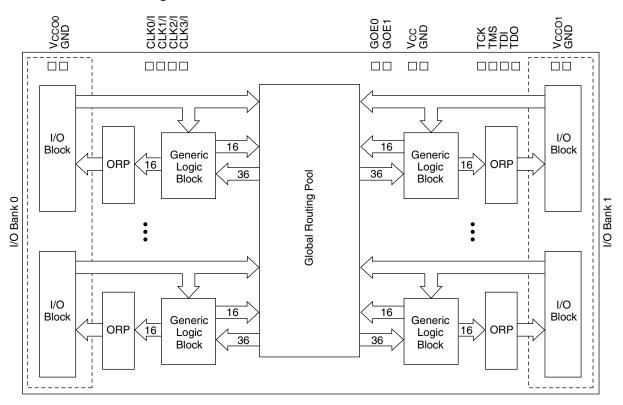


Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.


Applications of Embedded - CPLDs

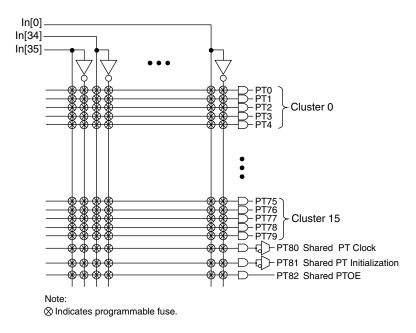
Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5 ns
Voltage Supply - Internal	2.3V ~ 2.7V
Number of Logic Elements/Blocks	16
Number of Macrocells	256
Number of Gates	-
Number of I/O	128
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	256-BGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4256b-5fn256ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1. Functional Block Diagram

The I/Os in the ispMACH 4000 are split into two banks. Each bank has a separate I/O power supply. Inputs can support a variety of standards independent of the chip or bank power supply. Outputs support the standards compatible with the power supply provided to the bank. Support for a variety of standards helps designers implement designs in mixed voltage environments. In addition, 5V tolerant inputs are specified within an I/O bank that is connected to V_{CCO} of 3.0V to 3.6V for LVCMOS 3.3, LVTTL and PCI interfaces.


ispMACH 4000 Architecture

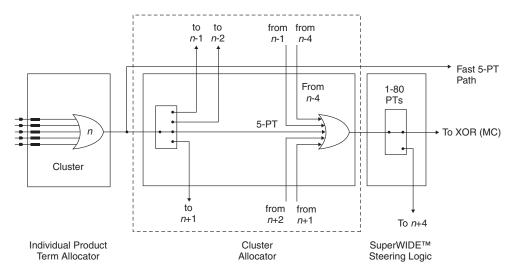
There are a total of two GLBs in the ispMACH 4032, increasing to 32 GLBs in the ispMACH 4512. Each GLB has 36 inputs. All GLB inputs come from the GRP and all outputs from the GLB are brought back into the GRP to be connected to the inputs of any other GLB on the device. Even if feedback signals return to the same GLB, they still must go through the GRP. This mechanism ensures that GLBs communicate with each other with consistent and predictable delays. The outputs from the GLB are also sent to the ORP. The ORP then sends them to the associated I/O cells in the I/O block.

Generic Logic Block

The ispMACH 4000 GLB consists of a programmable AND array, logic allocator, 16 macrocells and a GLB clock generator. Macrocells are decoupled from the product terms through the logic allocator and the I/O pins are decoupled from macrocells through the ORP. Figure 2 illustrates the GLB.

Figure 3. AND Array

Enhanced Logic Allocator


Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term cluster is associated with a macrocell. The cluster size for the ispMACH 4000 family is 4+1 (total 5) product terms. The software automatically considers the availability and distribution of product term clusters as it fits the functions within a GLB. The logic allocator is designed to provide three speed paths: 5-PT fast bypass path, 20-PT Speed Locking path and an up to 80-PT path. The availability of these three paths lets designers trade timing variability for increased performance.

The enhanced Logic Allocator of the ispMACH 4000 family consists of the following blocks:

- Product Term Allocator
- Cluster Allocator
- Wide Steering Logic

Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.

Figure 4. Macrocell Slice

- Block CLK2
- Block CLK3
- PT Clock
- PT Clock Inverted
- Shared PT Clock
- Ground

Clock Enable Multiplexer

Each macrocell has a 4:1 clock enable multiplexer. This allows the clock enable signal to be selected from the following four sources:

- PT Initialization/CE
- PT Initialization/CE Inverted
- Shared PT Clock
- Logic High

Initialization Control

The ispMACH 4000 family architecture accommodates both block-level and macrocell-level set and reset capability. There is one block-level initialization term that is distributed to all macrocell registers in a GLB. At the macrocell level, two product terms can be "stolen" from the cluster associated with a macrocell to be used for set/reset functionality. A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, providing flexibility.

Note that the reset/preset swapping selection feature affects power-up reset as well. All flip-flops power up to a known state for predictable system initialization. If a macrocell is configured to SET on a signal from the block-level initialization, then that macrocell will be SET during device power-up. If a macrocell is configured to RESET on a signal from the block-level initialization or is not configured for set/reset, then that macrocell will RESET on power-up. To guarantee initialization values, the V_{CC} rise must be monotonic, and the clock must be inactive until the reset delay time has elapsed.

GLB Clock Generator

Each ispMACH 4000 device has up to four clock pins that are also routed to the GRP to be used as inputs. These pins drive a clock generator in each GLB, as shown in Figure 6. The clock generator provides four clock signals that can be used anywhere in the GLB. These four GLB clock signals can consist of a number of combinations of the true and complement edges of the global clock signals.

