

Welcome to E-XFL.COM

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	3.5 ns
Voltage Supply - Internal	2.3V ~ 2.7V
Number of Logic Elements/Blocks	24
Number of Macrocells	384
Number of Gates	-
Number of I/O	192
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4384b-35ft256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. ispMACH 4000Z Family Selection Guide

	ispMACH 4032ZC	ispMACH 4064ZC	ispMACH 4128ZC	ispMACH 4256ZC
Macrocells	32	64	128	256
I/O + Dedicated Inputs	32+4/32+4	32+4/32+12/ 64+10/64+10	64+10/96+4	64+10/96+6/ 128+4
t _{PD} (ns)	3.5	3.7	4.2	4.5
t _S (ns)	2.2	2.5	2.7	2.9
t _{CO} (ns)	3.0	3.2	3.5	3.8
f _{MAX} (MHz)	267	250	220	200
Supply Voltage (V)	1.8	1.8	1.8	1.8
Max. Standby Icc (μA)	20	25	35	55
Pins/Package	48 TQFP 56 csBGA	48 TQFP 56 csBGA 100 TQFP 132 csBGA	100 TQFP 132csBGA	100 TQFP 132 csBGA 176 TQFP

ispMACH 4000 Introduction

The high performance ispMACH 4000 family from Lattice offers a SuperFAST CPLD solution. The family is a blend of Lattice's two most popular architectures: the ispLSI® 2000 and ispMACH 4A. Retaining the best of both families, the ispMACH 4000 architecture focuses on significant innovations to combine the highest performance with low power in a flexible CPLD family.

The ispMACH 4000 combines high speed and low power with the flexibility needed for ease of design. With its robust Global Routing Pool and Output Routing Pool, this family delivers excellent First-Time-Fit, timing predictability, routing, pin-out retention and density migration.

The ispMACH 4000 family offers densities ranging from 32 to 512 macrocells. There are multiple density-I/O combinations in Thin Quad Flat Pack (TQFP), Chip Scale BGA (csBGA) and Fine Pitch Thin BGA (ftBGA) packages ranging from 44 to 256 pins/balls. Table 1 shows the macrocell, package and I/O options, along with other key parameters.

The ispMACH 4000 family has enhanced system integration capabilities. It supports 3.3V (4000V), 2.5V (4000B) and 1.8V (4000C/Z) supply voltages and 3.3V, 2.5V and 1.8V interface voltages. Additionally, inputs can be safely driven up to 5.5V when an I/O bank is configured for 3.3V operation, making this family 5V tolerant. The ispMACH 4000 also offers enhanced I/O features such as slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. The ispMACH 4000 family members are 3.3V/ 2.5V/1.8V in-system programmable through the IEEE Standard 1532 interface. IEEE Standard 1149.1 boundary scan testing capability also allows product testing on automated test equipment. The 1532 interface signals TCK, TMS, TDI and TDO are referenced to V_{CC} (logic core).

Overview

The ispMACH 4000 devices consist of multiple 36-input, 16-macrocell Generic Logic Blocks (GLBs) interconnected by a Global Routing Pool (GRP). Output Routing Pools (ORPs) connect the GLBs to the I/O Blocks (IOBs), which contain multiple I/O cells. This architecture is shown in Figure 1.

Product Term Allocator

The product term allocator assigns product terms from a cluster to either logic or control applications as required by the design being implemented. Product terms that are used as logic are steered into a 5-input OR gate associated with the cluster. Product terms that used for control are steered either to the macrocell or I/O cell associated with the cluster. Table 3 shows the available functions for each of the five product terms in the cluster. The OR gate output connects to the associated I/O cell, providing a fast path for narrow combinatorial functions, and to the logic allocator.

Table 3. Individual PT Steering

Product Term	Logic	Control
PT <i>n</i>	Logic PT	Single PT for XOR/OR
PT <i>n</i> +1	Logic PT	Individual Clock (PT Clock)
PT <i>n</i> +2	Logic PT	Individual Initialization or Individual Clock Enable (PT Initialization/CE)
PT <i>n</i> +3	Logic PT	Individual Initialization (PT Initialization)
PT <i>n</i> +4	Logic PT	Individual OE (PTOE)

Cluster Allocator

The cluster allocator allows clusters to be steered to neighboring macrocells, thus allowing the creation of functions with more product terms. Table 4 shows which clusters can be steered to which macrocells. Used in this manner, the cluster allocator can be used to form functions of up to 20 product terms. Additionally, the cluster allocator accepts inputs from the wide steering logic. Using these inputs, functions up to 80 product terms can be created.

Table 4. Available Clusters for Each Macrocell

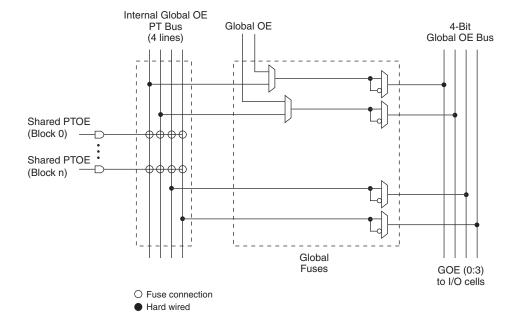
Macrocell		Available	Clusters	
M0	_	C0	C1	C2
M1	C0	C1	C2	C3
M2	C1	C2	C3	C4
M3	C2	C3	C4	C5
M4	C3	C4	C5	C6
M5	C4	C5	C6	C7
M6	C5	C6	C7	C8
M7	C6	C7	C8	C9
M8	C7	C8	C9	C10
M9	C8	C9	C10	C11
M10	C9	C10	C11	C12
M11	C10	C11	C12	C13
M12	C11	C12	C13	C14
M13	C12	C13	C14	C15
M14	C13	C14	C15	_
M15	C14	C15	_	_

Wide Steering Logic

The wide steering logic allows the output of the cluster allocator n to be connected to the input of the cluster allocator n+4. Thus, cluster chains can be formed with up to 80 product terms, supporting wide product term functions and allowing performance to be increased through a single GLB implementation. Table 5 shows the product term chains.

