

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	16
Number of Macrocells	256
Number of Gates	-
Number of I/O	96
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4256v-5tn144c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product Term Allocator

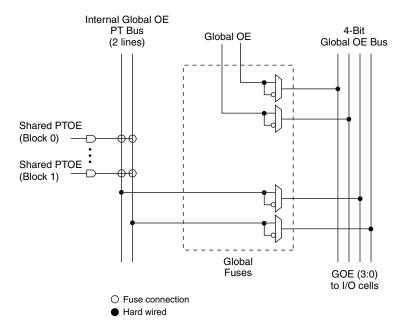
The product term allocator assigns product terms from a cluster to either logic or control applications as required by the design being implemented. Product terms that are used as logic are steered into a 5-input OR gate associated with the cluster. Product terms that used for control are steered either to the macrocell or I/O cell associated with the cluster. Table 3 shows the available functions for each of the five product terms in the cluster. The OR gate output connects to the associated I/O cell, providing a fast path for narrow combinatorial functions, and to the logic allocator.

Table 3. Individual PT Steering

Product Term	Logic	Control
PT <i>n</i>	Logic PT	Single PT for XOR/OR
PT <i>n</i> +1	Logic PT	Individual Clock (PT Clock)
PT <i>n</i> +2	Logic PT	Individual Initialization or Individual Clock Enable (PT Initialization/CE)
PT <i>n</i> +3	Logic PT	Individual Initialization (PT Initialization)
PT <i>n</i> +4	Logic PT	Individual OE (PTOE)

Cluster Allocator

The cluster allocator allows clusters to be steered to neighboring macrocells, thus allowing the creation of functions with more product terms. Table 4 shows which clusters can be steered to which macrocells. Used in this manner, the cluster allocator can be used to form functions of up to 20 product terms. Additionally, the cluster allocator accepts inputs from the wide steering logic. Using these inputs, functions up to 80 product terms can be created.


Table 4. Available Clusters for Each Macrocell

Macrocell	Available Clusters					
M0	_	C0	C1	C2		
M1	C0	C1	C2	C3		
M2	C1	C2	C3	C4		
M3	C2	C3	C4	C5		
M4	C3	C4	C5	C6		
M5	C4	C5	C6	C7		
M6	C5	C6	C7	C8		
M7	C6	C7	C8	C9		
M8	C7	C8	C9	C10		
M9	C8	C9	C10	C11		
M10	C9	C10	C11	C12		
M11	C10	C11	C12	C13		
M12	C11	C12	C13	C14		
M13	C12	C13	C14	C15		
M14	C13	C14	C15	_		
M15	C14	C15	_	_		

Wide Steering Logic

The wide steering logic allows the output of the cluster allocator n to be connected to the input of the cluster allocator n+4. Thus, cluster chains can be formed with up to 80 product terms, supporting wide product term functions and allowing performance to be increased through a single GLB implementation. Table 5 shows the product term chains.

Figure 10. Global OE Generation for ispMACH 4032

Zero Power/Low Power and Power Management

The ispMACH 4000 family is designed with high speed low power design techniques to offer both high speed and low power. With an advanced E² low power cell and non sense-amplifier design approach (full CMOS logic approach), the ispMACH 4000 family offers SuperFAST pin-to-pin speeds, while simultaneously delivering low standby power without needing any "turbo bits" or other power management schemes associated with a traditional sense-amplifier approach.

The zero power ispMACH 4000Z is based on the 1.8V ispMACH 4000C family. With innovative circuit design changes, the ispMACH 4000Z family is able to achieve the industry's "lowest static power".

IEEE 1149.1-Compliant Boundary Scan Testability

All ispMACH 4000 devices have boundary scan cells and are compliant to the IEEE 1149.1 standard. This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic notes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test node data to be captured and shifted out for verification. In addition, these devices can be linked into a board-level serial scan path for more board-level testing. The test access port operates with an LVCMOS interface that corresponds to the power supply voltage.

I/O Quick Configuration

To facilitate the most efficient board test, the physical nature of the I/O cells must be set before running any continuity tests. As these tests are fast, by nature, the overhead and time that is required for configuration of the I/Os' physical nature should be minimal so that board test time is minimized. The ispMACH 4000 family of devices allows this by offering the user the ability to quickly configure the physical nature of the I/O cells. This quick configuration takes milliseconds to complete, whereas it takes seconds for the entire device to be programmed. Lattice's ispVM[®] System programming software can either perform the quick configuration through the PC parallel port, or can generate the ATE or test vectors necessary for a third-party test system.

IEEE 1532-Compliant In-System Programming

Programming devices in-system provides a number of significant benefits including: rapid prototyping, lower inventory levels, higher quality and the ability to make in-field modifications. All ispMACH 4000 devices provide In-System Programming (ISP™) capability through the Boundary Scan Test Access Port. This capability has been implemented in a manner that ensures that the port remains complaint to the IEEE 1149.1 standard. By using IEEE 1149.1 as the communication interface through which ISP is achieved, users get the benefit of a standard, well-defined interface. All ispMACH 4000 devices are also compliant with the IEEE 1532 standard.

The ispMACH 4000 devices can be programmed across the commercial temperature and voltage range. The PC-based Lattice software facilitates in-system programming of ispMACH 4000 devices. The software takes the JEDEC file output produced by the design implementation software, along with information about the scan chain, and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain via the parallel port of a PC. Alternatively, the software can output files in formats understood by common automated test equipment. This equipment can then be used to program ispMACH 4000 devices during the testing of a circuit board.

User Electronic Signature

The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the device, stored in E²CMOS memory. The ispMACH 4000 device contains 32 UES bits that can be configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.

Security Bit

A programmable security bit is provided on the ispMACH 4000 devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.