Figure 6. GLB Clock Generator

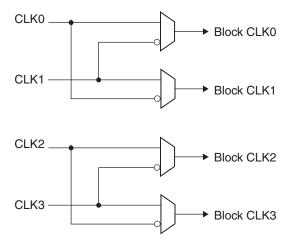
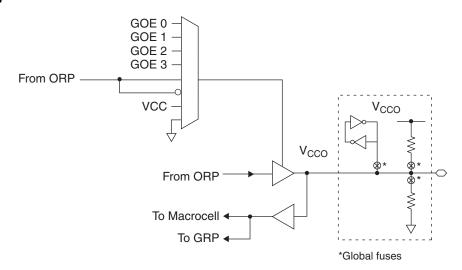


Table 10. ORP Combinations for I/O Blocks with 12 I/Os

I/O Cell	Available Macrocells
I/O 0	M0, M1, M2, M3, M4, M5, M6, M7
I/O 1	M1, M2, M3, M4, M5, M6, M7, M8
I/O 2	M2, M3, M4, M5, M6, M7, M8, M9
I/O 3	M4, M5, M6, M7, M8, M9, M10, M11
I/O 4	M5, M6, M7, M8, M9, M10, M11, M12
I/O 5	M6, M7, M8, M9, M10, M11, M12, M13
I/O 6	M8, M9, M10, M11, M12, M13, M14, M15
I/O 7	M9, M10, M11, M12, M13, M14, M15, M0
I/O 8	M10, M11, M12, M13, M14, M15, M0, M1
I/O 9	M12, M13, M14, M15, M0, M1, M2, M3
I/O 10	M13, M14, M15, M0, M1, M2, M3, M4
I/O 11	M14, M15, M0, M1, M2, M3, M4, M5

ORP Bypass and Fast Output Multiplexers

The ORP bypass and fast-path output multiplexer is a 4:1 multiplexer and allows the 5-PT fast path to bypass the ORP and be connected directly to the pin with either the regular output or the inverted output. This multiplexer also allows the register output to bypass the ORP to achieve faster t_{CO}.


Output Enable Routing Multiplexers

The OE Routing Pool provides the corresponding local output enable (OE) product term to the I/O cell.

I/O Cell

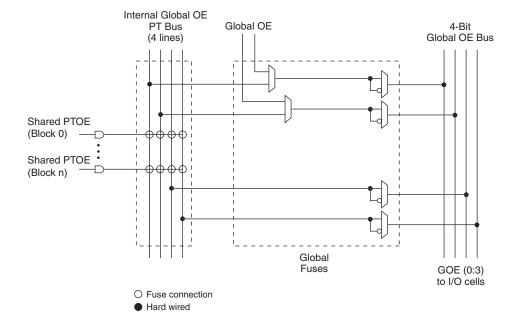
The I/O cell contains the following programmable elements: output buffer, input buffer, OE multiplexer and bus maintenance circuitry. Figure 8 details the I/O cell.

Figure 8. I/O Cell

Each output supports a variety of output standards dependent on the V_{CCO} supplied to its I/O bank. Outputs can also be configured for open drain operation. Each input can be programmed to support a variety of standards, independent of the V_{CCO} supplied to its I/O bank. The I/O standards supported are:

- LVTTL
- LVCMOS 1.8
- LVCMOS 3.3
- 3.3V PCI Compatible
- LVCMOS 2.5

All of the I/Os and dedicated inputs have the capability to provide a bus-keeper latch, Pull-up Resistor or Pull-down Resistor. A fourth option is to provide none of these. The selection is done on a global basis. The default in both hardware and software is such that when the device is erased or if the user does not specify, the input structure is configured to be a Pull-up Resistor.


Each ispMACH 4000 device I/O has an individually programmable output slew rate control bit. Each output can be individually configured for fast slew or slow slew. The typical edge rate difference between fast and slow slew setting is 20%. For high-speed designs with long, unterminated traces, the slow-slew rate will introduce fewer reflections, less noise and keep ground bounce to a minimum. For designs with short traces or well terminated lines, the fast slew rate can be used to achieve the highest speed.

Global OE Generation

Most ispMACH 4000 family devices have a 4-bit wide Global OE Bus, except the ispMACH 4032 device that has a 2-bit wide Global OE Bus. This bus is derived from a 4-bit internal global OE PT bus and two dual purpose I/O or GOE pins. Each signal that drives the bus can optionally be inverted.

Each GLB has a block-level OE PT that connects to all bits of the Global OE PT bus with four fuses. Hence, for a 256-macrocell device (with 16 blocks), each line of the bus is driven from 16 OE product terms. Figures 9 and 10 show a graphical representation of the global OE generation.

Figure 9. Global OE Generation for All Devices Except ispMACH 4032

IEEE 1532-Compliant In-System Programming

Programming devices in-system provides a number of significant benefits including: rapid prototyping, lower inventory levels, higher quality and the ability to make in-field modifications. All ispMACH 4000 devices provide In-System Programming (ISP™) capability through the Boundary Scan Test Access Port. This capability has been implemented in a manner that ensures that the port remains complaint to the IEEE 1149.1 standard. By using IEEE 1149.1 as the communication interface through which ISP is achieved, users get the benefit of a standard, well-defined interface. All ispMACH 4000 devices are also compliant with the IEEE 1532 standard.

The ispMACH 4000 devices can be programmed across the commercial temperature and voltage range. The PC-based Lattice software facilitates in-system programming of ispMACH 4000 devices. The software takes the JEDEC file output produced by the design implementation software, along with information about the scan chain, and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain via the parallel port of a PC. Alternatively, the software can output files in formats understood by common automated test equipment. This equipment can then be used to program ispMACH 4000 devices during the testing of a circuit board.

User Electronic Signature

The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the device, stored in E²CMOS memory. The ispMACH 4000 device contains 32 UES bits that can be configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.

Security Bit

A programmable security bit is provided on the ispMACH 4000 devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.

Hot Socketing

The ispMACH 4000 devices are well-suited for applications that require hot socketing capability. Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The isp-MACH 4000 devices provide this capability for input voltages in the range 0V to 3.0V.

Density Migration

The ispMACH 4000 family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

I/O DC Electrical Characteristics

Over Recommended Operating Conditions

		V _{IL}	V _{IH}		V _{OL}	V _{OH}	l _{OL} ¹	I _{OH} ¹
Standard	Min (V)	Max (V)	Min (V)	Max (V)	Max (V)	Min (V)	(mA)	(mA)
LVTTL	-0.3	0.80	2.0	5.5	0.40	V _{CCO} - 0.40	8.0	-4.0
LVIIL	-0.5	0.00	2.0	5.5	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 3.3	-0.3	0.80	2.0	5.5	0.40	V _{CCO} - 0.40	8.0	-4.0
EV OIVIOU 3.3	-0.5	0.00	2.0 3.5		0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 2.5	-O 3	-0.3 0.70	1.70	3.6	0.40	V _{CCO} - 0.40	8.0	-4.0
EVOIVIOU 2.5	-0.0			0.0	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 1.8	-0.3	0.63	1.17	3.6	0.40	V _{CCO} - 0.45	2.0	-2.0
(4000V/B)	-0.5	0.03	1.17	3.0	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 1.8	-0.3	0.35 * V _{CC}	0.65 * V _{CC}	3.6	0.40	V _{CCO} - 0.45	2.0	-2.0
(4000C/Z)	-0.5	0.55 V _{CC}	0.03 VCC	3.0	0.20	V _{CCO} - 0.20	0.1	-0.1
PCI 3.3 (4000V/B)	-0.3	1.08	1.5	5.5	0.1 V _{CCO}	0.9 V _{CCO}	1.5	-0.5
PCI 3.3 (4000C/Z)	-0.3	0.3 * 3.3 * (V _{CC} / 1.8)	0.5 * 3.3 * (V _{CC} / 1.8)	5.5	0.1 V _{CCO}	0.9 V _{CCO}	1.5	-0.5

