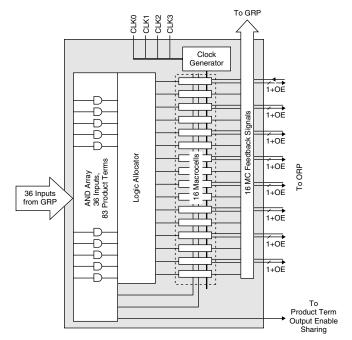


Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

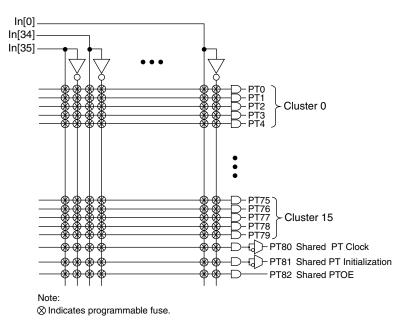

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	16
Number of Macrocells	256
Number of Gates	-
Number of I/O	64
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4256v-10t100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2. Generic Logic Block



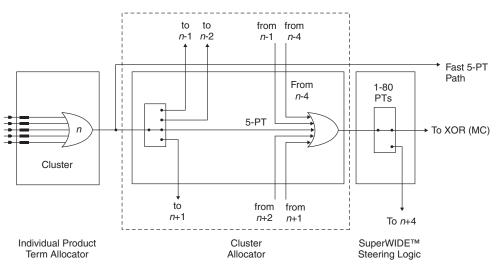
AND Array

The programmable AND Array consists of 36 inputs and 83 output product terms. The 36 inputs from the GRP are used to form 72 lines in the AND Array (true and complement of the inputs). Each line in the array can be connected to any of the 83 output product terms via a wired-AND. Each of the 80 logic product terms feed the logic allocator with the remaining three control product terms feeding the Shared PT Clock, Shared PT Initialization and Shared PT OE. The Shared PT Clock and Shared PT Initialization signals can optionally be inverted before being fed to the macrocells.

Every set of five product terms from the 80 logic product terms forms a product term cluster starting with PT0. There is one product term cluster for every macrocell in the GLB. Figure 3 is a graphical representation of the AND Array.

Figure 3. AND Array

Enhanced Logic Allocator


Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term cluster is associated with a macrocell. The cluster size for the ispMACH 4000 family is 4+1 (total 5) product terms. The software automatically considers the availability and distribution of product term clusters as it fits the functions within a GLB. The logic allocator is designed to provide three speed paths: 5-PT fast bypass path, 20-PT Speed Locking path and an up to 80-PT path. The availability of these three paths lets designers trade timing variability for increased performance.

The enhanced Logic Allocator of the ispMACH 4000 family consists of the following blocks:

- Product Term Allocator
- Cluster Allocator
- Wide Steering Logic

Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.

Figure 4. Macrocell Slice

Product Term Allocator

The product term allocator assigns product terms from a cluster to either logic or control applications as required by the design being implemented. Product terms that are used as logic are steered into a 5-input OR gate associated with the cluster. Product terms that used for control are steered either to the macrocell or I/O cell associated with the cluster. Table 3 shows the available functions for each of the five product terms in the cluster. The OR gate output connects to the associated I/O cell, providing a fast path for narrow combinatorial functions, and to the logic allocator.

Table 3. Individual PT Steering

Product Term	Logic	Control
PT <i>n</i>	Logic PT	Single PT for XOR/OR
PT <i>n</i> +1	Logic PT	Individual Clock (PT Clock)
PT <i>n</i> +2	Logic PT	Individual Initialization or Individual Clock Enable (PT Initialization/CE)
PT <i>n</i> +3	Logic PT	Individual Initialization (PT Initialization)
PT <i>n</i> +4	Logic PT	Individual OE (PTOE)

Cluster Allocator

The cluster allocator allows clusters to be steered to neighboring macrocells, thus allowing the creation of functions with more product terms. Table 4 shows which clusters can be steered to which macrocells. Used in this manner, the cluster allocator can be used to form functions of up to 20 product terms. Additionally, the cluster allocator accepts inputs from the wide steering logic. Using these inputs, functions up to 80 product terms can be created.

Table 4. Available Clusters for Each Macrocell

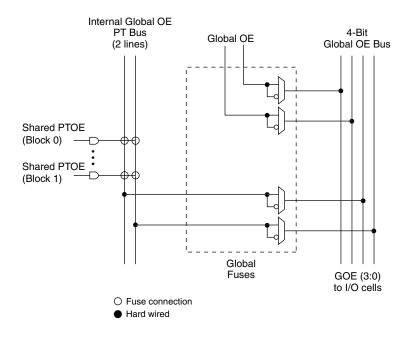
Macrocell	Available Clusters					
MO	_	C0	C1	C2		
M1	C0	C1	C2	C3		
M2	C1	C2	C3	C4		
M3	C2	C3	C4	C5		
M4	C3	C4	C5	C6		
M5	C4	C5	C6	C7		
M6	C5	C6	C7	C8		
M7	C6	C7	C8	C9		
M8	C7	C8	C9	C10		
M9	C8	C9	C10	C11		
M10	C9	C10	C11	C12		
M11	C10	C11	C12	C13		
M12	C11	C12	C13	C14		
M13	C12	C13	C14	C15		
M14	C13	C14	C15	—		
M15	C14	C15	_	_		

Wide Steering Logic

The wide steering logic allows the output of the cluster allocator n to be connected to the input of the cluster allocator n+4. Thus, cluster chains can be formed with up to 80 product terms, supporting wide product term functions and allowing performance to be increased through a single GLB implementation. Table 5 shows the product term chains.