- LVTTL
- LVCMOS 1.8
- LVCMOS 3.3
- 3.3V PCI Compatible
- LVCMOS 2.5

All of the I/Os and dedicated inputs have the capability to provide a bus-keeper latch, Pull-up Resistor or Pull-down Resistor. A fourth option is to provide none of these. The selection is done on a global basis. The default in both hardware and software is such that when the device is erased or if the user does not specify, the input structure is configured to be a Pull-up Resistor.


Each ispMACH 4000 device I/O has an individually programmable output slew rate control bit. Each output can be individually configured for fast slew or slow slew. The typical edge rate difference between fast and slow slew setting is 20%. For high-speed designs with long, unterminated traces, the slow-slew rate will introduce fewer reflections, less noise and keep ground bounce to a minimum. For designs with short traces or well terminated lines, the fast slew rate can be used to achieve the highest speed.

Global OE Generation

Most ispMACH 4000 family devices have a 4-bit wide Global OE Bus, except the ispMACH 4032 device that has a 2-bit wide Global OE Bus. This bus is derived from a 4-bit internal global OE PT bus and two dual purpose I/O or GOE pins. Each signal that drives the bus can optionally be inverted.

Each GLB has a block-level OE PT that connects to all bits of the Global OE PT bus with four fuses. Hence, for a 256-macrocell device (with 16 blocks), each line of the bus is driven from 16 OE product terms. Figures 9 and 10 show a graphical representation of the global OE generation.

Figure 9. Global OE Generation for All Devices Except ispMACH 4032

IEEE 1532-Compliant In-System Programming

Programming devices in-system provides a number of significant benefits including: rapid prototyping, lower inventory levels, higher quality and the ability to make in-field modifications. All ispMACH 4000 devices provide In-System Programming (ISP™) capability through the Boundary Scan Test Access Port. This capability has been implemented in a manner that ensures that the port remains complaint to the IEEE 1149.1 standard. By using IEEE 1149.1 as the communication interface through which ISP is achieved, users get the benefit of a standard, well-defined interface. All ispMACH 4000 devices are also compliant with the IEEE 1532 standard.

The ispMACH 4000 devices can be programmed across the commercial temperature and voltage range. The PC-based Lattice software facilitates in-system programming of ispMACH 4000 devices. The software takes the JEDEC file output produced by the design implementation software, along with information about the scan chain, and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain via the parallel port of a PC. Alternatively, the software can output files in formats understood by common automated test equipment. This equipment can then be used to program ispMACH 4000 devices during the testing of a circuit board.

User Electronic Signature

The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the device, stored in E²CMOS memory. The ispMACH 4000 device contains 32 UES bits that can be configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.

Security Bit

A programmable security bit is provided on the ispMACH 4000 devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.

Hot Socketing

The ispMACH 4000 devices are well-suited for applications that require hot socketing capability. Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The isp-MACH 4000 devices provide this capability for input voltages in the range 0V to 3.0V.

Density Migration

The ispMACH 4000 family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

ispMACH 4000V/B/C Internal Timing Parameters

Over Recommended Operating Conditions

		-	5	-7	75	-1	10	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
In/Out Dela	ys						ı	
t _{IN}	Input Buffer Delay	_	0.95	_	1.50	_	2.00	ns
t _{GOE}	Global OE Pin Delay	_	4.04	_	6.04	_	7.04	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay	_	1.83	_	2.28	_	3.28	ns
t _{BUF}	Delay through Output Buffer	_	1.00	_	1.50	_	1.50	ns
t _{EN}	Output Enable Time	_	0.96	_	0.96	_	0.96	ns
t _{DIS}	Output Disable Time	_	0.96	_	0.96	_	0.96	ns
Routing/GI	B Delays						ı	
t _{ROUTE}	Delay through GRP	_	1.51	_	2.26	_	3.26	ns
t _{MCELL}	Macrocell Delay	_	1.05	_	1.45	_	1.95	ns
t _{INREG}	Input Buffer to Macrocell Register Delay	_	0.56	_	0.96	_	1.46	ns
t _{FBK}	Internal Feedback Delay	_	0.00	_	0.00	_	0.00	ns
t _{PDb}	5-PT Bypass Propagation Delay	_	1.54	_	2.24	_	3.24	ns
t _{PDi}	Macrocell Propagation Delay	_	0.94	_	1.24	_	1.74	ns
	atch Delays			l	J.		J.	1
t _S	D-Register Setup Time (Global Clock)	1.32	_	1.57	_	1.57	_	ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	1.32	_	1.32	_	1.32	_	ns
t _{ST}	T-Register Setup Time (Global Clock)	1.52	_	1.77	_	1.77	_	ns
t _{ST_PT}	T-Register Setup Time (Product Term Clock)	1.32	_	1.32	_	1.32	_	ns
t _H	D-Register Hold Time	1.68	_	2.93	_	3.93	_	ns
t _{HT}	T-Register Hold Time	1.68	_	2.93	_	3.93	_	ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	1.52	_	1.57	_	1.57	_	ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45	_	1.45	_	ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	0.68	_	1.18	_	1.18	_	ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	0.68	_	1.18	_	1.18	_	ns
t _{COi}	Register Clock to Output/Feedback MUX Time	_	0.52	_	0.67	_	1.17	ns
t _{CES}	Clock Enable Setup Time	2.25	_	2.25	_	2.25	_	ns
t _{CEH}	Clock Enable Hold Time	1.88	_	1.88	_	1.88	_	ns
t _{SL}	Latch Setup Time (Global Clock)	1.32	_	1.57	_	1.57	_	ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	1.32	_	1.32	_	1.32	_	ns
t _{HL}	Latch Hold Time	1.17	_	1.17	_	1.17	_	ns
t _{GOi}	Latch Gate to Output/Feedback MUX Time	_	0.33	_	0.33	_	0.33	ns
t _{PDLi}	Propagation Delay through Transparent Latch to Output/ Feedback MUX	_	0.25	_	0.25	_	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	0.28	_	0.28	_	0.28	_	ns
t _{SRR}	Asynchronous Reset or Set Recovery Time	1.67	_	1.67	_	1.67	_	ns
Control De	lays	•			•		•	
t _{BCLK}	GLB PT Clock Delay	T —	1.12		1.12	_	0.62	ns
t _{PTCLK}	Macrocell PT Clock Delay	T —	0.87	_	0.87	_	0.87	ns
t _{BSR}	GLB PT Set/Reset Delay	_	1.83	_	1.83	_	1.83	ns
t _{PTSR}	Macrocell PT Set/Reset Delay	<u> </u>	2.51	_	3.41	_	3.41	ns