^{1.} The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of the I/O bank, as shown in the logic signals connection table, shall not exceed *n**8mA. Where *n* is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank.

ispMACH 4000V/B/C Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

Parameter	Description	-2	-2.5		-2.7		3	-3	.5	Units
t _{PDLi}	Propagation Delay through Transparent Latch to Output/ Feedback MUX	_	0.25	_	0.25	_	0.25	_	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	0.28	_	0.28	_	0.28	_	0.28		ns
t _{SRR}	Asynchronous Reset or Set Recovery Time	1.67	_	1.67	_	1.67	_	1.67	_	ns
Control Delay	ys									
t _{BCLK}	GLB PT Clock Delay	_	1.12		1.12		1.12		1.12	ns
t _{PTCLK}	Macrocell PT Clock Delay	_	0.87	_	0.87	_	0.87	_	0.87	ns
t _{BSR}	Block PT Set/Reset Delay	_	1.83	_	1.83	_	1.83	_	1.83	ns
t _{PTSR}	Macrocell PT Set/Reset Delay	_	1.11		1.41	—	1.51	—	1.61	ns
t _{GPTOE}	Global PT OE Delay	_	2.83		4.13	—	5.33	_	5.33	ns
t _{PTOE}	Macrocell PT OE Delay	_	1.83	_	2.13	_	2.33	_	2.83	ns

Timing v.3.2

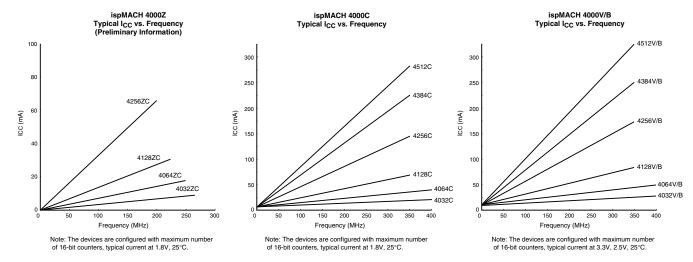
Note: Internal Timing Parameters are not tested and are for reference only. Refer to the Timing Model in this data sheet for further details.

ispMACH 4000Z Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

		-4	15	-5		-75		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
In/Out Delay	/s		ı	ı	ı		ı	
t _{IN}	Input Buffer Delay	_	0.95	_	1.25	_	1.80	ns
t _{GOE}	Global OE Pin Delay	_	3.00	_	3.50	_	4.30	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay	_	1.95	_	2.05	_	2.15	ns
t _{BUF}	Delay through Output Buffer	_	1.10	_	1.00	_	1.30	ns
t _{EN}	Output Enable Time	_	2.50	_	2.50	_	2.70	ns
t _{DIS}	Output Disable Time	_	2.50	_	2.50	_	2.70	ns
Routing/GL	B Delays		ı	ı	ı		ı	
t _{ROUTE}	Delay through GRP	_	2.25	_	2.05	_	2.50	ns
t _{MCELL}	Macrocell Delay	_	0.65	_	0.65	_	1.00	ns
t _{INREG}	Input Buffer to Macrocell Register Delay	_	1.00	_	1.00	_	1.00	ns
t _{FBK}	Internal Feedback Delay	_	0.35	_	0.05	_	0.05	ns
t _{PDb}	5-PT Bypass Propagation Delay	_	0.20	_	0.70	_	1.90	ns
t _{PDi}	Macrocell Propagation Delay	_	0.45	_	0.65	_	1.00	ns
Register/La	tch Delays		ı	ı	ı			I
t _S	D-Register Setup Time (Global Clock)	1.00	_	1.10	_	1.35	_	ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	2.10	_	1.90	_	2.45	_	ns
t _{ST}	T-Register Setup Time (Global Clock)	1.20	_	1.30	_	1.55	_	ns
t _{ST_PT}	T-register Setup Time (Product Term Clock)	2.30	_	2.10	_	2.75	_	ns
t _H	D-Register Hold Time	1.90	_	1.90	_	3.15	_	ns
t _{HT}	T-Resister Hold Time	1.90	_	1.90	_	3.15	_	ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	1.30	_	1.10	_	0.75	_	ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45	_	1.45	_	ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.30	_	1.50	_	1.95	_	ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	1.00	_	1.00	_	1.18	_	ns
t _{COi}	Register Clock to Output/Feedback MUX Time	_	0.75	_	1.15	_	1.05	ns
t _{CES}	Clock Enable Setup Time	2.00	_	2.00	_	2.00	_	ns
t _{CEH}	Clock Enable Hold Time	0.00	_	0.00	_	0.00	_	ns
t _{SL}	Latch Setup Time (Global Clock)	1.00	_	1.00	_	1.65	_	ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	2.10	_	1.90	_	2.15	_	ns
t _{HL}	Latch Hold Time	2.00	_	2.00	_	1.17	_	ns
t _{GOi}	Latch Gate to Output/Feedback MUX Time	_	0.33	_	0.33	_	0.33	ns
t _{PDLi}	Propagation Delay through Transparent Latch to Output/ Feedback MUX	-	0.25	_	0.25	_	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	_	0.97	_	0.97	_	0.28	ns
t _{SRR}	Asynchronous Reset or Set Recovery Delay	_	1.80	_	1.80	_	1.67	ns
Control Dela	ays					1		1
t _{BCLK}	GLB PT Clock Delay	_	1.55	_	1.55	_	1.25	ns
t _{PTCLK}	Macrocell PT Clock Delay	_	1.55	_	1.55	_	1.25	ns
t _{BSR}	GLB PT Set/Reset Delay	_	1.83	_	1.83	_	1.83	ns
t _{PTSR}	Macrocell PT Set/Reset Delay	_	1.83	_	1.83	_	2.72	ns
t _{GPTOE}	Global PT OE Delay	_	4.30	_	4.20	_	3.50	ns

