	AX^7	GX14	GX^7
103	1	L12	L^6	AX12	AX^6	GX12	GX^6
104	1	L10	L^5	AX10	AX^5	GX10	GX^5
105	1	L8	L^4	AX8	AX^4	GX8	GX^4
106	1	L6	L^3	AX6	AX^3	GX6	GX^3
107	1	L4	L^2	AX4	AX^2	GX4	GX^2
108	1	L2	L^1	AX2	AX^1	GX2	GX^1
109	1	L0	L^0	AX0	AX^0	GX0	GX^0
110	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
111	1	MO	M^0	DX0	DX^0	JX0	JX^0
112	1	M2	M^1	DX2	DX^1	JX2	JX^1
113	1	M4	M^2	DX4	DX^2	JX4	JX^2
114	1	M6	M^3	DX6	DX^3	JX6	JX^3
115	1	M8	M^4	DX8	DX^4	JX8	JX^4
116	1	M10	M^5	DX10	DX^5	JX10	JX^5
117	1	M12	M^6	DX12	DX^6	JX12	JX^6
118	1	M14	M^7	DX14	DX^7	JX14	JX^7
119	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
120	1	N0	N^0	FX0	FX^0	NX0	NX^0
121	1	N2	N^1	FX2	FX^1	NX2	NX^1
122	1	N4	N^2	FX4	FX^2	NX4	NX^2
123	1	N6	N^3	FX6	FX^3	NX6	NX^3
124	1	N8	N^4	FX8	FX^4	NX8	NX^4
125	1	N10	N^5	FX10	FX^5	NX10	NX^5
126	1	N12	N^6	FX12	FX^6	NX12	NX^6
127	1	N14	N^7	FX14	FX^7	NX14	NX^7
128	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
129	-	TDO	-	TDO	-	TDO	-
130	-	VCC	-	VCC	-	VCC	-
131	-	NC	-	NC	-	NC	-
132	-	NC	-	NC	-	NC	-
133	-	NC	-	NC	-	NC	-
134	-	GND	-	GND	-	GND	-
135	1	014	O^7	GX14	GX^7	OX14	OX^7
136	1	012	O^6	GX12	GX^6	OX12	OX^6
137	1	O10	O^5	GX10	GX^5	OX10	OX^5
138	1	O8	0^4	GX8	GX^4	OX8	OX^4
139	1	O6	O^3	GX6	GX^3	OX6	OX^3
140	1	O4	O^2	GX4	GX^2	OX4	OX^2
141	1	02	O^1	GX2	GX^1	OX2	OX^1

ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C Logic Signal Connections: 256-Ball ftBGA/fpBGA (Cont.)