I/O Cell	Available Macrocells
I/O 0	M0, M1, M2, M3, M4, M5, M6, M7
I/O 1	M1, M2, M3, M4, M5, M6, M7, M8
I/O 2	M2, M3, M4, M5, M6, M7, M8, M9
I/O 3	M3, M4, M5, M6, M7, M8, M9, M10
I/O 4	M4, M5, M6, M7, M8, M9, M10, M11
I/O 5	M5, M6, M7, M8, M9, M10, M11, M12
I/O 6	M6, M7, M8, M9, M10, M11, M12, M13
I/O 7	M7, M8, M9, M10, M11, M12, M13, M14
I/O 8	M8, M9, M10, M11, M12, M13, M14, M15
I/O 9	M9, M10, M11, M12, M13, M14, M15, M0
I/O 10	M10, M11, M12, M13, M14, M15, M0, M1
I/O 11	M11, M12, M13, M14, M15, M0, M1, M2
I/O 12	M12, M13, M14, M15, M0, M1, M2, M3
I/O 13	M13, M14, M15, M0, M1, M2, M3, M4
I/O 14	M14, M15, M0, M1, M2, M3, M4, M5
I/O 15	M15, M0, M1, M2, M3, M4, M5, M6

Table 7. ORP Combinations for I/O Blocks with 16 I/Os


Table 8. ORP Combinations for I/O Blocks with 4 I/Os

I/O Cell	Available Macrocells
I/O 0	M0, M1, M2, M3, M4, M5, M6, M7
I/O 1	M4, M5, M6, M7, M8, M9, M10, M11
I/O 2	M8, M9, M10, M11, M12, M13, M14, M15
I/O 3	M12, M13, M14, M15, M0, M1, M2, M3

Table 9. ORP Combinations for I/O Blocks with 10 I/Os

I/O Cell	Available Macrocells
I/O 0	M0, M1, M2, M3, M4, M5, M6, M7
I/O 1	M2, M3, M4, M5, M6, M7, M8, M9
I/O 2	M4, M5, M6, M7, M8, M9, M10, M11
I/O 3	M6, M7, M8, M9, M10, M11, M12, M13
I/O 4	M8, M9, M10, M11, M12, M13, M14, M15
I/O 5	M10, M11, M12, M13, M14, M15, M0, M1
I/O 6	M12, M13, M14, M15, M0, M1, M2, M3
I/O 7	M14, M15, M0, M1, M2, M3, M4, M5
I/O 8	M2, M3, M4, M5, M6, M7, M8, M9
I/O 9	M10, M11, M12, M13, M14, M15, M0, M1

Figure 10. Global OE Generation for ispMACH 4032

Zero Power/Low Power and Power Management

The ispMACH 4000 family is designed with high speed low power design techniques to offer both high speed and low power. With an advanced E^2 low power cell and non sense-amplifier design approach (full CMOS logic approach), the ispMACH 4000 family offers SuperFAST pin-to-pin speeds, while simultaneously delivering low standby power without needing any "turbo bits" or other power management schemes associated with a traditional sense-amplifier approach.

The zero power ispMACH 4000Z is based on the 1.8V ispMACH 4000C family. With innovative circuit design changes, the ispMACH 4000Z family is able to achieve the industry's "lowest static power".

IEEE 1149.1-Compliant Boundary Scan Testability

All ispMACH 4000 devices have boundary scan cells and are compliant to the IEEE 1149.1 standard. This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic notes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test node data to be captured and shifted out for verification. In addition, these devices can be linked into a board-level serial scan path for more board-level testing. The test access port operates with an LVCMOS interface that corresponds to the power supply voltage.

I/O Quick Configuration

To facilitate the most efficient board test, the physical nature of the I/O cells must be set before running any continuity tests. As these tests are fast, by nature, the overhead and time that is required for configuration of the I/Os' physical nature should be minimal so that board test time is minimized. The ispMACH 4000 family of devices allows this by offering the user the ability to quickly configure the physical nature of the I/O cells. This quick configuration takes milliseconds to complete, whereas it takes seconds for the entire device to be programmed. Lattice's ispVM[®] System programming software can either perform the quick configuration through the PC parallel port, or can generate the ATE or test vectors necessary for a third-party test system.

IEEE 1532-Compliant In-System Programming

Programming devices in-system provides a number of significant benefits including: rapid prototyping, lower inventory levels, higher quality and the ability to make in-field modifications. All ispMACH 4000 devices provide In-System Programming (ISP[™]) capability through the Boundary Scan Test Access Port. This capability has been implemented in a manner that ensures that the port remains complaint to the IEEE 1149.1 standard. By using IEEE 1149.1 as the communication interface through which ISP is achieved, users get the benefit of a standard, welldefined interface. All ispMACH 4000 devices are also compliant with the IEEE 1532 standard.

The ispMACH 4000 devices can be programmed across the commercial temperature and voltage range. The PCbased Lattice software facilitates in-system programming of ispMACH 4000 devices. The software takes the JEDEC file output produced by the design implementation software, along with information about the scan chain, and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain via the parallel port of a PC. Alternatively, the software can output files in formats understood by common automated test equipment. This equipment can then be used to program ispMACH 4000 devices during the testing of a circuit board.

User Electronic Signature

The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the device, stored in E²CMOS memory. The ispMACH 4000 device contains 32 UES bits that can be configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.

Security Bit

A programmable security bit is provided on the ispMACH 4000 devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.

Hot Socketing

The ispMACH 4000 devices are well-suited for applications that require hot socketing capability. Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The isp-MACH 4000 devices provide this capability for input voltages in the range 0V to 3.0V.