Hot Socketing

The ispMACH 4000 devices are well-suited for applications that require hot socketing capability. Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The isp-MACH 4000 devices provide this capability for input voltages in the range 0V to 3.0V.

Density Migration

The ispMACH 4000 family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

ispMACH 4000Z External Switching Characteristics (Cont.)

Over Recommended Operating Conditions

		-45		-	5	-75		
Parameter	Description ^{1, 2, 3}	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PD}	5-PT bypass combinatorial propagation delay	_	4.5	_	5.0	_	7.5	ns
t _{PD_MC}	20-PT combinatorial propagation delay through macrocell	_	5.8	_	6.0	_	8.0	ns
t _S	GLB register setup time before clock	2.9	_	3.0	_	4.5	_	ns
t _{ST}	GLB register setup time before clock with T-type register	3.1	_	3.2	_	4.7	_	ns
t _{SIR}	GLB register setup time before clock, input register path	1.3	_	1.3	_	1.4	_	ns
t _{SIRZ}	GLB register setup time before clock with zero hold	2.6	_	2.6	_	2.7	_	ns
t _H	GLB register hold time after clock	0.0	_	0.0	_	0.0	_	ns
t _{HT}	GLB register hold time after clock with T-type register	0.0	_	0.0	_	0.0	_	ns
t _{HIR}	GLB register hold time after clock, input register path	1.3	_	1.3	_	1.3	_	ns
t _{HIRZ}	GLB register hold time after clock, input register path with zero hold	0.0	_	0.0	_	0.0	_	ns
t _{CO}	GLB register clock-to-output delay	_	3.8	_	4.2	_	4.5	ns
t _R	External reset pin to output delay	_	7.5	_	7.5	_	9.0	ns
t _{RW}	External reset pulse duration	2.0	_	2.0	_	4.0	_	ns
t _{PTOE/DIS}	Input to output local product term output enable/disable	_	8.2	_	8.5	_	9.0	ns
t _{GPTOE/DIS}	Input to output global product term output enable/disable	_	10.0	_	10.0	_	10.5	ns
t _{GOE/DIS}	Global OE input to output enable/disable	_	5.5	_	6.0	_	7.0	ns
t _{CW}	Global clock width, high or low	1.8	_	2.0	_	2.8	_	ns
t _{GW}	Global gate width low (for low transparent) or high (for high transparent)	1.8	_	2.0	_	2.8	_	ns
t _{WIR}	Input register clock width, high or low	1.8	_	2.0	_	2.8	_	ns
f _{MAX} ⁴	Clock frequency with internal feedback		200	_	200	_	168	MHz
f _{MAX} (Ext.)	clock frequency with external feedback, [1 / (t _S + t _{CO})]		150	_	139		111	MHz

^{1.} Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate other standards.

Timing v.2.2

^{2.} Measured using standard switching GRP loading of 1 and 1 output switching.

^{3.} Pulse widths and clock widths less than minimum will cause unknown behavior.

^{4.} Standard 16-bit counter using GRP feedback.

ispMACH 4000V/B/C Internal Timing Parameters

Over Recommended Operating Conditions

	-5		5	-7	75	-10		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
In/Out Dela	ys						ı	
t _{IN}	Input Buffer Delay	_	0.95	_	1.50	_	2.00	ns
t _{GOE}	Global OE Pin Delay	_	4.04	_	6.04	_	7.04	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay	_	1.83	_	2.28	_	3.28	ns
t _{BUF}	Delay through Output Buffer	_	1.00	_	1.50	_	1.50	ns
t _{EN}	Output Enable Time	_	0.96	_	0.96	_	0.96	ns
t _{DIS}	Output Disable Time	_	0.96	_	0.96	_	0.96	ns
Routing/GI	B Delays						ı	
t _{ROUTE}	Delay through GRP	_	1.51	_	2.26	_	3.26	ns
t _{MCELL}	Macrocell Delay	_	1.05	_	1.45	_	1.95	ns
t _{INREG}	Input Buffer to Macrocell Register Delay	_	0.56	_	0.96	_	1.46	ns
t _{FBK}	Internal Feedback Delay	_	0.00	_	0.00	_	0.00	ns
t _{PDb}	5-PT Bypass Propagation Delay	_	1.54	_	2.24	_	3.24	ns
t _{PDi}	Macrocell Propagation Delay	_	0.94	_	1.24	_	1.74	ns
	atch Delays			l .	J.		J.	1
t _S	D-Register Setup Time (Global Clock)	1.32	_	1.57	_	1.57	_	ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	1.32	_	1.32	_	1.32	_	ns
t _{ST}	T-Register Setup Time (Global Clock)	1.52	_	1.77	_	1.77	_	ns
t _{ST_PT}	T-Register Setup Time (Product Term Clock)	1.32	_	1.32	_	1.32	_	ns
t _H	D-Register Hold Time	1.68	_	2.93	_	3.93	_	ns
t _{HT}	T-Register Hold Time	1.68	_	2.93	_	3.93	_	ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	1.52	_	1.57	_	1.57	_	ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45	_	1.45	_	ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	0.68	_	1.18	_	1.18	_	ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	0.68	_	1.18	_	1.18	_	ns
t _{COi}	Register Clock to Output/Feedback MUX Time	_	0.52	_	0.67	_	1.17	ns
t _{CES}	Clock Enable Setup Time	2.25	_	2.25	_	2.25	_	ns
t _{CEH}	Clock Enable Hold Time	1.88	_	1.88	_	1.88	_	ns
t _{SL}	Latch Setup Time (Global Clock)	1.32	_	1.57	_	1.57	_	ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	1.32	_	1.32	_	1.32	_	ns
t _{HL}	Latch Hold Time	1.17	_	1.17	_	1.17	_	ns
t _{GOi}	Latch Gate to Output/Feedback MUX Time	_	0.33	_	0.33	_	0.33	ns
t _{PDLi}	Propagation Delay through Transparent Latch to Output/ Feedback MUX	_	0.25	_	0.25	_	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	0.28	_	0.28	_	0.28	_	ns
t _{SRR}	Asynchronous Reset or Set Recovery Time	1.67	_	1.67	_	1.67	_	ns
Control De	lays	•			•		•	
t _{BCLK}	GLB PT Clock Delay	T —	1.12		1.12	_	0.62	ns
t _{PTCLK}	Macrocell PT Clock Delay	T —	0.87	_	0.87	_	0.87	ns
t _{BSR}	GLB PT Set/Reset Delay	_	1.83	_	1.83	_	1.83	ns
t _{PTSR}	Macrocell PT Set/Reset Delay	<u> </u>	2.51	_	3.41	_	3.41	ns