ispMACH 4000Z Internal Timing Parameters

Over Recommended Operating Conditions

		-3	35	-3	37	-4	12	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
In/Out Delay	/s					•		•
t _{IN}	Input Buffer Delay	_	0.75	_	0.80	_	0.75	ns
t _{GOE}	Global OE Pin Delay	_	2.25	_	2.25	_	2.30	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay	_	1.60	_	1.60	_	1.95	ns
t _{BUF}	Delay through Output Buffer	_	0.75	_	0.90	_	0.90	ns
t _{EN}	Output Enable Time	_	2.25	_	2.25	_	2.50	ns
t _{DIS}	Output Disable Time	_	1.35	_	1.35	_	2.50	ns
Routing/GL	B Delays	ı		ı				
t _{ROUTE}	Delay through GRP	_	1.60	_	1.60	_	2.15	ns
t _{MCELL}	Macrocell Delay	_	0.65	_	0.75	_	0.85	ns
t _{INREG}	Input Buffer to Macrocell Register Delay	_	0.91	_	1.00	_	1.00	ns
t _{FBK}	Internal Feedback Delay	_	0.05	_	0.00	_	0.00	ns
t _{PDb}	5-PT Bypass Propagation Delay	_	0.40	_	0.40	_	0.40	ns
t _{PDi}	Macrocell Propagation Delay	_	0.25	_	0.25	_	0.65	ns
Register/L	atch Delays	·						•
t _S	D-Register Setup Time (Global Clock)	0.80	_	0.95	_	0.90	_	ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	1.35	_	1.95	_	1.90	_	ns
t _{ST}	T-Register Setup Time (Global Clock)	1.00	_	1.15	_	1.10	_	ns
t _{ST_PT}	T-register Setup Time (Product Term Clock)	1.55	_	1.75	_	2.10	_	ns
t _H	D-Register Hold Time	1.40	_	1.55	_	1.80	_	ns
t _{HT}	T-Resister Hold Time	1.40	_	1.55	_	1.80	_	ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	0.94	_	0.90	_	1.50	_	ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45	_	1.45	_	ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.06	_	1.20	_	1.10	_	ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	0.88	_	1.00	_	1.00	_	ns
t _{COi}	Register Clock to Output/Feedback MUX Time	_	0.65	_	0.70	_	0.65	ns
t _{CES}	Clock Enable Setup Time	1.00	_	2.00	_	2.00	_	ns
t _{CEH}	Clock Enable Hold Time	0.00	_	0.00	_	0.00	_	ns
t_{SL}	Latch Setup Time (Global Clock)	0.80	_	0.95	_	0.90	_	ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	1.55	_	1.95	_	1.90	_	ns
t _{HL}	Latch Hold Time	1.40	-	1.80	_	1.80	_	ns
t _{GOi}	Latch Gate to Output/Feedback MUX Time	_	0.40	_	0.33	_	0.33	ns
t _{PDLi}	Propagation Delay through Transparent Latch to Output/ Feedback MUX	_	0.30	_	0.25	_	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	_	0.28	_	0.28	_	1.27	ns
t _{SRR}	Asynchronous Reset or Set Recovery Delay	_	2.00	_	1.67	_	1.80	ns
Control Dela	ays							
t _{BCLK}	GLB PT Clock Delay	_	1.30	_	1.50	_	1.55	ns
t _{PTCLK}	Macrocell PT Clock Delay	_	1.50	_	1.70	_	1.55	ns
t _{BSR}	GLB PT Set/Reset Delay	_	1.10	_	1.83		1.83	ns
t _{PTSR}	Macrocell PT Set/Reset Delay	_	1.22	_	2.02	_	1.83	ns

ispMACH 4000Z Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

		-4	15	-5		-75		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PTOE}	Macrocell PT OE Delay	_	2.50	_	2.70	_	2.00	ns

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for further details.

Timing v.2.2

ispMACH 4000V/B/C Timing Adders¹

Adder	Base		-2	25	-2	27	-	3	-3	35	
Туре	Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Optional Delay	Adders			•		•		•		•	•
t _{INDIO}	t _{INREG}	Input register delay	_	0.95	_	1.00	_	1.00	_	1.00	ns
t _{EXP}	t _{MCELL}	Product term expander delay	_	0.33	_	0.33	_	0.33	_	0.33	ns
t _{ORP}	_	Output routing pool delay	_	0.05	_	0.05	_	0.05	_	0.05	ns
t _{BLA}	t _{ROUTE}	Additional block loading adder	_	0.03	_	0.05	_	0.05	_	0.05	ns
t _{IOI} Input Adjust	ers										•
LVTTL_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVTTL standard	_	0.60	_	0.60	_	0.60	_	0.60	ns
LVCMOS33_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 3.3 standard	_	0.60	_	0.60	_	0.60	_	0.60	ns
LVCMOS25_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 2.5 standard	_	0.60	_	0.60	_	0.60	_	0.60	ns
LVCMOS18_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVCMOS 1.8 standard	_	0.00	_	0.00	_	0.00	_	0.00	ns
PCI_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using PCI compatible input	_	0.60	_	0.60	_	0.60	_	0.60	ns
t _{IOO} Output Adju	isters										•
LVTTL_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as TTL buffer	_	0.20	_	0.20	_	0.20	_	0.20	ns
LVCMOS33_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as 3.3V buffer	_	0.20	_	0.20	_	0.20	_	0.20	ns
LVCMOS25_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as 2.5V buffer	_	0.10	_	0.10	_	0.10	_	0.10	ns
LVCMOS18_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as 1.8V buffer	_	0.00	_	0.00	_	0.00	_	0.00	ns
PCI_out	t _{BUF} , t _{EN} , t _{DIS}	Output configured as PCI compatible buffer	_	0.20	_	0.20	_	0.20	_	0.20	ns
Slow Slew	t _{BUF} , t _{EN}	Output configured for slow slew rate	_	1.00	_	1.00	_	1.00	_	1.00	ns

Timing v.3.2

Note: Open drain timing is the same as corresponding LVCMOS timing.