Density Migration

The ispMACH 4000 family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Supply Current, ispMACH 4000V/B/C

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
ispMACH 40	032V/B/C					
		Vcc = 3.3V	_	11.8		mA
ICC ^{1,2,3}	Operating Power Supply Current	Vcc = 2.5V		11.8		mA
		Vcc = 1.8V		1.8		mA
		Vcc = 3.3V		11.3		mA
ICC⁴	Standby Power Supply Current	Vcc = 2.5V		11.3		mA
		Vcc = 1.8V		1.3		mA
ispMACH 40	064V/B/C					
		Vcc = 3.3V		12		mA
ICC ^{1,2,3}	Operating Power Supply Current	Vcc = 2.5V		12		mA
		Vcc = 1.8V		2		mA
		Vcc = 3.3V		11.5		mA
ICC⁵	Standby Power Supply Current	Vcc = 2.5V		11.5		mA
		Vcc = 1.8V		1.5		mA
ispMACH 4 ⁻	128V/B/C					<u> </u>
		Vcc = 3.3V	_	12		mA
ICC ^{1,2,3}	Operating Power Supply Current	Vcc = 2.5V		12		mA
		Vcc = 1.8V		2		mA
		Vcc = 3.3V		11.5		mA
ICC⁴	Standby Power Supply Current	Vcc = 2.5V		11.5		mA
		Vcc = 1.8V		1.5		mA
ispMACH 42	256V/B/C					
		Vcc = 3.3V		12.5	_	mA
I _{CC} ^{1,2,3}	Operating Power Supply Current	Vcc = 2.5V		12.5		mA
00		Vcc = 1.8V		2.5		mA
		Vcc = 3.3V		12		mA
l _{CC} ⁴	Standby Power Supply Current	Vcc = 2.5V		12		mA
00		Vcc = 1.8V		2		mA
ispMACH 43	384V/B/C	1.01		2		1107
		Vcc = 3.3V		13.5		mA
I _{CC} ^{1,2,3}	Operating Power Supply Current	Vcc = 0.5V Vcc = 2.5V		13.5		mA
'CC	Operating Tower Supply Surrent	Vcc = 2.5V Vcc = 1.8V		3.5		mA
		Vcc = 3.3V		12.5		mA
	Standby Power Supply Current	Vcc = 3.5V Vcc = 2.5V		12.5		mA
I _{CC} ⁴		Vcc = 2.5V Vcc = 1.8V		2.5		mA
ispMACH 4	512V/R/C	VCC - 1.0V		2.0		
		Vcc = 3.3V		14		
ı 1.2.3	Operating Power Supply Current			14		mA mA
I _{CC} ^{1,2,3}	Operating Power Supply Current	Vcc = 2.5V		14		mA
		Vcc = 1.8V	—	4		mA

Over Recommended Operating Conditions

Supply Current, ispMACH 4000Z (Cont.)

Over Recommended	Operating	Conditions
-------------------------	-----------	------------

Symbol	Parameter	Min.	Тур.	Max.	Units	
ispMACH 4	256ZC			L		
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	341	—	μΑ
ICC ^{1, 2, 3, 5}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 70^{\circ}C$	_	361	—	μA
		$Vcc = 1.9V, T_A = 85^{\circ}C$	—	372	—	μA
		$Vcc = 1.9V, T_A = 125^{\circ}C$	_	468	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	_	13	—	μA
ICC ^{4, 5}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 70^{\circ}C$	_	32	55	μA
	Standby I ower Supply Surrent	$Vcc = 1.9V, T_A = 85^{\circ}C$	—	43	90	μA
		$Vcc = 1.9V, T_A = 125^{\circ}C$	_	135	_	μA

 1. $T_A = 25^{\circ}C$, frequency = 1.0 MHz.

 2. Device configured with 16-bit counters.

 3. I_{CC} varies with specific device configuration and operating frequency.

 4. $V_{CCO} = 3.6V$, $V_{IN} = 0V$ or V_{CCO} , bus maintenance turned off. V_{IN} above V_{CCO} will add transient current above the specified standby I_{CC} .

 5. Includes V_{CCO} current without output loading.

ispMACH 4000V/B/C External Switching Characteristics

		-25		-2	27	-	3	-35		
Parameter	Description ^{1, 2, 3}	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PD}	5-PT bypass combinatorial propagation delay		2.5		2.7	_	3.0	_	3.5	ns
t _{PD_MC}	20-PT combinatorial propagation delay through macrocell		3.2		3.5	_	3.8	_	4.2	ns
t _S	GLB register setup time before clock	1.8		1.8		2.0	—	2.0	_	ns
t _{ST}	GLB register setup time before clock with T-type register	2.0	_	2.0	_	2.2	_	2.2	_	ns
t _{SIR}	GLB register setup time before clock, input register path	0.7	_	1.0	_	1.0	_	1.0	—	ns
t _{SIRZ}	GLB register setup time before clock with zero hold	1.7	_	2.0	_	2.0	—	2.0	_	ns
t _H	GLB register hold time after clock	0.0	—	0.0	—	0.0	—	0.0	—	ns
t _{HT}	GLB register hold time after clock with T-type register	0.0	_	0.0	_	0.0	_	0.0	_	ns
t _{HIR}	GLB register hold time after clock, input register path	0.9	_	1.0	_	1.0	_	1.0	_	ns
t _{HIRZ}	GLB register hold time after clock, input register path with zero hold	0.0	_	0.0	_	0.0	_	0.0	_	ns
t _{CO}	GLB register clock-to-output delay	_	2.2	_	2.7	—	2.7	—	2.7	ns
t _R	External reset pin to output delay	_	3.5		4.0	—	4.4	—	4.5	ns
t _{RW}	External reset pulse duration	1.5	—	1.5	—	1.5	—	1.5	-	ns
t _{PTOE/DIS}	Input to output local product term output enable/disable		4.0		4.5	_	5.0	_	5.5	ns
t _{GPTOE/DIS}	Input to output global product term output enable/disable		5.0		6.5	_	8.0	_	8.0	ns
t _{GOE/DIS}	Global OE input to output enable/disable	_	3.0	—	3.5	_	4.0	—	4.5	ns
t _{CW}	Global clock width, high or low	1.1		1.3		1.3	—	1.3		ns
t _{GW}	Global gate width low (for low transparent) or high (for high transparent)	1.1	_	1.3	_	1.3	—	1.3	_	ns
t _{WIR}	Input register clock width, high or low	1.1		1.3	_	1.3	—	1.3	_	ns
f _{MAX} ⁴	Clock frequency with internal feedback	_	400	—	333	—	322		322	MHz
f _{MAX} (Ext.)	Clock frequency with external feedback, $[1/(t_{S} + t_{CO})]$		250		222	_	212	_	212	MHz