Ball	I/O	ispMACH 4256 128-I/O	V/B/C	ispMACH 4256 160-I/O	V/B/C	ispMACH 4384	V/B/C	ispMACH 4512	V/B/C
Number	Bank	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
R14	1	J10	J^5	J10	J^7	N10	N^5	BX10	BX^5
P13	1	J12	J^6	J12	J^8	N12	N^6	BX12	BX^6
N13	1	J14	J^7	J14	J^9	N14	N^7	BX14	BX^7
M12	1	NC	-	NC	-	P4	P^2	FX0	FX^0
T15	1	NC	-	NC	-	P6	P^3	FX2	FX^1
-	-	VCC	-	VCC	-	VCC	-	VCC	-
-	-	GND	-	GND	-	GND	-	GND	-
-	1	-	-	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
P14	-	TMS	-	TMS	-	TMS	-	TMS	-
-	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
L12	1	NC	-	NC	-	NC	-	FX4	FX^2
R16	1	NC	-	NC	-	P8	P^4	FX6	FX^3
N14	1	NC	-	NC	-	P10	P^5	FX8	FX^4
P15	1	K14	K^7	K14	K^9	O14	O^7	CX14	CX^7
L11	1	K12	K^6	K12	K^8	012	O^6	CX12	CX^6
P16	1	K10	K^5	K10	K^7	O10	O^5	CX10	CX^5
K11	1	K8	K^4	K9	K^6	O8	0^4	CX8	CX^4
M14	1	K6	K^3	K8	K^5	O6	O^3	CX6	CX^3
K12	1	K4	K^2	K6	K^4	O4	O^2	CX4	CX^2
N15	1	K2	K^1	K4	K^3	O2	O^1	CX2	CX^1
N16	1	K0	K^0	K2	K^2	00	O^0	CX0	CX^0
M15	1	NC	-	K1	K^1	BX6	BX^3	HX0	HX^0
M13	1	NC	-	K0	K^0	BX4	BX^2	HX4	HX^1
-	1	-	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
-	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
M16	1	NC	-	NC	-	NC	-	FX10	FX^5
L15	1	NC	-	NC	-	P12	P^6	FX12	FX^6
L16	1	NC	-	NC	-	P14	P^7	FX14	FX^7
J11	1	NC	-	L14	L^9	BX2	BX^1	HX8	HX^2
K15	1	NC	-	L12	L^8	BX0	BX^0	HX12	HX^3
J12	1	L14	L^7	L10	L^7	AX14	AX^7	GX14	GX^7
K13	1	L12	L^6	L9	L^6	AX12	AX^6	GX12	GX^6
K14	1	L10	L^5	L8	L^5	AX10	AX^5	GX10	GX^5
K16	1	L8	L^4	L6	L^4	AX8	AX^4	GX8	GX^4
J16	1	L6	L^3	L4	L^3	AX6	AX^3	GX6	GX^3
J15	1	L4	L^2	L2	L^2	AX4	AX^2	GX4	GX^2
H16	1	L2	L^1	L1	L^1	AX2	AX^1	GX2	GX^1
J13	1	LO	L^0	LO	L^0	AX0	AX^0	GX0	GX^0
-	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
-	1	-	-	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
J14	1	MO	M^0	MO	M^0	DX0	DX^0	JX0	JX^0

Part Number Description

- 1. For automotive AEC-Q100 compliant devices, refer to the LA-ispMACH 4000V/Z Automotive Family Data Sheet (DS1017).
- 2. Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000 Family Speed Grade Offering

	-25	-27	-3	-35	-37	-42	-45	-;	5		-75		-10
	Com	Ind	Com	Ind	Ext	Ind							
ispMACH 4032V/B/C												1	
ispMACH 4064V/B/C												1	
ispMACH 4128V/B/C												1	
ispMACH 4256V/B/C													
ispMACH 4384V/B/C													
ispMACH 4512V/B/C													
ispMACH 4032ZC												1	
ispMACH 4064ZC												1	
ispMACH 4128ZC												1	
ispMACH 4256ZC													

1. 3.3V only.

ispMACH 4000ZC (1.8V, Zero Power) Industrial Devices (Cont.)

Device	Part Number	Macrocells	Voltage	tPD	Package	Pin/Ball Count	I/O	Grade
	LC4064ZC-5M132I	64	1.8	5	csBGA	132	64	I
	LC4064ZC-75M132I	64	1.8	7.5	csBGA	132	64	I
	LC4064ZC-5T100I	64	1.8	5	TQFP	100	64	I
LC4064ZC	LC4064ZC-75T100I	64	1.8	7.5	TQFP	100	64	I
LC40042C	LC4064ZC-5M56I	64	1.8	5	csBGA	56	34	I
	LC4064ZC-75M56I	64	1.8	7.5	csBGA	56	34	I
	LC4064ZC-5T48I	64	1.8	5	TQFP	48	32	I
	LC4064ZC-75T48I	64	1.8	7.5	TQFP	48	32	I
LC4128ZC	LC4128ZC-75M132I	128	1.8	7.5	csBGA	132	96	I
LC41202C	LC4128ZC-75T100I	128	1.8	7.5	TQFP	100	64	I
	LC4256ZC-75T176I	256	1.8	7.5	TQFP	176	128	I
LC4256ZC	LC4256ZC-75M132I	256	1.8	7.5	csBGA	132	96	I
	LC4256ZC-75T100I	256	1.8	7.5	TQFP	100	64	I