1. Refer to TN1004, ispMACH 4000 Timing Model Design and Usage Guidelines for information regarding use of these adders.

ispMACH 4000Z Timing Adders (Cont.)¹

Adder	Base		-4	1 5	-	5	-7	75	
Туре	Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Optional Delay A	Adders				I.			•	I.
t _{INDIO}	t _{INREG}	Input register delay	_	1.30	_	1.30	_	1.30	ns
t _{EXP}	t _{MCELL}	Product term expander delay	_	0.45	_	0.45	_	0.50	ns
t _{ORP}	_	Output routing pool delay	_	0.40	_	0.40	_	0.40	ns
t _{BLA}	t _{ROUTE}	Additional block load- ing adder	_	0.05	_	0.05	_	0.05	ns
t _{IOI} Input Adjust	ers				I.			•	I.
LVTTL_in	t _{IN} , t _{GCLK_IN} , t _{GOE}	Using LVTTL standard	_	0.60	_	0.60	_	0.60	ns
LVCMOS33_in	t _{IN,} t _{GCLK_IN} , t _{GOE}	Using LVCMOS 3.3 standard	_	0.60	_	0.60	_	0.60	ns
LVCMOS25_in	t _{IN,} t _{GCLK_IN} , t _{GOE}	Using LVCMOS 2.5 standard	_	0.60	_	0.60	_	0.60	ns
LVCMOS18_in	t _{IN,} t _{GCLK_IN} , t _{GOE}	Using LVCMOS 1.8 standard	_	0.00	_	0.00	_	0.00	ns
PCI_in	t _{IN,} t _{GCLK_IN} , t _{GOE}	Using PCI compatible input	_	0.60	_	0.60	_	0.60	ns
t _{IOO} Output Adju	ısters					•		•	
LVTTL_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as TTL buffer	_	0.20	_	0.20	_	0.20	ns
LVCMOS33_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as 3.3V buffer	_	0.20	_	0.20	_	0.20	ns
LVCMOS25_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as 2.5V buffer	_	0.10	_	0.10	_	0.10	ns
LVCMOS18_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as 1.8V buffer	_	0.00	_	0.00	_	0.00	ns
PCI_out	t _{BUF,} t _{EN,} t _{DIS}	Output configured as PCI compatible buffer	_	0.20	_	0.20	_	0.20	ns
Slow Slew	t _{BUF,} t _{EN}	Output configured for slow slew rate	_	1.00	_	1.00	_	1.00	ns

Timing v.2.2

Note: Open drain timing is the same as corresponding LVCMOS timing.

1. Refer to TN1004, <u>ispMACH 4000 Timing Model Design and Usage Guidelines</u> for information regarding use of these adders.

Signal Descriptions

Signal Names	Desc	ription							
TMS	Input – This pin is the IEEE 1149.1 Test Notes that the state machine.	Mode Select input, which is used to control							
TCK	Input – This pin is the IEEE 1149.1 Test 0 state machine.	Clock input pin, used to clock through the							
TDI	Input – This pin is the IEEE 1149.1 Test D	Data In pin, used to load data.							
TDO	Output – This pin is the IEEE 1149.1 Test	Output – This pin is the IEEE 1149.1 Test Data Out pin used to shift data out.							
GOE0/IO, GOE1/IO	These pins are configured to be either Gl pins.	These pins are configured to be either Global Output Enable Input or as general I/O ins.							
GND	Ground	Ground							
NC	Not Connected	Not Connected							
V _{CC}	The power supply pins for logic core and	JTAG port.							
CLK0/I, CLK1/I, CLK2/I, CLK3/I	These pins are configured to be either CL	₋K input or as an input.							
V _{CCO0} , V _{CCO1}	The power supply pins for each I/O bank.								
	Input/Output ¹ – These are the general pu reference (alpha) and z is macrocell refer	rpose I/O used by the logic array. y is GLB ence (numeric). z: 0-15.							
	ispMACH 4032	y: A-B							
	ispMACH 4064	y: A-D							
yzz	ispMACH 4128	y: A-H							
	ispMACH 4256	y: A-P							
	ispMACH 4384	y: A-P, AX-HX							
	ispMACH 4512	y: A-P, AX-PX							

^{1.} In some packages, certain I/Os are only available for use as inputs. See the signal connections table for details.

ispMACH 4000V/B/C ORP Reference Table

	4032	V/B/C	4	1064\	//B/C	4128	4128V/B/C		4256V/B/C				4384V/B/C		4512V/B/C	
Number of I/Os	30¹	32	30 ²	32	64	64	92³	96	64	96 ⁴	128	160	128	192	128	208
Number of GLBs	2	2	4	4	4	8	8	8	16	16	16	16	16	16	16	16
Number of I/Os / GLB	16	16	8	8	16	8	12	12	4	8	8	10	8	8	8	Mixture of 8 & 4 ⁵
Reference ORP Table	16 l/ Gl	Os / LB	8 I/0 GI		16 I/Os / GLB	8 I/Os / GLB	12 l/ GI		4 I/Os / GLB	8 I/Os / GLB	8 I/Os / GLB	10 I/Os / GLB	8 I/0 GL		8 I/Os/ GLB	8 I/Os / GLB 4 I/Os / GLB