ispMACH 4000V/B/C Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

		-5		-75 -1		0		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{GPTOE}	Global PT OE Delay	_	5.58		5.58	_	5.78	ns
t _{PTOE}	Macrocell PT OE Delay	_	3.58		4.28		4.28	ns

Timing v.3.2

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the Timing Model in this data sheet for further details.

ispMACH 4000Z Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

		-35		-37		-42		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{GPTOE}	Global PT OE Delay	_	1.9	_	2.35	_	2.60	ns
t _{PTOE}	Macrocell PT OE Delay	_	2.4	_	3.35	_	2.60	ns

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for further details.

Timing v.2.2

ispMACH 4000V/B/C Timing Adders¹ (Cont.)

Adder	Base		-	5	-7	75	-1	10	
Туре	Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Optional Delay	Adders			,					
t _{INDIO}	t _{INREG}	Input register delay	_	1.00	_	1.00	_	1.00	ns
t _{EXP}	t _{MCELL}	Product term expander delay	_	0.33	_	0.33	_	0.33	ns
t _{ORP}	_	Output routing pool delay	_	0.05	_	0.05	_	0.05	ns
t _{BLA}	t _{ROUTE}	Additional block loading adder	_	0.05	_	0.05	_	0.05	ns
t _{IOI} Input Adjust	ers								
LVTTL_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVTTL standard	_	0.60	_	0.60	_	0.60	ns
LVCMOS33_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 3.3 standard		0.60	_	0.60	_	0.60	ns
LVCMOS25_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 2.5 standard	_	0.60	_	0.60	_	0.60	ns
LVCMOS18_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 1.8 standard	_	0.00	_	0.00	_	0.00	ns
PCI_in	$t_{\text{IN}}, t_{\text{GCLK_IN}}, \\ t_{\text{GOE}}$	Using PCI compatible input	_	0.60	_	0.60	_	0.60	ns
t _{IOO} Output Adju	ısters								
LVTTL_out	t_{BUF} , t_{EN} , t_{DIS}	Output configured as TTL buffer	_	0.20	_	0.20	_	0.20	ns
LVCMOS33_out	t_{BUF} , t_{EN} , t_{DIS}	Output configured as 3.3V buffer	_	0.20	_	0.20	_	0.20	ns
LVCMOS25_out	t_{BUF} , t_{EN} , t_{DIS}	Output configured as 2.5V buffer	_	0.10	_	0.10	_	0.10	ns
LVCMOS18_out	t_{BUF} , t_{EN} , t_{DIS}	Output configured as 1.8V buffer	_	0.00	_	0.00	_	0.00	ns
PCI_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as PCI compatible buffer		0.20	_	0.20	_	0.20	ns
Slow Slew	t _{BUF} , t _{EN}	Output configured for slow slew rate	_	1.00	_	1.00	_	1.00	ns

Timing v.3.2

Note: Open drain timing is the same as corresponding LVCMOS timing.

1. Refer to TN1004, ispMACH 4000 Timing Model Design and Usage Guidelines for information regarding use of these adders.

ispMACH 4000Z Timing Adders ¹

Adder	Base		-3	35	-3	37	-42		
Туре	Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Optional Delay A	Adders	•							
t _{INDIO}	t _{INREG}	Input register delay	_	1.00	_	1.00	_	1.30	ns
t _{EXP}	t _{MCELL}	Product term expander delay	_	0.40	_	0.40	_	0.45	ns
t _{ORP}	_	Output routing pool delay	_	0.40	_	0.40	_	0.40	ns
t _{BLA}	t _{ROUTE}	Additional block load- ing adder	_	0.04	_	0.05	_	0.05	ns
t _{IOI} Input Adjuste	ers					•		•	•
LVTTL_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVTTL standard	_	0.60	_	0.60	_	0.60	ns
LVCMOS33_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 3.3 standard	_	0.60	_	0.60	_	0.60	ns
LVCMOS25_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 2.5 standard	_	0.60	_	0.60	_	0.60	ns
LVCMOS18_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 1.8 standard	_	0.00	_	0.00	_	0.00	ns
PCI_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using PCI compatible input	_	0.60	_	0.60	_	0.60	ns
t _{IOO} Output Adju	sters	1		I.	I.		I.		•
LVTTL_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as TTL buffer	_	0.20	_	0.20	_	0.20	ns
LVCMOS33_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as 3.3V buffer	_	0.20	_	0.20	_	0.20	ns
LVCMOS25_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as 2.5V buffer	_	0.10	_	0.10	_	0.10	ns
LVCMOS18_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as 1.8V buffer	_	0.00	_	0.00	_	0.00	ns
PCI_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as PCI compatible buffer	_	0.20	_	0.20	_	0.20	ns
Slow Slew	t _{BUF,} t _{EN}	Output configured for slow slew rate	_	1.00	_	1.00	_	1.00	ns

Timing v.2.2

Note: Open drain timing is the same as corresponding LVCMOS timing.