ispMACH 4000ZC (1.8V, Zero Power) Extended Temperature Devices

Family	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
LC4032ZC	LC4032ZC-75T48E	32	1.8	7.5	TQFP	48	32	Е
LC4064ZC	LC4064ZC-75T100E	64	1.8	7.5	TQFP	100	64	Е
LC40642C	LC4064ZC-75T48E	64	1.8	7.5	TQFP	48	32	Е
LC4128ZC	LC4128ZC-75T100E	128	1.8	7.5	TQFP	100	64	E
LC4256ZC	LC4256ZC-75T176E	256	1.8	7.5	TQFP	176	128	Е
LO42302C	LC4256ZC-75T100E	256	1.8	7.5	TQFP	100	64	Е

ispMACH 4000C (1.8V) Commercial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032C-25T48C	32	1.8	2.5	TQFP	48	32	С
	LC4032C-5T48C	32	1.8	5	TQFP	48	32	С
LC4032C	LC4032C-75T48C	32	1.8	7.5	TQFP	48	32	С
LC4032C	LC4032C-25T44C	32	1.8	2.5	TQFP	44	30	С
	LC4032C-5T44C	32	1.8	5	TQFP	44	30	С
	LC4032C-75T44C	32	1.8	7.5	TQFP	44	30	С
	LC4064C-25T100C	64	1.8	2.5	TQFP	100	64	С
	LC4064C-5T100C	64	1.8	5	TQFP	100	64	С
	LC4064C-75T100C	64	1.8	7.5	TQFP	100	64	С
	LC4064C-25T48C	64	1.8	2.5	TQFP	48	32	С
LC4064C	LC4064C-5T48C	64	1.8	5	TQFP	48	32	С
	LC4064C-75T48C	64	1.8	7.5	TQFP	48	32	С
	LC4064C-25T44C	64	1.8	2.5	TQFP	44	30	С
	LC4064C-5T44C	64	1.8	5	TQFP	44	30	С
	LC4064C-75T44C	64	1.8	7.5	TQFP	44	30	С

ispMACH 4000B (2.5V) Industrial Devices

Family	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032B-5T48I	32	2.5	5	TQFP	48	32	I
	LC4032B-75T48I	32	2.5	7.5	TQFP	48	32	I
LC4032B	LC4032B-10T48I	32	2.5	10	TQFP	48	32	I
LC4032B	LC4032B-5T44I	32	2.5	5	TQFP	44	30	I
	LC4032B-75T44I	32	2.5	7.5	TQFP	44	30	I
	LC4032B-10T44I	32	2.5	10	TQFP	44	30	I
	LC4064B-5T100I	64	2.5	5	TQFP	100	64	I
	LC4064B-75T100I	64	2.5	7.5	TQFP	100	64	I
	LC4064B-10T100I	64	2.5	10	TQFP	100	64	I
	LC4064B-5T48I	64	2.5	5	TQFP	48	32	I
LC4064B	LC4064B-75T48I	64	2.5	7.5	TQFP	48	32	I
	LC4064B-10T48I	64	2.5	10	TQFP	48	32	I
	LC4064B-5T44I	64	2.5	5	TQFP	44	30	I
	LC4064B-75T44I	64	2.5	7.5	TQFP	44	30	I
	LC4064B-10T44I	64	2.5	10	TQFP	44	30	I
	LC4128B-5T128I	128	2.5	5	TQFP	128	92	I
	LC4128B-75T128I	128	2.5	7.5	TQFP	128	92	I
L C4100D	LC4128B-10T128I	128	2.5	10	TQFP	128	92	I
LC4128B	LC4128B-5T100I	128	2.5	5	TQFP	100	64	I
	LC4128B-75T100I	128	2.5	7.5	TQFP	100	64	I
	LC4128B-10T100I	128	2.5	10	TQFP	100	64	I
	LC4256B-5FT256AI	256	2.5	5	ftBGA	256	128	I
	LC4256B-75FT256AI	256	2.5	7.5	ftBGA	256	128	I
	LC4256B-10FT256AI	256	2.5	10	ftBGA	256	128	I
	LC4256B-5FT256BI	256	2.5	5	ftBGA	256	160	I
	LC4256B-75FT256BI	256	2.5	7.5	ftBGA	256	160	I
	LC4256B-10FT256BI	256	2.5	10	ftBGA	256	160	I
	LC4256B-5F256AI ¹	256	2.5	5	fpBGA	256	128	I
	LC4256B-75F256AI ¹	256	2.5	7.5	fpBGA	256	128	I
LC4256B	LC4256B-10F256AI ¹	256	2.5	10	fpBGA	256	128	I
LC4256B	LC4256B-5F256BI ¹	256	2.5	5	fpBGA	256	160	I
	LC4256B-75F256BI ¹	256	2.5	7.5	fpBGA	256	160	I
	LC4256B-10F256BI ¹	256	2.5	10	fpBGA	256	160	I
	LC4256B-5T176I	256	2.5	5	TQFP	176	128	I
	LC4256B-75T176I	256	2.5	7.5	TQFP	176	128	I
	LC4256B-10T176I	256	2.5	10	TQFP	176	128	I
	LC4256B-5T100I	256	2.5	5	TQFP	100	64	I
	LC4256B-75T100I	256	2.5	7.5	TQFP	100	64	1
	LC4256B-10T100I	256	2.5	10	TQFP	100	64	I