- 1. 32-macrocell device, 44 TQFP: 2 GLBs have 15 out of 16 I/Os bonded out.
- 2. 64-macrocells device, 44 TQFP: 2 GLBs have 7 out of 8 I/Os bonded out.
- 3. 128-macrocell device, 128 TQFP: 4 GLBs have 11 out of 12 I/Os
- 4. 256-macrocell device, 144 TQFP: 16 GLBs have 6 I/Os per
- 5. 512-macrocell device: 20 GLBs have 8 I/Os per, 12 GLBs have 4 I/Os per

ispMACH 4000Z ORP Reference Table

	4032Z	406	64Z	412	28Z			
Number of I/Os	32	32	64	64	96	64	96¹	128
Number of GLBs	2	4	4	8	8	16	16	16
Number of I/Os / GLB	16	8	16	8	12	4	8	8
Reference ORP Table	16 I/Os / GLB	8 I/Os / GLB	16 I/Os / GLB	8 I/Os / GLB	12 I/Os / GLB	4 I/Os / GLB	8 I/Os / GLB	8 I/Os / GLB

^{1. 256-}macrocell device, 132 csBGA: 16 GLBs have 6 I/Os per

ispMACH 4000V/B/C/Z Power Supply and NC Connections¹

Signal	44-pin TQFP ²	48-pin TQFP ²	56-ball csBGA ³	100-pin TQFP ²	128-pin TQFP ²
VCC	11, 33	12, 36	K2, A9	25, 40, 75, 90	32, 51, 96, 115
VCCO0 VCCO (Bank 0)	6	6	F3	13, 33, 95	3, 17, 30, 41, 122
VCCO1 VCCO (Bank 1)	28	30	E8	45, 63, 83	58, 67, 81, 94, 105
GND	12, 34	13, 37	H3, C8	1, 26, 51, 76	1, 33, 65, 97
GND (Bank 0)	5	5	D3	7, 18, 32, 96	10, 24, 40, 113, 123
GND (Bank 1)	27	29	G8	46, 57, 68, 82	49, 59, 74, 88, 104
NC	_	_	4032Z : A8, B10, E1, E3, F8, F10, J1, K3	_	_

^{1.} All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with the bank shown.

^{2.} Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

^{3.} Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.

ispMACH 4000V/B/C/Z Power Supply and NC Connections¹ (Cont.)

Signal	132-ball csBGA ⁷	144-pin TQFP ⁴	176-pin TQFP⁴	256-ball ftBGA/fpBGA ^{2, 3, 7, 9}
VCC	P1, A14, B7, N8	36, 57, 108, 129	42, 69, 88, 130, 157, 176	B2, B15, G8, G9, K8, K9, R2, R15
VCCO0 VCCO (Bank 0)	G3, P5, C1 ⁸ , M2 ⁸ , C5	3, 19, 34, 47, 136	4, 22, 40, 56, 166	D6, F4, H7, J7, L4, N6
VCCO1 VCCO (Bank 1)	M10, M14 ⁸ , H12, A10, C13 ⁸	64, 75, 91, 106, 119	78, 92, 110, 128, 144	D11, F13, H10, J10, L13, N11
GND	B1, P2, N14, A13	1, 37, 73, 109	2, 46 ⁵ , 65, 90, 134, 153	A1, A16, C6, C11, F3, F14, G7, G10, H8, H9, J8, J9, K7, K10, L3, L14, P6, P11, T1,
GND (Bank 0)	E2, K2, N4, B4	10, 18 ⁶ , 27, 46, 127, 137	13, 31, 55, 155, 167	T16
GND (Bank 1)	N11, K13, E13, B11	55, 65, 82, 90 ⁶ , 99, 118	67, 79, 101, 119, 143	
NC	4064Z: C1, C3, E1, E3, H2, J3, K1, M2, M4, N5, P7, P8, M8, P10, P11, P14, M12, K14, K12, G13, G14, E14, C13, B13, B10, C10, A7, B5, A5, A4, A1 4128Z: P8, A7	4128V : 17, 20, 38, 45, 72, 89, 92, 110, 117, 144 4256V : 18, 90	1, 43, 44, 45, 89, 131, 132, 133	4256V/B/C, 128 I/O: A4, A5, A6, A11, A12, A13, A15, B5, B6, B11, B12, B14, C7, D1, D4, D5, D10, D12, D16, E1, E2, E4, E5, E7, E10, E13, E14, E15, E16, F1, F2, F15, F16, G1, G4, G5, G6, G12, G13, G14, J11, K3, K4, K15, L1, L2, L12, L15, L16, M1, M2, M3, M4, M5, M12, M13, M15, M16, N1, N2, N7, N10, N12, N14, P5, P12, R4, R5, R6, R11, R12, R16, T2, T4, T5, T6, T11, T12, T13, T15 4256V/B/C, 160 I/O: A5, A12, A15, B5, B6, B11, B12, B14, D4, D5, D12, E1, E4, E5, E13, E15, E16, F1, F2, F15, G1, G5, G12, G14, L1, L2, L12, L15, L16, M1, M2, M3, M12, M16, N1, N12, N14, P5, R4, R5, R6, R11, R12, R16, T4, T5, T12, T15 4384V/B/C: B5, B12, D5, D12, E1, E15, E16, F2, L12, M1, M2, M16, N12, R5, R12, T4

^{1.} All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with the bank shown.

^{2.} Internal GNDs and I/O GNDs (Bank 0/1) are connected inside package.

^{3.} V_{CCO} balls connect to two power planes within the package, one for V_{CCOO} and one for V_{CCOO} .

^{4.} Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

^{5.} ispMACH 4384V/B/C pin 46 is tied to GND (Bank 0).

^{6.} ispMACH 4128V only.

^{7.} Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.

^{8.} ispMACH 4128Z and 4256Z only. NC for ispMACH 4064Z.