ispMACH 4000Z Timing Adders (Cont.)¹


Adder	Base		-4	1 5	-	5	-7	75	
Туре	Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Optional Delay A	Adders				I.			•	I.
t _{INDIO}	t _{INREG}	Input register delay	_	1.30	_	1.30	_	1.30	ns
t _{EXP}	t _{MCELL}	Product term expander delay	_	0.45	_	0.45	_	0.50	ns
t _{ORP}	_	Output routing pool delay	_	0.40	_	0.40	_	0.40	ns
t _{BLA}	t _{ROUTE}	Additional block load- ing adder	_	0.05	_	0.05	_	0.05	ns
t _{IOI} Input Adjust	ers				I.			•	I.
LVTTL_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVTTL standard	_	0.60	_	0.60	_	0.60	ns
LVCMOS33_in	t _{IN,} t _{GCLK_IN} , t _{GOE}	Using LVCMOS 3.3 standard	_	0.60	_	0.60	_	0.60	ns
LVCMOS25_in	t _{IN,} t _{GCLK_IN} , t _{GOE}	Using LVCMOS 2.5 standard	_	0.60	_	0.60	_	0.60	ns
LVCMOS18_in	t _{IN,} t _{GCLK_IN} , t _{GOE}	Using LVCMOS 1.8 standard	_	0.00	_	0.00	_	0.00	ns
PCI_in	t _{IN,} t _{GCLK_IN} , t _{GOE}	Using PCI compatible input	_	0.60	_	0.60	_	0.60	ns
t _{IOO} Output Adju	ısters					•		•	
LVTTL_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as TTL buffer	_	0.20	_	0.20	_	0.20	ns
LVCMOS33_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as 3.3V buffer	_	0.20	_	0.20	_	0.20	ns
LVCMOS25_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as 2.5V buffer	_	0.10	_	0.10	_	0.10	ns
LVCMOS18_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as 1.8V buffer	_	0.00	_	0.00	_	0.00	ns
PCI_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as PCI compatible buffer	_	0.20	_	0.20	_	0.20	ns
Slow Slew	t _{BUF,} t _{EN}	Output configured for slow slew rate	_	1.00	_	1.00	_	1.00	ns

Timing v.2.2

Note: Open drain timing is the same as corresponding LVCMOS timing.

1. Refer to TN1004, <u>ispMACH 4000 Timing Model Design and Usage Guidelines</u> for information regarding use of these adders.

Power Consumption

Power Estimation Coefficients¹

Device	A	В
ispMACH 4032V/B	11.3	0.010
ispMACH 4032C	1.3	0.010
ispMACH 4064V/B	11.5	0.010
ispMACH 4064C	1.5	0.010
ispMACH 4128V/B	11.5	0.011
ispMACH 4128C	1.5	0.011
ispMACH 4256V/B	12	0.011
ispMACH 4256C	2	0.011
ispMACH 4384V/B	12.5	0.013
ispMACH 4384C	2.5	0.013
ispMACH 4512V/B	13	0.013
ispMACH 4512C	3	0.013
ispMACH 4032ZC	0.010	0.010
ispMACH 4064ZC	0.011	0.010
ispMACH 4128ZC	0.012	0.010
ispMACH 4256ZC	0.013	0.010

For further information about the use of these coefficients, refer to TN1005, <u>Power Esti-mation in ispMACH 4000V/B/C/Z Devices</u>.

Signal Descriptions

Signal Names	Desc	ription						
TMS	Input – This pin is the IEEE 1149.1 Test Notes that the state machine.	Mode Select input, which is used to control						
TCK	Input – This pin is the IEEE 1149.1 Test 0 state machine.	Clock input pin, used to clock through the						
TDI	Input – This pin is the IEEE 1149.1 Test D	Data In pin, used to load data.						
TDO	Output – This pin is the IEEE 1149.1 Test	Output – This pin is the IEEE 1149.1 Test Data Out pin used to shift data out.						
GOE0/IO, GOE1/IO	These pins are configured to be either Gl pins.	obal Output Enable Input or as general I/O						
GND	Ground	Ground						
NC	Not Connected	Not Connected						
V _{CC}	The power supply pins for logic core and	The power supply pins for logic core and JTAG port.						
CLK0/I, CLK1/I, CLK2/I, CLK3/I	These pins are configured to be either CL	₋K input or as an input.						
V _{CCO0} , V _{CCO1}	The power supply pins for each I/O bank.							
	Input/Output ¹ – These are the general pu reference (alpha) and z is macrocell refer	rpose I/O used by the logic array. y is GLB ence (numeric). z: 0-15.						
	ispMACH 4032	y: A-B						
	ispMACH 4064	y: A-D						
yzz	ispMACH 4128	y: A-H						
	ispMACH 4256	y: A-P						
	ispMACH 4384	y: A-P, AX-HX						
	ispMACH 4512	y: A-P, AX-PX						

^{1.} In some packages, certain I/Os are only available for use as inputs. See the signal connections table for details.

ispMACH 4000V/B/C ORP Reference Table

	4032	V/B/C	4	1064\	//B/C	4128	V/B/	0		4256	V/B/C		4384\	//B/C	4512	2V/B/C
Number of I/Os	30¹	32	30 ²	32	64	64	92³	96	64	96 ⁴	128	160	128	192	128	208
Number of GLBs	2	2	4	4	4	8	8	8	16	16	16	16	16	16	16	16
Number of I/Os / GLB	16	16	8	8	16	8	12	12	4	8	8	10	8	8	8	Mixture of 8 & 4 ⁵
Reference ORP Table	16 l/ Gl	Os / LB	8 I/0 GI		16 I/Os / GLB	8 I/Os / GLB	12 l/ GI		4 I/Os / GLB	8 I/Os / GLB	8 I/Os / GLB	10 I/Os / GLB	8 I/0 GL		8 I/Os/ GLB	8 I/Os / GLB 4 I/Os / GLB

- 1. 32-macrocell device, 44 TQFP: 2 GLBs have 15 out of 16 I/Os bonded out.
- 2. 64-macrocells device, 44 TQFP: 2 GLBs have 7 out of 8 I/Os bonded out.
- 3. 128-macrocell device, 128 TQFP: 4 GLBs have 11 out of 12 I/Os
- 4. 256-macrocell device, 144 TQFP: 16 GLBs have 6 I/Os per
- 5. 512-macrocell device: 20 GLBs have 8 I/Os per, 12 GLBs have 4 I/Os per

ispMACH 4000Z ORP Reference Table

	4032Z	406	64Z	412	28Z	4256Z			
Number of I/Os	32	32	64	64	96	64	96¹	128	
Number of GLBs	2	4	4	8	8	16	16	16	
Number of I/Os / GLB	16	8	16	8	12	4	8	8	
Reference ORP Table	16 I/Os / GLB	8 I/Os / GLB	16 I/Os / GLB	8 I/Os / GLB	12 I/Os / GLB	4 I/Os / GLB	8 I/Os / GLB	8 I/Os / GLB	