Tim

Refer to TN1004, <u>ispMACH 4000 Timing Model Design and Usage Guidelines</u> for information regarding the use of these adders.

ispMACH 4000V/B/C/Z Power Supply and NC Connections¹

Signal	44-pin TQFP ²	48-pin TQFP ²	56-ball csBGA ³	100-pin TQFP ²	128-pin TQFP ²
VCC	11, 33	12, 36	K2, A9	25, 40, 75, 90	32, 51, 96, 115
VCCO0 VCCO (Bank 0)	6	6	F3	13, 33, 95	3, 17, 30, 41, 122
VCCO1 VCCO (Bank 1)	28	30	E8	45, 63, 83	58, 67, 81, 94, 105
GND	12, 34	13, 37	H3, C8	1, 26, 51, 76	1, 33, 65, 97
GND (Bank 0)	5	5	D3	7, 18, 32, 96	10, 24, 40, 113, 123
GND (Bank 1)	27	29	G8	46, 57, 68, 82	49, 59, 74, 88, 104
NC	_	_	4032Z : A8, B10, E1, E3, F8, F10, J1, K3	_	_

^{1.} All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with the bank shown.

^{2.} Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

^{3.} Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.

ispMACH 4032V/B/C and 4064V/B/C Logic Signal Connections: 44-Pin TQFP

		ispMACH 40	032V/B/C	ispMACH 40	64V/B/C
Pin Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
1	-	TDI	-	TDI	-
2	0	A5	A^5	A10	A^5
3	0	A6	A^6	A12	A^6
4	0	A7	A^7	A14	A^7
5	0	GND (Bank 0)	-	GND (Bank 0)	-
6	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-
7	0	A8	A^8	B0	B^0
8	0	A9	A^9	B2	B^1
9	0	A10	A^10	B4	B^2
10	-	TCK	-	TCK	-
11	-	VCC	-	VCC	-
12	-	GND	-	GND	-
13	0	A12	A^12	B8	B^4
14	0	A13	A^13	B10	B^5
15	0	A14	A^14	B12	B^6
16	0	A15	A^15	B14	B^7
17	1	CLK2/I	-	CLK2/I	-
18	1	B0	B^0	C0	C^0
19	1	B1	B^1	C2	C^1
20	1	B2	B^2	C4	C^2
21	1	B3	B^3	C6	C^3
22	1	B4	B^4	C8	C^4
23	-	TMS	-	TMS	-
24	1	B5	B^5	C10	C^5
25	1	B6	B^6	C12	C^6
26	1	B7	B^7	C14	C^7
27	1	GND (Bank 1)	-	GND (Bank 1)	-
28	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-
29	1	B8	B^8	D0	D^0
30	1	B9	B^9	D2	D^1
31	1	B10	B^10	D4	D^2
32	-	TDO	-	TDO	-
33	-	VCC	-	VCC	-
34	-	GND	-	GND	-
35	1	B12	B^12	D8	D^4
36	1	B13	B^13	D10	D^5
37	1	B14	B^14	D12	D^6
38	1	B15/GOE1	B^15	D14/GOE1	D^7
39	0	CLK0/I	-	CLK0/I	-
40	0	A0/GOE0	A^0	A0/GOE0	A^0
41	0	A1	A^1	A2	A^1

ispMACH 4032V/B/C and 4064V/B/C Logic Signal Connections: 44-Pin TQFP (Cont.)

		ispMACH	ispMACH 4032V/B/C		4064V/B/C
Pin Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
42	0	A2	A^2	A4	A^2
43	0	A3	A^3	A6	A^3
44	0	A4	A^4	A8	A^4

ispMACH 4032V/B/C/Z and 4064V/B/C/Z Logic Signal Connections: 48-Pin TQFP

Pin	Bank	ank ispMACH 4032V/B/C/Z ispMACH 4064\		064V/B/C ispMAC		1 4064Z	
Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
1	-	TDI	-	TDI	-	TDI	-
2	0	A5	A^5	A10	A^5	A8	A^5
3	0	A6	A^6	A12	A^6	A10	A^6
4	0	A7	A^7	A14	A^7	A11	A^7
5	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
6	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
7	0	A8	A^8	В0	B^0	B15	B^7
8	0	A9	A^9	B2	B^1	B12	B^6
9	0	A10	A^10	B4	B^2	B10	B^5
10	0	A11	A^11	B6	B^3	B8	B^4
11	-	TCK	-	TCK	-	TCK	-
12	-	VCC	-	VCC	-	VCC	-
13	-	GND	-	GND	-	GND	-
14	0	A12	A^12	B8	B^4	B6	B^3
15	0	A13	A^13	B10	B^5	B4	B^2
16	0	A14	A^14	B12	B^6	B2	B^1
17	0	A15	A^15	B14	B^7	B0	B^0
18	0	CLK1/I	-	CLK1/I	-	CLK1/I	-
19	1	CLK2/I	-	CLK2/I	-	CLK2/I	-
20	1	B0	B^0	C0	C/0	C0	C^0
21	1	B1	B^1	C2	C^1	C1	C^1
22	1	B2	B^2	C4	C^2	C2	C^2
23	1	B3	B^3	C6	C^3	C4	C^3
24	1	B4	B^4	C8	C^4	C6	C^4
25	-	TMS	-	TMS	-	TMS	-
26	1	B5	B^5	C10	C^5	C8	C^5
27	1	B6	B^6	C12	C^6	C10	C^6
28	1	B7	B^7	C14	C^7	C11	C^7
29	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-
30	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-
31	1	B8	B^8	D0	D^0	D15	D^7
32	1	B9	B^9	D2	D^1	D12	D^6

ispMACH 4128V/B/C Logic Signal Connections: 128-Pin TQFP (Cont.)