ispMACH 4000V (3.3V) Commercial Devices (Cont.)

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4128V-27T144C	128	3.3	2.7	TQFP	144	96	С
	LC4128V-5T144C	128	3.3	5	TQFP	144	96	С
	LC4128V-75T144C	128	3.3	7.5	TQFP	144	96	С
	LC4128V-27T128C	128	3.3	2.7	TQFP	128	92	С
LC4128V	LC4128V-5T128C	128	3.3	5	TQFP	128	92	С
	LC4128V-75T128C	128	3.3	7.5	TQFP	128	92	С
	LC4128V-27T100C	128	3.3	2.7	TQFP	100	64	С
	LC4128V-5T100C	128	3.3	5	TQFP	100	64	С
	LC4128V-75T100C	128	3.3	7.5	TQFP	100	64	С
	LC4256V-3FT256AC	256	3.3	3	ftBGA	256	128	С
	LC4256V-5FT256AC	256	3.3	5	ftBGA	256	128	С
	LC4256V-75FT256AC	256	3.3	7.5	ftBGA	256	128	С
	LC4256V-3FT256BC	256	3.3	3	ftBGA	256	160	С
	LC4256V-5FT256BC	256	3.3	5	ftBGA	256	160	С
	LC4256V-75FT256BC	256	3.3	7.5	ftBGA	256	160	С
	LC4256V-3F256AC1	256	3.3	3	fpBGA	256	128	С
	LC4256V-5F256AC1	256	3.3	5	fpBGA	256	128	С
	LC4256V-75F256AC1	256	3.3	7.5	fpBGA	256	128	С
	LC4256V-3F256BC ¹	256	3.3	3	fpBGA	256	160	С
LC4256V	LC4256V-5F256BC ¹	256	3.3	5	fpBGA	256	160	С
	LC4256V-75F256BC1	256	3.3	7.5	fpBGA	256	160	С
	LC4256V-3T176C	256	3.3	3	TQFP	176	128	С
	LC4256V-5T176C	256	3.3	5	TQFP	176	128	С
	LC4256V-75T176C	256	3.3	7.5	TQFP	176	128	С
	LC4256V-3T144C	256	3.3	3	TQFP	144	96	С
	LC4256V-5T144C	256	3.3	5	TQFP	144	96	С
	LC4256V-75T144C	256	3.3	7.5	TQFP	144	96	С
	LC4256V-3T100C	256	3.3	3	TQFP	100	64	С
	LC4256V-5T100C	256	3.3	5	TQFP	100	64	С
	LC4256V-75T100C	256	3.3	7.5	TQFP	100	64	С
	LC4384V-35FT256C	384	3.3	3.5	ftBGA	256	192	С
	LC4384V-5FT256C	384	3.3	5	ftBGA	256	192	С
	LC4384V-75FT256C	384	3.3	7.5	ftBGA	256	192	С
	LC4384V-35F256C ¹	384	3.3	3.5	fpBGA	256	192	С
LC4384V	LC4384V-5F256C ¹	384	3.3	5	fpBGA	256	192	С
	LC4384V-75F256C1	384	3.3	7.5	fpBGA	256	192	С
	LC4384V-35T176C	384	3.3	3.5	TQFP	176	128	С
	LC4384V-5T176C	384	3.3	5	TQFP	176	128	С
	LC4384V-75T176C	384	3.3	7.5	TQFP	176	128	С

ispMACH 4000C (1.8V) Lead-Free Industrial Devices (Cont.)