^{1. 256-}macrocell device, 132 csBGA: 16 GLBs have 6 I/Os per

ispMACH 4032V/B/C and 4064V/B/C Logic Signal Connections: 44-Pin TQFP

		ispMACH 4032V/B/C		ispMACH 40	64V/B/C
Pin Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
1	-	TDI	-	TDI	-
2	0	A5	A^5	A10	A^5
3	0	A6	A^6	A12	A^6
4	0	A7	A^7	A14	A^7
5	0	GND (Bank 0)	-	GND (Bank 0)	-
6	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-
7	0	A8	A^8	B0	B^0
8	0	A9	A^9	B2	B^1
9	0	A10	A^10	B4	B^2
10	-	TCK	-	TCK	-
11	-	VCC	-	VCC	-
12	-	GND	-	GND	-
13	0	A12	A^12	B8	B^4
14	0	A13	A^13	B10	B^5
15	0	A14	A^14	B12	B^6
16	0	A15	A^15	B14	B^7
17	1	CLK2/I	-	CLK2/I	-
18	1	B0	B^0	C0	C^0
19	1	B1	B^1	C2	C^1
20	1	B2	B^2	C4	C^2
21	1	B3	B^3	C6	C^3
22	1	B4	B^4	C8	C^4
23	-	TMS	-	TMS	-
24	1	B5	B^5	C10	C^5
25	1	B6	B^6	C12	C^6
26	1	B7	B^7	C14	C^7
27	1	GND (Bank 1)	-	GND (Bank 1)	-
28	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-
29	1	B8	B^8	D0	D^0
30	1	B9	B^9	D2	D^1
31	1	B10	B^10	D4	D^2
32	-	TDO	-	TDO	-
33	-	VCC	-	VCC	-
34	-	GND	-	GND	-
35	1	B12	B^12	D8	D^4
36	1	B13	B^13	D10	D^5
37	1	B14	B^14	D12	D^6
38	1	B15/GOE1	B^15	D14/GOE1	D^7
39	0	CLK0/I	-	CLK0/I	-
40	0	A0/GOE0	A^0	A0/GOE0	A^0
41	0	A1	A^1	A2	A^1

ispMACH 4064V/B/C/Z, 4128V/B/C/Z, 4256V/B/C/Z Logic Signal Connections: 100-Pin TQFP (Cont.)

Bank		ispMACH 40	64V/B/C/Z	ispMACH 41	28V/B/C/Z	ispMACH 42	56V/B/C/Z
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
42	1	C1	C^1	E2	E^1	16	I^1
43	1	C2	C^2	E4	E^2	I10	I^2
44	1	C3	C^3	E6	E^3	l12	I^3
45	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
46	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
47	1	C4	C^4	E8	E^4	J2	J^0
48	1	C5	C^5	E10	E^5	J6	J^1
49	1	C6	C^6	E12	E^6	J10	J^2
50	1	C7	C^7	E14	E^7	J12	J^3
51	-	GND	-	GND	-	GND	-
52	-	TMS	-	TMS	-	TMS	-
53	1	C8	C^8	F0	F^0	K12	K^3
54	1	C9	C^9	F2	F^1	K10	K^2
55	1	C10	C^10	F4	F^2	K6	K^1
56	1	C11	C^11	F6	F^3	K2	K^0
57	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
58	1	C12	C^12	F8	F^4	L12	L^3
59	1	C13	C^13	F10	F^5	L10	L^2
60	1	C14	C^14	F12	F^6	L6	L^1
61	1	C15	C^15	F13	F^7	L4	L^0
62*	1	I	-	I	-	I	-
63	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
64	1	D15	D^15	G14	G^7	M4	M^0
65	1	D14	D^14	G12	G^6	M6	M^1
66	1	D13	D^13	G10	G^5	M10	M^2
67	1	D12	D^12	G8	G^4	M12	M^3
68	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
69	1	D11	D^11	G6	G^3	N2	N^0
70	1	D10	D^10	G5	G^2	N6	N^1
71	1	D9	D^9	G4	G^1	N10	N^2
72	1	D8	D^8	G2	G^0	N12	N^3
73*	1	I	-	I	-	I	-
74	-	TDO	-	TDO	-	TDO	-
75	-	VCC	-	VCC	-	VCC	-
76	-	GND	-	GND	-	GND	-
77*	1	I	-	I	-	I	-
78	1	D7	D^7	H13	H^7	O12	O^3
79	1	D6	D^6	H12	H^6	O10	O^2
80	1	D5	D^5	H10	H^5	O6	O^1
81	1	D4	D^4	H8	H^4	02	O^0
82	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-

ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C Logic Signal Connections: 256-Ball ftBGA/fpBGA