		ispMACH 4128V/B/C				
Pin Number	Bank Number	GLB/MC/Pad	ORP			
19	0	C13	C^10			
20	0	C12	C^9			
21	0	C10	C^8			
22	0	C9	C^7			
23	0	C8	C^6			
24	0	GND (Bank 0)	-			
25	0	C6	C^5			
26	0	C5	C^4			
27	0	C4	C^3			
28	0	C2	C^2			
29	0	C0	C^0			
30	0	VCCO (Bank 0)	-			
31	0	TCK	-			
32	0	VCC	-			
33	0	GND	-			
34	0	D14	D^11			
35	0	D13	D^10			
36	0	D12	D^9			
37	0	D10	D^8			
38	0	D9	D^7			
39	0	D8	D^6			
40	0	GND (Bank 0)	-			
41	0	VCCO (Bank 0)	-			
42	0	D6	D^5			
43	0	D5	D^4			
44	0	D4	D^3			
45	0	D2	D^2			
46	0	D1	D^1			
47	0	D0	D^0			
48	0	CLK1/I	-			
49	1	GND (Bank 1)	-			
50	1	CLK2/I	-			
51	1	VCC	-			
52	1	E0	E^0			
53	1	E1	E^1			
54	1	E2	E^2			
55	1	E4	E^3			
56	1	E5	E^4			
57	1	E6	E^5			
58	1	VCCO (Bank 1)	-			
59	1	GND (Bank 1)	-			
60	1	E8	E^6			
61	1	E9	E^7			

ispMACH 4128V and 4256V Logic Signal Connections: 144-Pin TQFP (Cont.)

		ispMACH	I 4128V	/ ispMACH 4256V		
Pin Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	
86	1	F12	F^9	L8	L^4	
87	1	F13	F^10	L6	L^3	
88	1	F14	F^11	L4	L^2	
89	1	NC ²	-	J ²	-	
90	1	GND (Bank 1) ¹	-	NC ¹	-	
91	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	
92	1	NC ²	-	²	-	
93	1	G14	G^11	M2	M^1	
94	1	G13	G^10	M4	M^2	
95	1	G12	G^9	M6	M^3	
96	1	G10	G^8	M8	M^4	
97	1	G9	G^7	M10	M^5	
98	1	G8	G^6	M12	M^6	
99	1	GND (Bank 1)	-	GND (Bank 1)	-	
100	1	G6	G^5	N2	N^1	
101	1	G5	G^4	N4	N^2	
102	1	G4	G^3	N6	N^3	
103	1	G2	G^2	N8	N^4	
104	1	G1	G^1	N10	N^5	
105	1	G0	G^0	N12	N^6	
106	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	
107	-	TDO	-	TDO	-	
108	-	VCC	-	VCC	-	
109	-	GND	-	GND	-	
110	1	NC ²	-	²	-	
111	1	H14	H^11	012	O^6	
112	1	H13	H^10	O10	O^5	
113	1	H12	H^9	O8	0^4	
114	1	H10	H^8	O6	O^3	
115	1	H9	H^7	04	O^2	
116	1	H8	H^6	02	O^1	
117	1	NC ²	-	²	-	
118	1	GND (Bank 1)	-	GND (Bank 1)	-	
119	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	
120	1	H6	H^5	P12	P^6	
121	1	H5	H^4	P10	P^5	
122	1	H4	H^3	P8	P^4	
123	1	H2	H^2	P6	P^3	
124	1	H1	H^1	P4	P^2	
125	1	H0/GOE1	H^0	P2/GOE1	P^1	
126	1	CLK3/I	-	CLK3/I	-	
127	0	GND (Bank 0)	-	GND (Bank 0)	-	
128	0	CLK0/I	-	CLK0/I	-	

ispMACH 4256V/B/C/Z, 4384V/B/C, 4512V/B/C, Logic Signal Connections: 176-Pin TQFP (Cont.)

	Bank	ispMACH 4256V/B/C/Z		ispMACH 4	384V/B/C	ispMACH 4512V/B/C		
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	
60	0	H8	H^4	L8	L^4	P8	P^4	
61	0	H6	H^3	L6	L^3	P6	P^3	
62	0	H4	H^2	L4	L^2	P4	P^2	
63	0	H2	H^1	L2	L^1	P2	P^1	
64	0	H0	H^0	L0	L^0	P0	P^0	
65	-	GND	-	GND	-	GND	-	
66	0	CLK1/I	-	CLK1/I	-	CLK1/I	-	
67	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	
68	1	CLK2/I	-	CLK2/I	-	CLK2/I	-	
69	-	VCC	-	VCC	-	VCC	-	
70	1	10	I^0	MO	M^0	AX0	AX^0	
71	1	I2	I^1	M2	M^1	AX2	AX^1	
72	1	14	I^2	M4	M^2	AX4	AX^2	
73	1	16	I^3	M6	M^3	AX6	AX^3	
74	1	18	I^4	M8	M^4	AX8	AX^4	
75	1	I10	I^5	M10	M^5	AX10	AX^5	
76	1	l12	I^6	M12	M^6	AX12	AX^6	
77	1	l14	I^7	M14	M^7	AX14	AX^7	
78	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	
79	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	
80	1	J0	J^0	N0	N^0	BX0	BX^0	
81	1	J2	J^1	N2	N^1	BX2	BX^1	
82	1	J4	J^2	N4	N^2	BX4	BX^2	
83	1	J6	J^3	N6	N^3	BX6	BX^3	
84	1	J8	J^4	N8	N^4	BX8	BX^4	
85	1	J10	J^5	N10	N^5	BX10	BX^5	
86	1	J12	J^6	N12	N^6	BX12	BX^6	
87	1	J14	J^7	N14	N^7	BX14	BX^7	
88	-	VCC	-	VCC	-	VCC	-	
89	-	NC	-	NC	-	NC	-	
90	-	GND	-	GND	-	GND	-	
91	-	TMS	-	TMS	-	TMS	-	
92	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	
93	1	K14	K^7	O14	O^7	CX14	CX^7	
94	1	K12	K^6	O12	O^6	CX12	CX^6	
95	1	K10	K^5	O10	O^5	CX10	CX^5	
96	1	K8	K^4	O8	0^4	CX8	CX^4	
97	1	K6	K^3	O6	O^3	CX6	CX^3	
98	1	K4	K^2	O4	O^2	CX4	CX^2	
99	1	K2	K^1	O2	O^1	CX2	CX^1	
100	1	K0	K^0	00	O^0	CX0	CX^0	

ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C Logic Signal Connections: 256-Ball ftBGA/fpBGA (Cont.)

Ball	I/O	ispMACH 4256 128-I/O	V/B/C	ispMACH 4256 160-I/O			V/B/C	ispMACH 4512V/B/C		
Number	Bank	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	
R5	0	NC	-	NC	-	NC	-	L4	L^1	
T5	0	NC	-	NC	-	12	I^1	L8	L^2	
R6	0	NC	-	NC	-	10	I^0	L12	L^3	
T6	0	NC	-	H14	H^9	G12	G^6	M8	M^2	
N7	0	NC	-	H12	H^8	G14	G^7	M12	M^3	
P7	0	H14	H^7	H10	H^7	L14	L^7	P14	P^7	
R7	0	H12	H^6	H9	H^6	L12	L^6	P12	P^6	
L8	0	H10	H^5	H8	H^5	L10	L^5	P10	P^5	
T7	0	H8	H^4	H6	H^4	L8	L^4	P8	P^4	
M8	0	H6	H^3	H4	H^3	L6	L^3	P6	P^3	
N8	0	H4	H^2	H2	H^2	L4	L^2	P4	P^2	
R8	0	H2	H^1	H1	H^1	L2	L^1	P2	P^1	
P8	0	H0	H^0	H0	H^0	L0	L^0	P0	P^0	
-	-	GND	-	GND	-	GND	-	GND	-	
T8	0	CLK1/I	-	CLK1/I	-	CLK1/I	-	CLK1/I	-	
-	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	
N9	1	CLK2/I	-	CLK2/I	-	CLK2/I	-	CLK2/I	-	
-	-	VCC	-	VCC	-	VCC	-	VCC	-	
P9	1	10	I^0	10	I^0	MO	M^0	AX0	AX^0	
R9	1	12	I^1	l1	I^1	M2	M^1	AX2	AX^1	
Т9	1	14	I^2	12	I^2	M4	M^2	AX4	AX^2	
T10	1	16	I^3	14	I/3	M6	M^3	AX6	AX^3	
R10	1	18	I^4	16	I^4	M8	M^4	AX8	AX^4	
M9	1	I10	I^5	18	I^5	M10	M^5	AX10	AX^5	
P10	1	l12	I^6	19	I^6	M12	M^6	AX12	AX^6	
L9	1	l14	I^7	l10	I^7	M14	M^7	AX14	AX^7	
N10	1	NC	Ī	l12	I^8	BX14	BX^7	DX0	DX^0	
T11	1	NC	ı	l14	I^9	BX12	BX^6	DX4	DX^1	
R11	1	NC	ı	NC	-	P0	P^0	EX0	EX^0	
T12	1	NC	-	NC	-	P2	P^1	EX4	EX^1	
N12	1	NC	ı	NC	-	NC	-	EX8	EX^2	
-	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	
-	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	
R12	1	NC	-	NC	-	NC	-	EX12	EX^3	
T13	1	NC	-	J0	J^0	BX10	BX^5	DX8	DX^2	
P12	1	NC	-	J1	J^1	BX8	BX^4	DX12	DX^3	
M10	1	J0	J^0	J2	J^2	N0	N^0	BX0	BX^0	
R13	1	J2	J^1	J4	J^3	N2	N^1	BX2	BX^1	
L10	1	J4	J^2	J6	J^4	N4	N^2	BX4	BX^2	
T14	1	J6	J^3	J8	J^5	N6	N^3	BX6	BX^3	
M11	1	J8	J^4	J9	J^6	N8	N^4	BX8	BX^4	

ispMACH 4000C (1.8V) Lead-Free Industrial Devices (Cont.)