^{9.} Use 256 ftBGA package for all new designs. Refer to PCN#14A-07 for 256 fpBGA package discontinuance.

ispMACH 4064V/B/C/Z, 4128V/B/C/Z, 4256V/B/C/Z Logic Signal Connections: 100-Pin TQFP

	Bank	ispMACH 40	64V/B/C/Z	ispMACH 41	28V/B/C/Z	ispMACH 42	256V/B/C/Z
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
1	-	GND	-	GND	-	GND	-
2	-	TDI	-	TDI	-	TDI	-
3	0	A8	A^8	В0	B^0	C12	C^3
4	0	A9	A^9	B2	B^1	C10	C^2
5	0	A10	A^10	B4	B^2	C6	C^1
6	0	A11	A^11	B6	B^3	C2	C^0
7	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
8	0	A12	A^12	B8	B^4	D12	D^3
9	0	A13	A^13	B10	B^5	D10	D^2
10	0	A14	A^14	B12	B^6	D6	D^1
11	0	A15	A^15	B13	B^7	D4	D^0
12*	0	I	-	I	-	I	-
13	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
14	0	B15	B^15	C14	C^7	E4	E^0
15	0	B14	B^14	C12	C^6	E6	E^1
16	0	B13	B^13	C10	C^5	E10	E^2
17	0	B12	B^12	C8	C^4	E12	E^3
18	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
19	0	B11	B^11	C6	C^3	F2	F^0
20	0	B10	B^10	C5	C^2	F6	F^1
21	0	B9	B^9	C4	C^1	F10	F^2
22	0	B8	B^8	C2	C^0	F12	F^3
23*	0	I	-	1	-	1	-
24	-	TCK	-	TCK	-	TCK	-
25	-	VCC	-	VCC	-	VCC	-
26	-	GND	-	GND	-	GND	-
27*	0	I	-	I	-	I	-
28	0	B7	B^7	D13	D^7	G12	G^3
29	0	B6	B^6	D12	D^6	G10	G^2
30	0	B5	B^5	D10	D^5	G6	G^1
31	0	B4	B^4	D8	D^4	G2	G^0
32	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
33	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
34	0	B3	B^3	D6	D^3	H12	H^3
35	0	B2	B^2	D4	D^2	H10	H^2
36	0	B1	B^1	D2	D^1	H6	H^1
37	0	В0	B^0	D0	D^0	H2	H^0
38	0	CLK1/I	-	CLK1/I	-	CLK1/I	-
39	1	CLK2/I	-	CLK2/I	-	CLK2/I	-
40	-	VCC	-	VCC	-	VCC	-
41	1	C0	C^0	E0	E^0	12	I^0

ispMACH 4064Z, 4128Z and 4256Z Logic Signal Connections: 132-Ball csBGA (Cont.)

		ispMAC	H 4064Z	ispMAC	H 4128Z	ispMACH 4256Z		
Ball Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	
D13	1	D10	D^10	G4	G^3	N6	N^3	
D14	1	D9	D^9	G2	G^2	N8	N^4	
D12	1	D8	D^8	G1	G^1	N10	N^5	
C14	1	I	-	G0	G^0	N12	N^6	
C13	1	NC	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	
B14	-	TDO	-	TDO	-	TDO	-	
A14	-	VCC	-	VCC	-	VCC	-	
A13	-	GND	-	GND	-	GND	-	
B13	1	NC	-	H14	H^11	O12	O^6	
A12	1	1	-	H13	H^10	O10	O^5	
C12	1	D7	D^7	H12	H^9	O8	0^4	
B12	1	D6	D^6	H10	H^8	O6	O^3	
A11	1	D5	D^5	H9	H^7	O4	0^2	
C11	1	D4	D^4	H8	H^6	O2	O^1	
B11	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	
A10	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	
B10	1	NC	-	H6	H^5	P12	P^6	
C10	1	NC	-	H5	H^4	P10	P^5	
B9	1	D3	D^3	H4	H^3	P8	P^4	
A9	1	D2	D^2	H2	H^2	P6	P^3	
C9	1	D1	D^1	H1	H^1	P4	P^2	
A8	1	D0/GOE1	D^0	H0/GOE1	H^0	P2/GOE1	P^1	
B8	1	CLK3/I	-	CLK3/I	-	CLK3/I	-	
C8	0	CLK0/I	-	CLK0/I	-	CLK0/I	-	
B7	-	VCC	-	VCC	-	VCC	-	
A7	0	NC ¹	-	NC ¹	-	l ¹	-	
C7	0	A0/GOE0	A^0	A0/GOE0	A^0	A2/GOE0	A^1	
A6	0	A1	A^1	A1	A^1	A4	A^2	
B6	0	A2	A^2	A2	A^2	A6	A^3	
C6	0	A3	A^3	A4	A^3	A8	A^4	
B5	0	NC	-	A5	A^4	A10	A^5	
A5	0	NC	-	A6	A^5	A12	A^6	
C5	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-	
B4	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-	
A4	0	NC	-	A8	A^6	B2	B^1	
C4	0	A4	A^4	A9	A^7	B4	B^2	
А3	0	A5	A^5	A10	A^8	В6	B^3	
В3	0	A6	A^6	A12	A^9	B8	B^4	
A2	0	A7	A^7	A13	A^10	B10	B^5	
A1	0	NC	-	A14	A^11	B12	B^6	
	1	1		1	I	I .		

^{1.} For device migration considerations, these NC pins are input signal pins in ispMACH 4256Z device.

ispMACH 4128V and 4256V Logic Signal Connections: 144-Pin TQFP (Cont.)