Ball	I/O	ispMACH 4256V/B/C 128-I/O		ispMACH 4256 160-I/O	V/B/C	ispMACH 4384	V/B/C	ispMACH 4512V/B/C		
Number	Bank	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	
-	-	-	-	-	-	VCC	-	VCC	-	
-	-	GND	-	GND	-	GND	-	GND	-	
C3	-	TDI	-	TDI	-	TDI	-	TDI	-	
-	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-	
B1	0	C14	C^7	C14	C^9	C14	C^7	C14	C^7	
F5	0	C12	C^6	C12	C^8	C12	C^6	C12	C^6	
D3	0	C10	C^5	C10	C^7	C10	C^5	C10	C^5	
C1	0	C8	C^4	C9	C^6	C8	C^4	C8	C^4	
C2	0	C6	C^3	C8	C^5	C6	C^3	C6	C^3	
E3	0	C4	C^2	C6	C^4	C4	C^2	C4	C^2	
D2	0	C2	C^1	C4	C^3	C2	C^1	C2	C^1	
F6	0	C0	C^0	C2	C^2	C0	C^0	C0	C^0	
D1	0	NC	-	C1	C^1	F6	F^3	H0	H^0	
E2	0	NC	-	C0	C^0	F4	F^2	H4	H^1	
E4	0	NC	-	NC	-	D6	D^3	F4	F^2	
G5	0	NC	-	NC	-	D4	D^2	F6	F^3	
E1	0	NC	-	NC	-	NC	-	F8	F^4	
-	0	-	-	VCCO (Bank 0)	VCCO (Bank 0) - VCC		-	VCCO (Bank 0)	-	
-	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-	
F2	0	NC	-	NC	-	NC	-	F10	F^5	
F1	0	NC	-	NC	-	D2	D^1	F12	F^6	
G1	0	NC	-	NC	-	D0	D^0	F14	F^7	
G6	0	NC	-	D14	D^9	F2	F^1	H8	H^2	
G4	0	NC	-	D12	D^8	F0	F^0	H12	H^3	
H6	0	D14	D^7	D10	D^7	E14	E^7	G14	G^7	
G3	0	D12	D^6	D9	D^6	E12	E^6	G12	G^6	
H5	0	D10	D^5	D8	D^5	E10	E^5	G10	G^5	
G2	0	D8	D^4	D6	D^4	E8	E^4	G8	G^4	
H1	0	D6	D^3	D4	D^3	E6	E^3	G6	G^3	
H2	0	D4	D^2	D2	D^2	E4	E^2	G4	G^2	
H3	0	D2	D^1	D1	D^1	E2	E^1	G2	G^1	
H4	0	D0	D^0	D0	D^0	E0	E^0	G0	G^0	
-	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-	
-	0	-	-	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-	
J4	0	E0	E^0	E0	E^0	H0	H^0	J0	J^0	
J3	0	E2	E^1	E1	E^1	H2	H^1	J2	J^1	
J2	0	E4	E^2	E2	E^2	H4	H^2	J4	J^2	
J1	0	E6	E^3	E4	E^3	H6	H^3	J6	J^3	
K1	0	E8	E^4	E6	E^4	H8	H^4	J8	J^4	
J5	0	E10	E^5	E8	E^5	H10	H^5	J10	J^5	
K2	0	E12	E^6	E9	E^6	H12	H^6	J12	J^6	

ispMACH 4000C (1.8V) Commercial Devices (Cont.)

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4128C-27T128C	128	1.8	2.7	TQFP	128	92	С
	LC4128C-5T128C	128	1.8	5	TQFP	128	92	С
LC4128C	LC4128C-75T128C	128	1.8	7.5	TQFP	128	92	С
LU4120U	LC4128C-27T100C	128	1.8	2.7	TQFP	100	64	С
	LC4128C-5T100C	128	1.8	5	TQFP	100	64	С
	LC4128C-75T100C	128	1.8	7.5	TQFP	100	64	С
	LC4256C-3FT256AC	256	1.8	3	ftBGA	256	128	С
	LC4256C-5FT256AC	256	1.8	5	ftBGA	256	128	С
	LC4256C-75FT256AC	256	1.8	7.5	ftBGA	256	128	С
	LC4256C-3FT256BC	256	1.8	3	ftBGA	256	160	С
	LC4256C-5FT256BC	256	1.8	5	ftBGA	256	160	С
	LC4256C-75FT256BC	256	1.8	7.5	ftBGA	256	160	С
	LC4256C-3F256AC ¹	256	1.8	3	fpBGA	256	128	С
	LC4256C-5F256AC ¹	256	1.8	5	fpBGA	256	128	С
LC4256C	LC4256C-75F256AC1	256	1.8	7.5	fpBGA	256	128	С
LC4256C	LC4256C-3F256BC ¹	256	1.8	3	fpBGA	256	160	С
	LC4256C-5F256BC ¹	256	1.8	5	fpBGA	256	160	С
	LC4256C-75F256BC ¹	256	1.8	7.5	fpBGA	256	160	С
	LC4256C-3T176C	256	1.8	3	TQFP	176	128	С
	LC4256C-5T176C	256	1.8	5	TQFP	176	128	С
	LC4256C-75T176C	256	1.8	7.5	TQFP	176	128	С
	LC4256C-3T100C	256	1.8	3	TQFP	100	64	С
	LC4256C-5T100C	256	1.8	5	TQFP	100	64	С
	LC4256C-75T100C	256	1.8	7.5	TQFP	100	64	С
	LC4384C-35FT256C	384	1.8	3.5	ftBGA	256	192	С
	LC4384C-5FT256C	384	1.8	5	ftBGA	256	192	С
	LC4384C-75FT256C	384	1.8	7.5	ftBGA	256	192	С
	LC4384C-35F256C ¹	384	1.8	3.5	fpBGA	256	192	С
LC4384C	LC4384C-5F256C ¹	384	1.8	5	fpBGA	256	192	С
	LC4384C-75F256C1	384	1.8	7.5	fpBGA	256	192	С
	LC4384C-35T176C	384	1.8	3.5	TQFP	176	128	С
	LC4384C-5T176C	384	1.8	5	TQFP	176	128	С
	LC4384C-75T176C	384	1.8	7.5	TQFP	176	128	С
	LC4512C-35FT256C	512	1.8	3.5	ftBGA	256	208	С
	LC4512C-5FT256C	512	1.8	5	ftBGA	256	208	С
	LC4512C-75FT256C	512	1.8	7.5	ftBGA	256	208	С
	LC4512C-35F256C ¹	512	1.8	3.5	fpBGA	256	208	С
LC4512C	LC4512C-5F256C1	512	1.8	5	fpBGA	256	208	С
	LC4512C-75F256C1	512	1.8	7.5	fpBGA	256	208	С
	LC4512C-35T176C	512	1.8	3.5	TQFP	176	128	С
	LC4512C-5T176C	512	1.8	5	TQFP	176	128	С
	LC4512C-75T176C	512	1.8	7.5	TQFP	176	128	С

^{1.} Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000C (1.8V) Industrial Devices