Over Recommended Operating Conditions

 1. Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate other standards.
 Timing v.3.2

2. Measured using standard switching circuit, assuming GRP loading of 1 and 1 output switching.

3. Pulse widths and clock widths less than minimum will cause unknown behavior.

4. Standard 16-bit counter using GRP feedback.

ispMACH 4000Z External Switching Characteristics (Cont.)

		-4	1 5	-	5	-7	75	
Parameter	Description ^{1, 2, 3}	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PD}	5-PT bypass combinatorial propagation delay		4.5	—	5.0		7.5	ns
t _{PD_MC}	20-PT combinatorial propagation delay through macrocell		5.8	_	6.0	_	8.0	ns
t _S	GLB register setup time before clock	2.9	—	3.0		4.5		ns
t _{ST}	GLB register setup time before clock with T- type register	3.1	—	3.2	_	4.7	_	ns
t _{SIR}	GLB register setup time before clock, input register path	1.3	—	1.3	_	1.4	_	ns
t _{SIRZ}	GLB register setup time before clock with zero hold	2.6	_	2.6	_	2.7	_	ns
t _H	GLB register hold time after clock	0.0	—	0.0		0.0		ns
t _{HT}	GLB register hold time after clock with T-type register	0.0	—	0.0	_	0.0	_	ns
t _{HIR}	GLB register hold time after clock, input register path	1.3	—	1.3	—	1.3	—	ns
t _{HIRZ}	GLB register hold time after clock, input register path with zero hold	0.0	—	0.0	_	0.0	_	ns
t _{CO}	GLB register clock-to-output delay		3.8	—	4.2		4.5	ns
t _R	External reset pin to output delay	_	7.5		7.5		9.0	ns
t _{RW}	External reset pulse duration	2.0	—	2.0		4.0		ns
t _{PTOE/DIS}	Input to output local product term output enable/disable	_	8.2	_	8.5	_	9.0	ns
t _{GPTOE/DIS}	Input to output global product term output enable/disable	_	10.0	—	10.0	_	10.5	ns
t _{GOE/DIS}	Global OE input to output enable/disable		5.5	—	6.0	—	7.0	ns
t _{CW}	Global clock width, high or low	1.8	—	2.0		2.8		ns
t _{GW}	Global gate width low (for low transparent) or high (for high transparent)	1.8	—	2.0	—	2.8	—	ns
t _{WIR}	Input register clock width, high or low	1.8		2.0		2.8		ns
f _{MAX} ⁴	Clock frequency with internal feedback		200		200		168	MHz
f _{MAX} (Ext.)	clock frequency with external feedback, [1 / $(t_{\rm S} + t_{\rm CO})$]	—	150	—	139	—	111	MHz

Over Recommended Operating Conditions

 1. Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate other standards.
 Timing v.2.2

2. Measured using standard switching GRP loading of 1 and 1 output switching.

3. Pulse widths and clock widths less than minimum will cause unknown behavior.

4. Standard 16-bit counter using GRP feedback.

ispMACH 4000Z Internal Timing Parameters (Cont.)

Over Recommended	Operating	Conditions
-------------------------	-----------	------------

		-35		-37		-42		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{GPTOE}	Global PT OE Delay	_	1.9	_	2.35	_	2.60	ns
t _{PTOE}	Macrocell PT OE Delay		2.4	_	3.35		2.60	ns

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for further details.

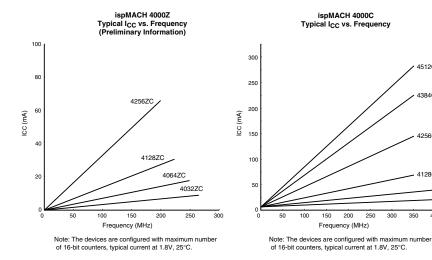
Timing v.2.2

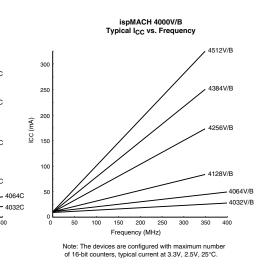
ispMACH 4000Z Internal Timing Parameters (Cont.)