		ispMACH 4128V		ispMACH	4256V
Pin Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
86	1	F12	F^9	L8	L^4
87	1	F13	F^10	L6	L^3
88	1	F14	F^11	L4	L^2
89	1	NC ²	-	J ²	-
90	1	GND (Bank 1) ¹	-	NC ¹	-
91	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-
92	1	NC ²	-	²	-
93	1	G14	G^11	M2	M^1
94	1	G13	G^10	M4	M^2
95	1	G12	G^9	M6	M^3
96	1	G10	G^8	M8	M^4
97	1	G9	G^7	M10	M^5
98	1	G8	G^6	M12	M^6
99	1	GND (Bank 1)	-	GND (Bank 1)	-
100	1	G6	G^5	N2	N^1
101	1	G5	G^4	N4	N^2
102	1	G4	G^3	N6	N^3
103	1	G2	G^2	N8	N^4
104	1	G1	G^1	N10	N^5
105	1	G0	G^0	N12	N^6
106	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-
107	-	TDO	-	TDO	-
108	-	VCC	-	VCC	-
109	-	GND	-	GND	-
110	1	NC ²	-	²	-
111	1	H14	H^11	012	O^6
112	1	H13	H^10	O10	O^5
113	1	H12	H^9	O8	0^4
114	1	H10	H^8	O6	O^3
115	1	H9	H^7	04	O^2
116	1	H8	H^6	02	O^1
117	1	NC ²	-	²	-
118	1	GND (Bank 1)	-	GND (Bank 1)	-
119	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-
120	1	H6	H^5	P12	P^6
121	1	H5	H^4	P10	P^5
122	1	H4	H^3	P8	P^4
123	1	H2	H^2	P6	P^3
124	1	H1	H^1	P4	P^2
125	1	H0/GOE1	H^0	P2/GOE1	P^1
126	1	CLK3/I	-	CLK3/I	-
127	0	GND (Bank 0)	-	GND (Bank 0)	-
128	0	CLK0/I	-	CLK0/I	-

ispMACH 4128V and 4256V Logic Signal Connections: 144-Pin TQFP (Cont.)

		ispMACH 4128V		ispMAC	H 4256V
Pin Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
129	-	VCC	-	VCC	-
130	0	A0/GOE0	A^0	A2/GOE0	A^1
131	0	A1	A^1	A4	A^2
132	0	A2	A^2	A6	A^3
133	0	A4	A^3	A8	A^4
134	0	A5	A^4	A10	A^5
135	0	A6	A^5	A12	A^6
136	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-
137	0	GND (Bank 0)	-	GND (Bank 0)	-
138	0	A8	A^6	B2	B^1
139	0	A9	A^7	B4	B^2
140	0	A10	A^8	B6	B^3
141	0	A12	A^9	B8	B^4
142	0	A13	A^10	B10	B^5
143	0	A14	A^11	B12	B^6
144	0	NC ²	-	l ²	-

^{1.} For device migration considerations, these NC pins are GND pins for I/O banks in ispMACH 4128V devices.

ispMACH 4256V/B/C/Z, 4384V/B/C, 4512V/B/C, Logic Signal Connections: 176-Pin TQFP

	Bank	ispMACH 42	256V/B/C/Z	ispMACH 4	384V/B/C	ispMACH 4	1512V/B/C
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
1	-	NC	-	NC	-	NC	-
2	-	GND	-	GND	-	GND	-
3	-	TDI	-	TDI	-	TDI	-
4	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-	VCCO (Bank 0)	-
5	0	C14	C^7	C14	C^7	C14	C^7
6	0	C12	C^6	C12	C^6	C12	C^6
7	0	C10	C^5	C10	C^5	C10	C^5
8	0	C8	C^4	C8	C^4	C8	C^4
9	0	C6	C^3	C6	C^3	C6	C^3
10	0	C4	C^2	C4	C^2	C4	C^2
11	0	C2	C^1	C2	C^1	C2	C^1
12	0	C0	C^0	C0	C^0	C0	C^0
13	0	GND (Bank 0)	-	GND (Bank 0)	-	GND (Bank 0)	-
14	0	D14	D^7	E14	E^7	G14	G^7
15	0	D12	D^6	E12	E^6	G12	G^6
16	0	D10	D^5	E10	E^5	G10	G^5
17	0	D8	D^4	E8	E^4	G8	G^4
18	0	D6	D^3	E6	E^3	G6	G^3

^{2.} For device migration considerations, these NC pins are input signal pins in ispMACH 4256V devices.

ispMACH 4256V/B/C/Z, 4384V/B/C, 4512V/B/C, Logic Signal Connections: 176-Pin TQFP (Cont.)

	Bank	ispMACH 4256V/B/C/Z		ispMACH 4	384V/B/C	ispMACH 4512V/B/C		
Pin Number	Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP	
60	0	H8	H^4	L8	L^4	P8	P^4	
61	0	H6	H^3	L6	L^3	P6	P^3	
62	0	H4	H^2	L4	L^2	P4	P^2	
63	0	H2	H^1	L2	L^1	P2	P^1	
64	0	H0	H^0	L0	L^0	P0	P^0	
65	-	GND	-	GND	-	GND	-	
66	0	CLK1/I	-	CLK1/I	-	CLK1/I	-	
67	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	
68	1	CLK2/I	-	CLK2/I	-	CLK2/I	-	
69	-	VCC	-	VCC	-	VCC	-	
70	1	10	I^0	MO	M^0	AX0	AX^0	
71	1	I2	I^1	M2	M^1	AX2	AX^1	
72	1	14	I^2	M4	M^2	AX4	AX^2	
73	1	16	I^3	M6	M^3	AX6	AX^3	
74	1	18	I^4	M8	M^4	AX8	AX^4	
75	1	I10	I^5	M10	M^5	AX10	AX^5	
76	1	l12	I^6	M12	M^6	AX12	AX^6	
77	1	l14	I^7	M14	M^7	AX14	AX^7	
78	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	
79	1	GND (Bank 1)	-	GND (Bank 1)	-	GND (Bank 1)	-	
80	1	J0	J^0	N0	N^0	BX0	BX^0	
81	1	J2	J^1	N2	N^1	BX2	BX^1	
82	1	J4	J^2	N4	N^2	BX4	BX^2	
83	1	J6	J^3	N6	N^3	BX6	BX^3	
84	1	J8	J^4	N8	N^4	BX8	BX^4	
85	1	J10	J^5	N10	N^5	BX10	BX^5	
86	1	J12	J^6	N12	N^6	BX12	BX^6	
87	1	J14	J^7	N14	N^7	BX14	BX^7	
88	-	VCC	-	VCC	-	VCC	-	
89	-	NC	-	NC	-	NC	-	
90	-	GND	-	GND	-	GND	-	
91	-	TMS	-	TMS	-	TMS	-	
92	1	VCCO (Bank 1)	-	VCCO (Bank 1)	-	VCCO (Bank 1)	-	
93	1	K14	K^7	O14	O^7	CX14	CX^7	
94	1	K12	K^6	O12	O^6	CX12	CX^6	
95	1	K10	K^5	O10	O^5	CX10	CX^5	
96	1	K8	K^4	O8	0^4	CX8	CX^4	
97	1	K6	K^3	O6	O^3	CX6	CX^3	
98	1	K4	K^2	O4	O^2	CX4	CX^2	
99	1	K2	K^1	O2	O^1	CX2	CX^1	
100	1	K0	K^0	00	O^0	CX0	CX^0	