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4256C-5FTN256AI	256	1.8	5	Lead-free ftBGA	256	128	I
	LC4256C-75FTN256AI	256	1.8	7.5	Lead-free ftBGA	256	128	I
	LC4256C-10FTN256AI	256	1.8	10	Lead-free ftBGA	256	128	Į
	LC4256C-5FTN256BI	256	1.8	5	Lead-free ftBGA	256	160	I
	LC4256C-75FTN256BI	256	1.8	7.5	Lead-free ftBGA	256	160	Į
	LC4256C-10FTN256BI	256	1.8	10	Lead-free ftBGA	256	160	Į
	LC4256C-5FN256AI ¹	256	1.8	5	Lead-free fpBGA	256	128	I
	LC4256C-75FN256AI ¹	256	1.8	7.5	Lead-free fpBGA	256	128	I
1.040560	LC4256C-10FN256AI ¹	256	1.8	10	Lead-free fpBGA	256	128	I
LC4256C	LC4256C-5FN256BI ¹	256	1.8	5	Lead-free fpBGA	256	160	I
	LC4256C-75FN256BI ¹	256	1.8	7.5	Lead-free fpBGA	256	160	I
	LC4256C-10FN256BI ¹	256	1.8	10	Lead-free fpBGA	256	160	I
	LC4256C-5TN176I	256	1.8	5	Lead-free TQFP	176	128	I
	LC4256C-75TN176I	256	1.8	7.5	Lead-free TQFP	176	128	I
	LC4256C-10TN176I	256	1.8	10	Lead-free TQFP	176	128	I
	LC4256C-5TN100I	256	1.8	5	Lead-free TQFP	100	64	I
	LC4256C-75TN100I	256	1.8	7.5	Lead-free TQFP	100	64	I
	LC4256C-10TN100I	256	1.8	10	Lead-free TQFP	100	64	I
	LC4384C-5FTN256I	384	1.8	5	Lead-free ftBGA	256	192	I
	LC4384C-75FTN256I	384	1.8	7.5	Lead-free ftBGA	256	192	I
	LC4384C-10FTN256I	384	1.8	10	Lead-free ftBGA	256	192	I
	LC4384C-5FN256I ¹	384	1.8	5	Lead-free fpBGA	256	192	I
LC4384C	LC4384C-75FN256I ¹	384	1.8	7.5	Lead-free fpBGA	256	192	I
	LC4384C-10FN256I ¹	384	1.8	10	Lead-free fpBGA	256	192	I
	LC4384C-5TN176I	384	1.8	5	Lead-free TQFP	176	128	I
	LC4384C-75TN176I	384	1.8	7.5	Lead-free TQFP	176	128	I
	LC4384C-10TN176I	384	1.8	10	Lead-free TQFP	176	128	I
	LC4512C-5FTN256I	512	1.8	5	Lead-free ftBGA	256	208	I
	LC4512C-75FTN256I	512	1.8	7.5	Lead-free ftBGA	256	208	I
	LC4512C-10FTN256I	512	1.8	10	Lead-free ftBGA	256	208	I
	LC4512C-5FN256I ¹	512	1.8	5	Lead-free fpBGA	256	208	I
LC4512C	LC4512C-75FN256I ¹	512	1.8	7.5	Lead-free fpBGA	256	208	I
	LC4512C-10FN256I ¹	512	1.8	10	Lead-free fpBGA	256	208	I
	LC4512C-5TN176I	512	1.8	5	Lead-free TQFP	176	128	I
	LC4512C-75TN176I	512	1.8	7.5	Lead-free TQFP	176	128	I
	LC4512C-10TN176I	512	1.8	10	Lead-free TQFP	176	128	I
	1	1	L		l .	l	1	1

^{1.} Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.