		-4	1 5	-	5	-75		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
In/Out Delay	ys	I			l	l		1
t _{IN}	Input Buffer Delay	—	0.95	_	1.25	—	1.80	ns
t _{GOE}	Global OE Pin Delay	—	3.00	_	3.50	—	4.30	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay	—	1.95	_	2.05	—	2.15	ns
t _{BUF}	Delay through Output Buffer	—	1.10	_	1.00		1.30	ns
t _{EN}	Output Enable Time	—	2.50	—	2.50	—	2.70	ns
t _{DIS}	Output Disable Time	—	2.50	—	2.50	—	2.70	ns
Routing/GL	B Delays							
t _{route}	Delay through GRP	—	2.25	—	2.05	—	2.50	ns
t _{MCELL}	Macrocell Delay	—	0.65		0.65	—	1.00	ns
t _{INREG}	Input Buffer to Macrocell Register Delay	—	1.00		1.00	—	1.00	ns
t _{FBK}	Internal Feedback Delay	—	0.35	_	0.05	_	0.05	ns
t _{PDb}	5-PT Bypass Propagation Delay	—	0.20		0.70	—	1.90	ns
t _{PDi}	Macrocell Propagation Delay	—	0.45	_	0.65		1.00	ns
Register/La	tch Delays							
t _S	D-Register Setup Time (Global Clock)	1.00	—	1.10		1.35	—	ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	2.10	—	1.90		2.45	_	ns
t _{ST}	T-Register Setup Time (Global Clock)		—	1.30		1.55	-	ns
t _{ST_PT}	T-register Setup Time (Product Term Clock)	2.30	—	2.10		2.75	_	ns
t _H	D-Register Hold Time	1.90	_	1.90		3.15	_	ns
t _{HT}	T-Resister Hold Time	1.90	-	1.90	_	3.15	-	ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	1.30	_	1.10		0.75	_	ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45		1.45	_	ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.30	—	1.50	—	1.95	—	ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	1.00	_	1.00		1.18	_	ns
t _{COi}	Register Clock to Output/Feedback MUX Time	_	0.75		1.15	_	1.05	ns
t _{CES}	Clock Enable Setup Time	2.00	—	2.00	—	2.00	—	ns
t _{CEH}	Clock Enable Hold Time	0.00	—	0.00	—	0.00	—	ns
t _{SL}	Latch Setup Time (Global Clock)	1.00	—	1.00	—	1.65	—	ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	2.10	—	1.90	—	2.15	—	ns
t _{HL}	Latch Hold Time	2.00	—	2.00	—	1.17	—	ns
t _{GOi}	Latch Gate to Output/Feedback MUX Time	—	0.33	—	0.33	—	0.33	ns
t _{PDLi}	Propagation Delay through Transparent Latch to Output/ Feedback MUX	—	0.25	—	0.25	—	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	—	0.97		0.97	_	0.28	ns
t _{SRR}	Asynchronous Reset or Set Recovery Delay		1.80		1.80	_	1.67	ns
Control Del	ays							
t _{BCLK}	GLB PT Clock Delay	—	1.55	—	1.55	_	1.25	ns
t _{PTCLK}	Macrocell PT Clock Delay	—	1.55		1.55	—	1.25	ns
t _{BSR}	GLB PT Set/Reset Delay	—	1.83		1.83	—	1.83	ns
t _{PTSR}	Macrocell PT Set/Reset Delay	—	1.83		1.83	—	2.72	ns
t _{GPTOE}	Global PT OE Delay	—	4.30		4.20	—	3.50	ns

Over Recommended Operating Conditions

4512C


4384C


4256C

- 4128C

350 400

Power Consumption

Power Estimation Coefficients¹

Device	A	В
ispMACH 4032V/B	11.3	0.010
ispMACH 4032C	1.3	0.010
ispMACH 4064V/B	11.5	0.010
ispMACH 4064C	1.5	0.010
ispMACH 4128V/B	11.5	0.011
ispMACH 4128C	1.5	0.011
ispMACH 4256V/B	12	0.011
ispMACH 4256C	2	0.011
ispMACH 4384V/B	12.5	0.013
ispMACH 4384C	2.5	0.013
ispMACH 4512V/B	13	0.013
ispMACH 4512C	3	0.013
ispMACH 4032ZC	0.010	0.010
ispMACH 4064ZC	0.011	0.010
ispMACH 4128ZC	0.012	0.010
ispMACH 4256ZC	0.013	0.010

1. For further information about the use of these coefficients, refer to TN1005, Power Estimation in ispMACH 4000V/B/C/Z Devices.

ispMACH 4032V/B/C and 4064V/B/C Logic Signal Connections: 44-Pin TQFP (Cont.)

		ispMACH 4032V/B/C		ispMACH	4064V/B/C
Pin Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
42	0	A2	A^2	A4	A^2
43	0	A3	A^3	A6	A^3
44	0	A4	A^4	A8	A^4

ispMACH 4032V/B/C/Z and 4064V/B/C/Z Logic Signal Connections: 48-Pin TQFP

Pin	Bank	ispMACH 4	032V/B/C/Z	ispMACH 4	4064V/B/C	ispMACH 4	4064Z
Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
1	-	TDI	-	TDI	-	TDI	-
2	0	A5	A^5	A10	A^5	A8	A^5
3	0	A6	A^6	A12	A^6	A10	A^6
4	0	A7	A^7	A14	A^7	A11	A^7
5	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
6	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
7	0	A8	A^8	B0	B^0	B15	B^7
8	0	A9	A^9	B2	B^1	B12	B^6
9	0	A10	A^10	B4	B^2	B10	B^5
10	0	A11	A^11	B6	B^3	B8	B^4
11	-	ТСК	-	TCK	-	TCK	-
12	-	VCC	-	VCC	-	VCC	-
13	-	GND	-	GND	-	GND	-
14	0	A12	A^12	B8	B^4	B6	B^3
15	0	A13	A^13	B10	B^5	B4	B^2
16	0	A14	A^14	B12	B^6	B2	B^1
17	0	A15	A^15	B14	B^7	B0	B^0
18	0	CLK1/I	-	CLK1/I	-	CLK1/I	-
19	1	CLK2/I	-	CLK2/I	-	CLK2/I	-
20	1	B0	B^0	C0	C^0	C0	C^0
21	1	B1	B^1	C2	C^1	C1	C^1
22	1	B2	B^2	C4	C^2	C2	C^2
23	1	B3	B^3	C6	C^3	C4	C^3
24	1	B4	B^4	C8	C^4	C6	C^4
25	-	TMS	-	TMS	-	TMS	-
26	1	B5	B^5	C10	C^5	C8	C^5
27	1	B6	B^6	C12	C^6	C10	C^6
28	1	B7	B^7	C14	C^7	C11	C^7
29	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
30	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
31	1	B8	B^8	D0	D^0	D15	D^7
32	1	B9	B^9	D2	D^1	D12	D^6