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4256C-5FTN256AI	256	1.8	5	Lead-free ftBGA	256	128	I
	LC4256C-75FTN256AI	256	1.8	7.5	Lead-free ftBGA	256	128	I
	LC4256C-10FTN256AI	256	1.8	10	Lead-free ftBGA	256	128	Į
	LC4256C-5FTN256BI	256	1.8	5	Lead-free ftBGA	256	160	I
	LC4256C-75FTN256BI	256	1.8	7.5	Lead-free ftBGA	256	160	Į
	LC4256C-10FTN256BI	256	1.8	10	Lead-free ftBGA	256	160	Į
	LC4256C-5FN256AI ¹	256	1.8	5	Lead-free fpBGA	256	128	I
	LC4256C-75FN256AI ¹	256	1.8	7.5	Lead-free fpBGA	256	128	I
1.040560	LC4256C-10FN256AI ¹	256	1.8	10	Lead-free fpBGA	256	128	I
LC4256C	LC4256C-5FN256BI ¹	256	1.8	5	Lead-free fpBGA	256	160	I
	LC4256C-75FN256BI ¹	256	1.8	7.5	Lead-free fpBGA	256	160	I
	LC4256C-10FN256BI ¹	256	1.8	10	Lead-free fpBGA	256	160	I
	LC4256C-5TN176I	256	1.8	5	Lead-free TQFP	176	128	I
	LC4256C-75TN176I	256	1.8	7.5	Lead-free TQFP	176	128	I
	LC4256C-10TN176I	256	1.8	10	Lead-free TQFP	176	128	I
	LC4256C-5TN100I	256	1.8	5	Lead-free TQFP	100	64	I
	LC4256C-75TN100I	256	1.8	7.5	Lead-free TQFP	100	64	I
	LC4256C-10TN100I	256	1.8	10	Lead-free TQFP	100	64	I
	LC4384C-5FTN256I	384	1.8	5	Lead-free ftBGA	256	192	I
	LC4384C-75FTN256I	384	1.8	7.5	Lead-free ftBGA	256	192	I
	LC4384C-10FTN256I	384	1.8	10	Lead-free ftBGA	256	192	I
	LC4384C-5FN256I ¹	384	1.8	5	Lead-free fpBGA	256	192	I
LC4384C	LC4384C-75FN256I ¹	384	1.8	7.5	Lead-free fpBGA	256	192	I
	LC4384C-10FN256I ¹	384	1.8	10	Lead-free fpBGA	256	192	I
	LC4384C-5TN176I	384	1.8	5	Lead-free TQFP	176	128	I
	LC4384C-75TN176I	384	1.8	7.5	Lead-free TQFP	176	128	I
	LC4384C-10TN176I	384	1.8	10	Lead-free TQFP	176	128	I
	LC4512C-5FTN256I	512	1.8	5	Lead-free ftBGA	256	208	I
	LC4512C-75FTN256I	512	1.8	7.5	Lead-free ftBGA	256	208	I
	LC4512C-10FTN256I	512	1.8	10	Lead-free ftBGA	256	208	I
	LC4512C-5FN256I ¹	512	1.8	5	Lead-free fpBGA	256	208	I
LC4512C	LC4512C-75FN256I ¹	512	1.8	7.5	Lead-free fpBGA	256	208	I
	LC4512C-10FN256I ¹	512	1.8	10	Lead-free fpBGA	256	208	I
	LC4512C-5TN176I	512	1.8	5	Lead-free TQFP	176	128	I
	LC4512C-75TN176I	512	1.8	7.5	Lead-free TQFP	176	128	I
	LC4512C-10TN176I	512	1.8	10	Lead-free TQFP	176	128	I
	1	1	L		l .	l	1	1

^{1.} Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000V (3.3V) Lead-Free Commercial Devices (Cont.)

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4256V-3FTN256AC	256	3.3	3	Lead-free ftBGA	256	128	С
	LC4256V-5FTN256AC	256	3.3	5	Lead-free ftBGA	256	128	С
	LC4256V-75FTN256AC	256	3.3	7.5	Lead-free ftBGA	256	128	С
	LC4256V-3FTN256BC	256	3.3	3	Lead-free ftBGA	256	160	С
	LC4256V-5FTN256BC	256	3.3	5	Lead-free ftBGA	256	160	С
	LC4256V-75FTN256BC	256	3.3	7.5	Lead-free ftBGA	256	160	С
	LC4256V-3FN256AC1	256	3.3	3	Lead-free fpBGA	256	128	С
	LC4256V-5FN256AC1	256	3.3	5	Lead-free fpBGA	256	128	С
	LC4256V-75FN256AC1	256	3.3	7.5	Lead-free fpBGA	256	128	С
	LC4256V-3FN256BC1	256	3.3	3	Lead-free fpBGA	256	160	С
LC4256V	LC4256V-5FN256BC ¹	256	3.3	5	Lead-free fpBGA	256	160	С
	LC4256V-75FN256BC ¹	256	3.3	7.5	Lead-free fpBGA	256	160	С
	LC4256V-3TN176C	256	3.3	3	Lead-free TQFP	176	128	С
	LC4256V-5TN176C	256	3.3	5	Lead-free TQFP	176	128	С
	LC4256V-75TN176C	256	3.3	7.5	Lead-free TQFP	176	128	С
	LC4256V-3TN144C	256	3.3	3	Lead-free TQFP	144	96	С
	LC4256V-5TN144C	256	3.3	5	Lead-free TQFP	144	96	С
	LC4256V-75TN144C	256	3.3	7.5	Lead-free TQFP	144	96	С
	LC4256V-3TN100C	256	3.3	3	Lead-free TQFP	100	64	С
	LC4256V-5TN100C	256	3.3	5	Lead-free TQFP	100	64	С
	LC4256V-75TN100C	256	3.3	7.5	Lead-free TQFP	100	64	С
	LC4384V-35FTN256C	384	3.3	3.5	Lead-free ftBGA	256	192	С
	LC4384V-5FTN256C	384	3.3	5	Lead-free ftBGA	256	192	С
	LC4384V-75FTN256C	384	3.3	7.5	Lead-free ftBGA	256	192	С
	LC4384V-35FN256C1	384	3.3	3.5	Lead-free fpBGA	256	192	С
LC4384V	LC4384V-5FN256C1	384	3.3	5	Lead-free fpBGA	256	192	С
	LC4384V-75FN256C1	384	3.3	7.5	Lead-free fpBGA	256	192	С
	LC4384V-35TN176C	384	3.3	3.5	Lead-free TQFP	176	128	С
	LC4384V-5TN176C	384	3.3	5	Lead-free TQFP	176	128	С
	LC4384V-75TN176C	384	3.3	7.5	Lead-free TQFP	176	128	С
	LC4512V-35FTN256C	512	3.3	3.5	Lead-free ftBGA	256	208	С
	LC4512V-5FTN256C	512	3.3	5	Lead-free ftBGA	256	208	С
	LC4512V-75FTN256C	512	3.3	7.5	Lead-free ftBGA	256	208	С
	LC4512V-35FN256C1	512	3.3	3.5	Lead-free fpBGA	256	208	С
LC4512V	LC4512V-5FN256C ¹	512	3.3	5	Lead-free fpBGA	256	208	С
	LC4512V-75FN256C1	512	3.3	7.5	Lead-free fpBGA	256	208	С
	LC4512V-35TN176C	512	3.3	3.5	Lead-free TQFP	176	128	С
	LC4512V-5TN176C	512	3.3	5	Lead-free TQFP	176	128	С
	LC4512V-75TN176C	512	3.3	7.5	Lead-free TQFP	176	128	С