Family	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032C-5T48I	32	1.8	5	TQFP	48	32	I
	LC4032C-75T48I	32	1.8	7.5	TQFP	48	32	I
LC4032C	LC4032C-10T48I	32	1.8	10	TQFP	48	32	1
LC4032C	LC4032C-5T44I	32	1.8	5	TQFP	44	30	I
	LC4032C-75T44I	32	1.8	7.5	TQFP	44	30	I
	LC4032C-10T44I	32	1.8	10	TQFP	44	30	I
	LC4064C-5T100I	64	1.8	5	TQFP	100	30	I
	LC4064C-75T100I	64	1.8	7.5	TQFP	100	64	1
	LC4064C-10T100I	64	1.8	10	TQFP	100	64	I
	LC4064C-5T48I	64	1.8	5	TQFP	48	32	1
LC4064C	LC4064C-75T48I	64	1.8	7.5	TQFP	48	32	1
	LC4064C-10T48I	64	1.8	10	TQFP	48	32	I
	LC4064C-5T44I	64	1.8	5	TQFP	44	30	I
	LC4064C-75T44I	64	1.8	7.5	TQFP	44	30	I
	LC4064C-10T44I	64	1.8	10	TQFP	44	30	I
	LC4128C-5T128I	128	1.8	5	TQFP	128	92	I
	LC4128C-75T128I	128	1.8	7.5	TQFP	128	92	I
1.041000	LC4128C-10T128I	128	1.8	10	TQFP	128	92	1
LC4128C	LC4128C-5T100I	128	1.8	5	TQFP	100	64	I
	LC4128C-75T100I	128	1.8	7.5	TQFP	100	64	I
	LC4128C-10T100I	128	1.8	10	TQFP	100	64	I
	LC4256C-5FT256AI	256	1.8	5	ftBGA	256	128	I
	LC4256C-75FT256AI	256	1.8	7.5	ftBGA	256	128	1
	LC4256C-10FT256AI	256	1.8	10	ftBGA	256	128	I
	LC4256C-5FT256BI	256	1.8	5	ftBGA	256	160	I
	LC4256C-75FT256BI	256	1.8	7.5	ftBGA	256	160	I
	LC4256C-10FT256BI	256	1.8	10	ftBGA	256	160	I
	LC4256C-5F256AI ¹	256	1.8	5	fpBGA	256	128	I
	LC4256C-75F256AI ¹	256	1.8	7.5	fpBGA	256	128	I
1.040560	LC4256C-10F256AI ¹	256	1.8	10	fpBGA	256	128	1
LC4256C	LC4256C-5F256BI ¹	256	1.8	5	fpBGA	256	160	I
	LC4256C-75F256BI ¹	256	1.8	7.5	fpBGA	256	160	I
	LC4256C-10F256BI ¹	256	1.8	10	fpBGA	256	160	I
	LC4256C-5T176I	256	1.8	5	TQFP	176	128	I
	LC4256C-75T176I	256	1.8	7.5	TQFP	176	128	I
	LC4256C-10T176I	256	1.8	10	TQFP	176	128	I
	LC4256C-5T100I	256	1.8	5	TQFP	100	64	I
	LC4256C-75T100I	256	1.8	7.5	TQFP	100	64	I
	LC4256C-10T100I	256	1.8	10	TQFP	100	64	I

ispMACH 4000V (3.3V) Lead-Free Commercial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032V-25TN48C	32	3.3	2.5	Lead-free TQFP	48	32	С
	LC4032V-5TN48C	32	3.3	5	Lead-free TQFP	48	32	С
LC4032V	LC4032V-75TN48C	32	3.3	7.5	Lead-free TQFP	48	32	С
LC4032V	LC4032V-25TN44C	32	3.3	2.5	Lead-free TQFP	44	30	С
	LC4032V-5TN44C	32	3.3	5	Lead-free TQFP	44	30	С
	LC4032V-75TN44C	32	3.3	7.5	Lead-free TQFP	44	30	С
	LC4064V-25TN100C	64	3.3	2.5	Lead-free TQFP	100	64	С
	LC4064V-5TN100C	64	3.3	5	Lead-free TQFP	100	64	С
	LC4064V-75TN100C	64	3.3	7.5	Lead-free TQFP	100	64	С
	LC4064V-25TN48C	64	3.3	2.5	Lead-free TQFP	48	32	С
LC4064V	LC4064V-5TN48C	64	3.3	5	Lead-free TQFP	48	32	С
	LC4064V-75TN48C	64	3.3	7.5	Lead-free TQFP	48	32	С
	LC4064V-25TN44C	64	3.3	2.5	Lead-free TQFP	44	30	С
	LC4064V-5TN44C	64	3.3	5	Lead-free TQFP	44	30	С
	LC4064V-75TN44C	64	3.3	7.5	Lead-free TQFP	44	30	С
	LC4128V-27TN144C	128	3.3	2.7	Lead-free TQFP	144	96	С
	LC4128V-5TN144C	128	3.3	5	Lead-free TQFP	144	96	С
	LC4128V-75TN144C	128	3.3	7.5	Lead-free TQFP	144	96	С
	LC4128V-27TN128C	128	3.3	2.7	Lead-free TQFP	128	92	С
LC4128V	LC4128V-5TN128C	128	3.3	5	Lead-free TQFP	128	92	С
	LC4128V-75TN128C	128	3.3	7.5	Lead-free TQFP	128	92	С
	LC4128V-27TN100C	128	3.3	2.7	Lead-free TQFP	100	64	С
	LC4128V-5TN100C	128	3.3	5	Lead-free TQFP	100	64	С
	LC4128V-75TN100C	128	3.3	7.5	Lead-free TQFP	100	64	С

ispMACH 4000V (3.3V) Lead-Free Commercial Devices (Cont.)