ispMACH 4128V/B/C Logic Signal Connections: 128-Pin TQFP (Cont.)

		ispMACH 4128V/B/C				
Pin Number	Bank Number	GLB/MC/Pad	ORP			
62	1	E10	E^8			
63	1	E12	E^9			
64	1	E14	E^11			
65	1	GND	-			
66	1	TMS	-			
67	1	VCCO (Bank 1)	-			
68	1	F0	F^0			
69	1	F1	F^1			
70	1	F2	F^2			
71	1	F4	F^3			
72	1	F5	F^4			
73	1	F6	F^5			
74	1	GND (Bank 1)	-			
75	1	F8	F^6			
76	1	F9	F^7			
77	1	F10	F^8			
78	1	F12	F^9			
79	1	F13	F^10			
80	1	F14	F^11			
81	1	VCCO (Bank 1)	-			
82	1	G14	G^11			
83	1	G13	G^10			
84	1	G12	G^9			
85	1	G10	G^8			
86	1	G9	G^7			
87	1	G8	G^6			
88	1	GND (Bank 1)	-			
89	1	G6	G^5			
90	1	G5	G^4			
91	1	G4	G^3			
92	1	G2	G^2			
93	1	G0	G^0			
94	1	VCCO (Bank 1)	-			
95	1	TDO	-			
96	1	VCC	-			
97	1	GND	-			
98	1	H14	H^11			
99	1	H13	H^10			
100	1	H12	H^9			
101	1	H10	H^8			
102	1	H9	H^7			
103	1	H8	H^6			
104	1	GND (Bank 1)	-			

ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C Logic Signal Connections: 256-Ball ftBGA/fpBGA (Cont.)

Ball	I/O	ispMACH 4256 128-I/O	V/B/C	ispMACH 4256 160-I/O	V/B/C	ispMACH 4384	V/B/C	ispMACH 4512	V/B/C
Number	Bank	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
E7	0	NC	-	B1	B^1	F8	F^4	D12	D^3
A3	0	B0	B^0	B2	B^2	B0	B^0	B0	B^0
F7	0	B2	B^1	B4	B^3	B2	B^1	B2	B^1
B4	0	B4	B^2	B6	B^4	B4	B^2	B4	B^2
C5	0	B6	B^3	B8	B^5	B6	B^3	B6	B^3
A2	0	B8	B^4	B9	B^6	B8	B^4	B8	B^4
E6	0	B10	B^5	B10	B^7	B10	B^5	B10	B^5
B3	0	B12	B^6	B12	B^8	B12	B^6	B12	B^6
C4	0	B14	B^7	B14	B^9	B14	B^7	B14	B^7
D4	0	NC	-	NC	-	D10	D^5	F0	F^0
E5	0	NC	-	NC	-	D8	D^4	F2	F^1
-	-	VCC	-	VCC	-	VCC	-	VCC	-
-	-	-	-	-	-	GND	-	GND	-
-	0	-	-	-	-	GND (Bank 0)	-	GND (Bank 0)	-

Note: VCC, VCCO and GND are tied together to their respective common signal on the package substrate. See Power Supply and NC Connections table for VCC/ VCCO/GND pin definitions.

ispMACH 4000C (1.8V) Commercial Devices (Cont.)