^{1.} Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
LC4032V	LC4032V-75TN48E	32	3.3	7.5	Lead-free TQFP	48	32	Е
LO4032V	LC4032V-75TN44E	32	3.3	7.5	Lead-free TQFP	44	30	Е
	LC4064V-75TN100E	64	3.3	7.5	Lead-free TQFP	100	64	Е
LC4064V	LC4064V-75TN48E	64	3.3	7.5	Lead-free TQFP	48	32	Е
	LC4064V-75TN44E	64	3.3	7.5	Lead-free TQFP	44	30	Е
	LC4128V-75TN144E	128	3.3	7.5	Lead-free TQFP	144	96	Е
LC4128V	LC4128V-75TN128E	128	3.3	7.5	Lead-free TQFP	128	92	Е
	LC4128V-75TN100E	128	3.3	7.5	Lead-free TQFP	100	64	Е
	LC4256V-75TN176E	256	3.3	7.5	Lead-free TQFP	176	128	Е
LC4256V	LC4256V-75TN144E	256	3.3	7.5	Lead-free TQFP	144	96	Е
	LC4256V-75TN100E	256	3.3	7.5	Lead-free TQFP	100	64	E

For Further Information

In addition to this data sheet, the following technical notes may be helpful when designing with the ispMACH 4000V/B/C/Z family:

- TN1004, ispMACH 4000 Timing Model Design and Usage Guidelines
- TN1005, Power Estimation in ispMACH 4000V/B/C/Z Devices

Revision History

Date	Version	Change Summary
_	_	Previous Lattice releases.
July 2003	17z	Changed device status for LC4064ZC and LC4128ZC to production release and updated/added AC and DC parameters as well as ordering part numbers for LC4064ZC and LC4128ZC devices.
		Improved leakage current specifications for ispMACH 4000Z. For ispMACH 4000V/B/C IIL, IIH condition now includes 0V and 3.6V end points ($0 \le VIN \le 3.6V$).
		Added 132-ball chip scale BGA power supply and NC connections.
		Added 132-ball chip scale BGA logic signal connections for LC4064ZC, LC4128ZC and LC4256ZC devices.
		Added lead-free package designators.
October 2003	18z	Hot socketing characteristics footnote 1. has been enhanced; Insensitive to sequence of VCC or VCCO. However, assumes monotonic rise/fall rates for Vcc and Vcco, provided (VIN - VCCO) \leq 3.6V.
		Improved LC4064ZC t_S to 2.5ns, t_{ST} to 2.7ns and f_{MAX} (Ext.) to 175MHz, LC4128ZC t_{CO} to 3.5ns and f_{MAX} (Ext.) to 161MHz (version v.2.1).
		Improved associated internal timing numbers and timing adders (version v.2.1).
		Added ispMACH 4000V/B/C/Z ORP Reference Tables.
		Enhanced ORP information in device pinout tables consistent with the ORP Combinations for I/O Blocks tables (table 6, 7, 8 and 9 in page 9-11).
		Corrected GLB/MC/Pad information in the 256-fpBGA pinouts for the LC4256V/B/C 160-I/O version.
		Added the ispMACH 4000 Family Speed Grade Offering table.
		Added the ispMACH 4128ZC Industrial and Automotive Device OPNs
December 2003	19z	Added the ispMACH 4032ZC and 4064ZC Industrial and Automotive Device OPNs

Revision History (Cont.)

Date	Version	Change Summary			
January 2004 20z		spMACH 4000Z data sheet status changed from preliminary to final. Documents production elease of the ispMACH 4256Z device.			
		Added new feature - ispMACH 4000Z supports operation down to 1.6V.			
		Added lead-free packaging ordering part numbers for the ispMACH 4000Z/C/V devices.			
April 2004	21z	Updated I $_{PU}$ (I/O Weak Pull-up Resistor Current) max. specification for the ispMACH 4000V/B/C; -150 μ A to -200 μ A.			
November 2004	22z	Added User Electronic Signature section.			
		Added ispMACH 4000B (2.5V) Lead-Free Ordering Part Numbers.			
December 2004	22z.1	Updated Further Information section.			
February 2006	22z.2	Clarification to ispMACH 4000Z Input Leakage (I _{IH}) specification.			
March 2007	22.3	Updated ispMACH 4000 Introduction section.			
		Updated Signal Descriptions table.			
June 2007	22.4	Updated Features bullets to include reference to "LA" automotive data sheet under the "Broad Device Offering" bullet.			
		Added footnote 1 to Part Number Description to reference the "LA" automotive data sheet.			
		Changed device temperature references from 'Automotive' to "Extended Temperature" for non-AEC-Q100 qualified devices.			
November 2007	23.0	Added 256-ftBGA package Ordering Part Number information per PCN#14A-07.			
May 2009	23.1	Correction to $t_{\rm CW}$, $t_{\rm GW}$, $t_{\rm WIR}$ and $f_{\rm MAX}$ parameters in ispMACH 4000Z External Switching Characteristics table.			
		Correction to t_{CW} , t_{GW} , t_{WIR} and f_{MAX} parameters in ispMACH 4000V/B/C External Switching Characteristics table.			