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4256V-3FTN256AC	256	3.3	3	Lead-free ftBGA	256	128	С
	LC4256V-5FTN256AC	256	3.3	5	Lead-free ftBGA	256	128	С
	LC4256V-75FTN256AC	256	3.3	7.5	Lead-free ftBGA	256	128	С
	LC4256V-3FTN256BC	256	3.3	3	Lead-free ftBGA	256	160	С
	LC4256V-5FTN256BC	256	3.3	5	Lead-free ftBGA	256	160	С
	LC4256V-75FTN256BC	256	3.3	7.5	Lead-free ftBGA	256	160	С
	LC4256V-3FN256AC1	256	3.3	3	Lead-free fpBGA	256	128	С
	LC4256V-5FN256AC1	256	3.3	5	Lead-free fpBGA	256	128	С
	LC4256V-75FN256AC1	256	3.3	7.5	Lead-free fpBGA	256	128	С
	LC4256V-3FN256BC1	256	3.3	3	Lead-free fpBGA	256	160	С
LC4256V	LC4256V-5FN256BC ¹	256	3.3	5	Lead-free fpBGA	256	160	С
	LC4256V-75FN256BC ¹	256	3.3	7.5	Lead-free fpBGA	256	160	С
	LC4256V-3TN176C	256	3.3	3	Lead-free TQFP	176	128	С
	LC4256V-5TN176C	256	3.3	5	Lead-free TQFP	176	128	С
	LC4256V-75TN176C	256	3.3	7.5	Lead-free TQFP	176	128	С
	LC4256V-3TN144C	256	3.3	3	Lead-free TQFP	144	96	С
	LC4256V-5TN144C	256	3.3	5	Lead-free TQFP	144	96	С
	LC4256V-75TN144C	256	3.3	7.5	Lead-free TQFP	144	96	С
	LC4256V-3TN100C	256	3.3	3	Lead-free TQFP	100	64	С
	LC4256V-5TN100C	256	3.3	5	Lead-free TQFP	100	64	С
	LC4256V-75TN100C	256	3.3	7.5	Lead-free TQFP	100	64	С
	LC4384V-35FTN256C	384	3.3	3.5	Lead-free ftBGA	256	192	С
	LC4384V-5FTN256C	384	3.3	5	Lead-free ftBGA	256	192	С
	LC4384V-75FTN256C	384	3.3	7.5	Lead-free ftBGA	256	192	С
	LC4384V-35FN256C1	384	3.3	3.5	Lead-free fpBGA	256	192	С
LC4384V	LC4384V-5FN256C1	384	3.3	5	Lead-free fpBGA	256	192	С
	LC4384V-75FN256C1	384	3.3	7.5	Lead-free fpBGA	256	192	С
	LC4384V-35TN176C	384	3.3	3.5	Lead-free TQFP	176	128	С
	LC4384V-5TN176C	384	3.3	5	Lead-free TQFP	176	128	С
	LC4384V-75TN176C	384	3.3	7.5	Lead-free TQFP	176	128	С
	LC4512V-35FTN256C	512	3.3	3.5	Lead-free ftBGA	256	208	С
	LC4512V-5FTN256C	512	3.3	5	Lead-free ftBGA	256	208	С
	LC4512V-75FTN256C	512	3.3	7.5	Lead-free ftBGA	256	208	С
	LC4512V-35FN256C ¹	512	3.3	3.5	Lead-free fpBGA	256	208	С
LC4512V	LC4512V-5FN256C ¹	512	3.3	5	Lead-free fpBGA	256	208	С
	LC4512V-75FN256C ¹	512	3.3	7.5	Lead-free fpBGA	256	208	С
	LC4512V-35TN176C	512	3.3	3.5	Lead-free TQFP	176	128	С
	LC4512V-5TN176C	512	3.3	5	Lead-free TQFP	176	128	С
	LC4512V-75TN176C	512	3.3	7.5	Lead-free TQFP	176	128	С

^{1.} Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000V (3.3V) Lead-Free Industrial Devices (Cont.)

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	1/0	Grade
	LC4256V-5FTN256AI	256	3.3	5	Lead-free ftBGA	256	128	I
	LC4256V-75FTN256AI	256	3.3	7.5	Lead-free ftBGA	256	128	
	LC4256V-10FTN256AI	256	3.3	10	Lead-free ftBGA	256	128	
	LC4256V-5FTN256BI	256	3.3	5	Lead-free ftBGA	256	160	
	LC4256V-75FTN256BI	256	3.3	7.5	Lead-free ftBGA	256	160	
	LC4256V-10FTN256BI	256	3.3	10	Lead-free ftBGA	256	160	
	LC4256V-5FN256AI ¹	256	3.3	5	Lead-free fpBGA	256	128	
	LC4256V-75FN256AI ¹	256	3.3	7.5	Lead-free fpBGA	256	128	1
	LC4256V-10FN256AI ¹	256	3.3	10	Lead-free fpBGA	256	128	
	LC4256V-5FN256BI ¹	256	3.3	5	Lead-free fpBGA	256	160	
LC4256V	LC4256V-75FN256BI ¹	256	3.3	7.5	Lead-free fpBGA	256	160	1
	LC4256V-10FN256BI ¹	256	3.3	10	Lead-free fpBGA	256	160	i
	LC4256V-5TN176I	256	3.3	5	Lead-free TQFP	176	128	
	LC4256V-75TN176I	256	3.3	7.5	Lead-free TQFP	176	128	
	LC4256V-10TN176I	256	3.3	10	Lead-free TQFP	176	128	
	LC4256V-5TN144I	256	3.3	5	Lead-free TQFP	144	96	
	LC4256V-75TN144I	256	3.3	7.5	Lead-free TQFP	144	96	1
	LC4256V-10TN144I	256	3.3	10	Lead-free TQFP	144	96	
	LC4256V-5TN100I	256	3.3	5	Lead-free TQFP	100	64	
	LC4256V-75TN100I	256	3.3	7.5	Lead-free TQFP	100	64	1
	LC4256V-10TN100I	256	3.3	10	Lead-free TQFP	100	64	
	LC4384V-5FTN256I	384	3.3	5	Lead-free ftBGA	256	192	ı
	LC4384V-75FTN256I	384	3.3	7.5	Lead-free ftBGA	256	192	ı
	LC4384V-10FTN256I	384	3.3	10	Lead-free ftBGA	256	192	ı
	LC4384V-5FN256I ¹	384	3.3	5	Lead-free fpBGA	256	192	ı
LC4384V	LC4384V-75FN256I ¹	384	3.3	7.5	Lead-free fpBGA	256	192	ı
	LC4384V-10FN256I ¹	384	3.3	10	Lead-free fpBGA	256	192	ı
	LC4384V-5TN176I	384	3.3	5	Lead-free TQFP	176	128	I
	LC4384V-75TN176I	384	3.3	7.5	Lead-free TQFP	176	128	ı
	LC4384V-10TN176I	384	3.3	10	Lead-free TQFP	176	128	I
	LC4512V-5FTN256I	512	3.3	5	Lead-free ftBGA	256	208	I
	LC4512V-75FTN256I	512	3.3	7.5	Lead-free ftBGA	256	208	I
	LC4512V-10FTN256I	512	3.3	10	Lead-free ftBGA	256	208	I
	LC4512V-5FN256I ¹	512	3.3	5	Lead-free fpBGA	256	208	I
LC4512V	LC4512V-75FN256I ¹	512	3.3	7.5	Lead-free fpBGA	256	208	I
	LC4512V-10FN256I ¹	512	3.3	10	Lead-free fpBGA	256	208	I
	LC4512V-5TN176I	512	3.3	5	Lead-free TQFP	176	128	I
	LC4512V-75TN176I	512	3.3	7.5	Lead-free TQFP	176	128	I
	LC4512V-10TN176I	512	3.3	10	Lead-free TQFP	176	128	I
	I.	1	·		T.	1		

^{1.} Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.