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4128C-27T128C	128	1.8	2.7	TQFP	128	92	С
	LC4128C-5T128C	128	1.8	5	TQFP	128	92	С
041000	LC4128C-75T128C	128	1.8	7.5	TQFP	128	92	С
LC4128C	LC4128C-27T100C	128	1.8	2.7	TQFP	100	64	С
	LC4128C-5T100C	128	1.8	5	TQFP	100	64	С
	LC4128C-75T100C	128	1.8	7.5	TQFP	100	64	С
	LC4256C-3FT256AC	256	1.8	3	ftBGA	256	128	С
	LC4256C-5FT256AC	256	1.8	5	ftBGA	256	128	С
	LC4256C-75FT256AC	256	1.8	7.5	ftBGA	256	128	С
	LC4256C-3FT256BC	256	1.8	3	ftBGA	256	160	С
	LC4256C-5FT256BC	256	1.8	5	ftBGA	256	160	С
	LC4256C-75FT256BC	256	1.8	7.5	ftBGA	256	160	С
	LC4256C-3F256AC1	256	1.8	3	fpBGA	256	128	С
	LC4256C-5F256AC1	256	1.8	5	fpBGA	256	128	С
1.0.40500	LC4256C-75F256AC1	256	1.8	7.5	fpBGA	256	128	С
LC4256C	LC4256C-3F256BC1	256	1.8	3	fpBGA	256	160	С
	LC4256C-5F256BC1	256	1.8	5	fpBGA	256	160	С
	LC4256C-75F256BC1	256	1.8	7.5	fpBGA	256	160	С
	LC4256C-3T176C	256	1.8	3	TQFP	176	128	С
	LC4256C-5T176C	256	1.8	5	TQFP	176	128	С
	LC4256C-75T176C	256	1.8	7.5	TQFP	176	128	С
	LC4256C-3T100C	256	1.8	3	TQFP	100	64	С
	LC4256C-5T100C	256	1.8	5	TQFP	100	64	С
	LC4256C-75T100C	256	1.8	7.5	TQFP	100	64	С
	LC4384C-35FT256C	384	1.8	3.5	ftBGA	256	192	С
	LC4384C-5FT256C	384	1.8	5	ftBGA	256	192	С
	LC4384C-75FT256C	384	1.8	7.5	ftBGA	256	192	С
	LC4384C-35F256C1	384	1.8	3.5	fpBGA	256	192	С
LC4384C	LC4384C-5F256C1	384	1.8	5	fpBGA	256	192	С
	LC4384C-75F256C1	384	1.8	7.5	fpBGA	256	192	С
	LC4384C-35T176C	384	1.8	3.5	TQFP	176	128	С
	LC4384C-5T176C	384	1.8	5	TQFP	176	128	С
	LC4384C-75T176C	384	1.8	7.5	TQFP	176	128	С
	LC4512C-35FT256C	512	1.8	3.5	ftBGA	256	208	С
	LC4512C-5FT256C	512	1.8	5	ftBGA	256	208	С
	LC4512C-75FT256C	512	1.8	7.5	ftBGA	256	208	С
	LC4512C-35F256C1	512	1.8	3.5	fpBGA	256	208	С
LC4512C	LC4512C-5F256C1	512	1.8	5	fpBGA	256	208	С
	LC4512C-75F256C1	512	1.8	7.5	fpBGA	256	208	С
	LC4512C-35T176C	512	1.8	3.5	TQFP	176	128	С
	LC4512C-5T176C	512	1.8	5	TQFP	176	128	С
	LC4512C-75T176C	512	1.8	7.5	TQFP	176	128	С

1. Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

Family	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032B-5T48I	32	2.5	5	TQFP	48	32	
	LC4032B-75T48I	32	2.5	7.5	TQFP	48	32	I
	LC4032B-10T48I	32	2.5	10	TQFP	48	32	
LC4032B	LC4032B-5T44I	32	2.5	5	TQFP	44	30	I
	LC4032B-75T44I	32	2.5	7.5	TQFP	44	30	I
	LC4032B-10T44I	32	2.5	10	TQFP	44	30	I
	LC4064B-5T100I	64	2.5	5	TQFP	100	64	I
	LC4064B-75T100I	64	2.5	7.5	TQFP	100	64	I
	LC4064B-10T100I	64	2.5	10	TQFP	100	64	I
	LC4064B-5T48I	64	2.5	5	TQFP	48	32	I
LC4064B	LC4064B-75T48I	64	2.5	7.5	TQFP	48	32	
	LC4064B-10T48I	64	2.5	10	TQFP	48	32	
	LC4064B-5T44I	64	2.5	5	TQFP	44	30	
	LC4064B-75T44I	64	2.5	7.5	TQFP	44	30	I
	LC4064B-10T44I	64	2.5	10	TQFP	44	30	
	LC4128B-5T128I	128	2.5	5	TQFP	128	92	
	LC4128B-75T128I	128	2.5	7.5	TQFP	128	92	I
	LC4128B-10T128I	128	2.5	10	TQFP	128	92	
LC4128B	LC4128B-5T100I	128	2.5	5	TQFP	100	64	
	LC4128B-75T100I	128	2.5	7.5	TQFP	100	64	I
	LC4128B-10T100I	128	2.5	10	TQFP	100	64	
	LC4256B-5FT256AI	256	2.5	5	ftBGA	256	128	I
	LC4256B-75FT256AI	256	2.5	7.5	ftBGA	256	128	I
	LC4256B-10FT256AI	256	2.5	10	ftBGA	256	128	
	LC4256B-5FT256BI	256	2.5	5	ftBGA	256	160	I
	LC4256B-75FT256BI	256	2.5	7.5	ftBGA	256	160	I
	LC4256B-10FT256BI	256	2.5	10	ftBGA	256	160	I
	LC4256B-5F256AI1	256	2.5	5	fpBGA	256	128	I
	LC4256B-75F256AI1	256	2.5	7.5	fpBGA	256	128	I
L C 4056D	LC4256B-10F256AI1	256	2.5	10	fpBGA	256	128	I
LC4256B	LC4256B-5F256BI1	256	2.5	5	fpBGA	256	160	I
	LC4256B-75F256BI1	256	2.5	7.5	fpBGA	256	160	I
	LC4256B-10F256BI1	256	2.5	10	fpBGA	256	160	
	LC4256B-5T176I	256	2.5	5	TQFP	176	128	I
	LC4256B-75T176I	256	2.5	7.5	TQFP	176	128	I
	LC4256B-10T176I	256	2.5	10	TQFP	176	128	
	LC4256B-5T100I	256	2.5	5	TQFP	100	64	I
	LC4256B-75T100I	256	2.5	7.5	TQFP	100	64	I
	LC4256B-10T100I	256	2.5	10	TQFP	100	64	I

ispMACH 4000B (2.5V) Industrial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4384B-35FTN256C	384	2.5	3.5	Lead-Free ftBGA	256	192	С
	LC4384B-5FTN256C	384	2.5	5	Lead-Free ftBGA	256	192	С
	LC4384B-75FTN256C	384	2.5	7.5	Lead-Free ftBGA	256	192	С
	LC4384B-35FN256C1	384	2.5	3.5	Lead-Free fpBGA	256	192	С
LC4384B	LC4384B-5FN256C1	384	2.5	5	Lead-Free fpBGA	256	192	С
	LC4384B-75FN256C1	384	2.5	7.5	Lead-Free fpBGA	256	192	С
	LC4384B-35TN176C	384	2.5	3.5	Lead-Free TQFP	176	128	С
	LC4384B-5TN176C	384	2.5	5	Lead-Free TQFP	176	128	С
	LC4384B-75TN176C	384	2.5	7.5	Lead-Free TQFP	176	128	С
	LC4512B-35FTN256C	512	2.5	3.5	Lead-Free ftBGA	256	208	С
	LC4512B-5FTN256C	512	2.5	5	Lead-Free ftBGA	256	208	С
	LC4512B-75FTN256C	512	2.5	7.5	Lead-Free ftBGA	256	208	С
	LC4512B-35FN256C1	512	2.5	3.5	Lead-Free fpBGA	256	208	С
LC4512B	LC4512B-5FN256C1	512	2.5	5	Lead-Free fpBGA	256	208	С
	LC4512B-75FN256C1	512	2.5	7.5	Lead-Free fpBGA	256	208	С
	LC4512B-35TN176C	512	2.5	3.5	Lead-Free TQFP	176	128	С
	LC4512B-5TN176C	512	2.5	5	Lead-Free TQFP	176	128	С
	LC4512B-75TN176C	512	2.5	7.5	Lead-Free TQFP	176	128	С

ispMACH 4000B (2.5V) Lead-Free Commercial Devices (Cont.)

1. Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000B (2.5V) Lead-Free Industrial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032B-5TN48I	32	2.5	5	Lead-Free TQFP	48	32	I
1.0.40000	LC4032B-75TN48I	32	2.5	7.5	Lead-Free TQFP	48	32	I
	LC4032B-10TN48I	32	2.5	10	Lead-Free TQFP	48	32	I
LC4032B	LC4032B-5TN44I	32	2.5	5	Lead-Free TQFP	44	30	I
	LC4032B-75TN44I	32	2.5	7.5	Lead-Free TQFP	44	30	I
	LC4032B-10TN44I	32	2.5	10	Lead-Free TQFP	44	30	I
	LC4064B-5TN100I	64	2.5	5	Lead-Free TQFP	100	64	I
	LC4064B-75TN100I	64	2.5	7.5	Lead-Free TQFP	100	64	I
	LC4064B-10TN100I	64	2.5	10	Lead-Free TQFP	100	64	I
	LC4064B-5TN48I	64	2.5	5	Lead-Free TQFP	48	32	I
LC4064B	LC4064B-75TN48I	64	2.5	7.5	Lead-Free TQFP	48	32	I
	LC4064B-10TN48I	64	2.5	10	Lead-Free TQFP	48	32	I
	LC4064B-5TN44I	64	2.5	5	Lead-Free TQFP	44	30	I
	LC4064B-75TN44I	64	2.5	7.5	Lead-Free TQFP	44	30	I
	LC4064B-10TN44I	64	2.5	10	Lead-Free TQFP	44	30	I

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
LC4032V	LC4032V-25TN48C	32	3.3	2.5	Lead-free TQFP	48	32	С
	LC4032V-5TN48C	32	3.3	5	Lead-free TQFP	48	32	С
	LC4032V-75TN48C	32	3.3	7.5	Lead-free TQFP	48	32	С
	LC4032V-25TN44C	32	3.3	2.5	Lead-free TQFP	44	30	С
	LC4032V-5TN44C	32	3.3	5	Lead-free TQFP	44	30	С
	LC4032V-75TN44C	32	3.3	7.5	Lead-free TQFP	44	30	С
LC4064V	LC4064V-25TN100C	64	3.3	2.5	Lead-free TQFP	100	64	С
	LC4064V-5TN100C	64	3.3	5	Lead-free TQFP	100	64	С
	LC4064V-75TN100C	64	3.3	7.5	Lead-free TQFP	100	64	С
	LC4064V-25TN48C	64	3.3	2.5	Lead-free TQFP	48	32	С
	LC4064V-5TN48C	64	3.3	5	Lead-free TQFP	48	32	С
	LC4064V-75TN48C	64	3.3	7.5	Lead-free TQFP	48	32	С
	LC4064V-25TN44C	64	3.3	2.5	Lead-free TQFP	44	30	С
	LC4064V-5TN44C	64	3.3	5	Lead-free TQFP	44	30	С
	LC4064V-75TN44C	64	3.3	7.5	Lead-free TQFP	44	30	С
LC4128V	LC4128V-27TN144C	128	3.3	2.7	Lead-free TQFP	144	96	С
	LC4128V-5TN144C	128	3.3	5	Lead-free TQFP	144	96	С
	LC4128V-75TN144C	128	3.3	7.5	Lead-free TQFP	144	96	С
	LC4128V-27TN128C	128	3.3	2.7	Lead-free TQFP	128	92	С
	LC4128V-5TN128C	128	3.3	5	Lead-free TQFP	128	92	С
	LC4128V-75TN128C	128	3.3	7.5	Lead-free TQFP	128	92	С
	LC4128V-27TN100C	128	3.3	2.7	Lead-free TQFP	100	64	С
	LC4128V-5TN100C	128	3.3	5	Lead-free TQFP	100	64	С
	LC4128V-75TN100C	128	3.3	7.5	Lead-free TQFP	100	64	С

ispMACH 4000V (3.3V) Lead-Free Commercial Devices