ispMACH 4000V (3.3V) Extended Temperature Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
LC4032V	LC4032V-75T48E	32	3.3	7.5	TQFP	48	32	Е
LU4032V	LC4032V-75T44E	32	3.3	7.5	TQFP	44	30	Е
	LC4064V-75T100E	64	3.3	7.5	TQFP	100	64	Е
LC4064V	LC4064V-75T48E	64	3.3	7.5	TQFP	48	32	Е
	LC4064V-75T44E	64	3.3	7.5	TQFP	44	30	Е
	LC4128V-75T144E	128	3.3	7.5	TQFP	144	96	Е
LC4128V	LC4128V-75T128E	128	3.3	7.5	TQFP	128	92	Е
	LC4128V-75T100E	128	3.3	7.5	TQFP	100	64	Е
	LC4256V-75T176E	256	3.3	7.5	TQFP	176	128	Е
LC4256V	LC4256V-75T144E	256	3.3	7.5	TQFP	144	96	Е
	LC4256V-75T100E	256	3.3	7.5	TQFP	100	64	Е

ispMACH 4000B (2.5V) Lead-Free Commercial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032B-25TN48C	32	2.5	2.5	Lead-Free TQFP	48	32	С
	LC4032B-5TN48C	32	2.5	5	Lead-Free TQFP	48	32	С
L C4020B	LC4032B-75TN48C	32	2.5	7.5	Lead-Free TQFP	48	32	С
LC4032B	LC4032B-25TN44C	32	2.5	2.5	Lead-Free TQFP	44	30	С
	LC4032B-5TN44C	32	2.5	5	Lead-Free TQFP	44	30	С
	LC4032B-75TN44C	32	2.5	7.5	Lead-Free TQFP	44	30	С
	LC4064B-25TN100C	64	2.5	2.5	Lead-Free TQFP	100	64	С
	LC4064B-5TN100C	64	2.5	5	Lead-Free TQFP	100	64	С
	LC4064B-75TN100C	64	2.5	7.5	Lead-Free TQFP	100	64	С
	LC4064B-25TN48C	64	2.5	2.5	Lead-Free TQFP	48	32	С
LC4064B	LC4064B-5TN48C	64	2.5	5	Lead-Free TQFP	48	32	С
	LC4064B-75TN48C	64	2.5	7.5	Lead-Free TQFP	48	32	С
	LC4064B-25TN44C	64	2.5	2.5	Lead-Free TQFP	44	30	С
	LC4064B-5TN44C	64	2.5	5	Lead-Free TQFP	44	30	С
	LC4064B-75TN44C	64	2.5	7.5	Lead-Free TQFP	44	30	С
	LC4128B-27TN128C	128	2.5	2.7	Lead-Free TQFP	128	92	С
	LC4128B-5TN128C	128	2.5	5	Lead-Free TQFP	128	92	С
1.044.000	LC4128B-75TN128C	128	2.5	7.5	Lead-Free TQFP	128	92	С
LC4128B	LC4128B-27TN100C	128	2.5	2.7	Lead-Free TQFP	100	92	С
	LC4128B-5TN100C	128	2.5	5	Lead-Free TQFP	100	92	С
	LC4128B-75TN100C	128	2.5	7.5	Lead-Free TQFP	100	92	С
	LC4256B-3FTN256AC	256	2.5	3	Lead-Free ftBGA	256	128	С
	LC4256B-5FTN256AC	256	2.5	5	Lead-Free ftBGA	256	128	С
	LC4256B-75FTN256AC	256	2.5	7.5	Lead-Free ftBGA	256	128	С
	LC4256B-3FTN256BC	256	2.5	3	Lead-Free ftBGA	256	160	С
	LC4256B-5FTN256BC	256	2.5	5	Lead-Free ftBGA	256	160	С
	LC4256B-75FTN256BC	256	2.5	7.5	Lead-Free ftBGA	256	160	С
	LC4256B-3FN256AC1	256	2.5	3	Lead-Free fpBGA	256	128	С
	LC4256B-5FN256AC1	256	2.5	5	Lead-Free fpBGA	256	128	С
L 0.4050D	LC4256B-75FN256AC1	256	2.5	7.5	Lead-Free fpBGA	256	128	С
LC4256B	LC4256B-3FN256BC1	256	2.5	3	Lead-Free fpBGA	256	160	С
	LC4256B-5FN256BC ¹	256	2.5	5	Lead-Free fpBGA	256	160	С
	LC4256B-75FN256BC ¹	256	2.5	7.5	Lead-Free fpBGA	256	160	С
	LC4256B-3TN176C	256	2.5	3	Lead-Free TQFP	176	128	С
	LC4256B-5TN176C	256	2.5	5	Lead-Free TQFP	176	128	С
	LC4256B-75TN176C	256	2.5	7.5	Lead-Free TQFP	176	128	С
	LC4256B-3TN100C	256	2.5	3	Lead-Free TQFP	100	64	С
	LC4256B-5TN100C	256	2.5	5	Lead-Free TQFP	100	64	С
	LC4256B-75TN100C	256	2.5	7.5	Lead-Free TQFP	100	64	С

Revision History (Cont.)

Date	Version	Change Summary
January 2004	20z	ispMACH 4000Z data sheet status changed from preliminary to final. Documents production release of the ispMACH 4256Z device.
		Added new feature - ispMACH 4000Z supports operation down to 1.6V.
		Added lead-free packaging ordering part numbers for the ispMACH 4000Z/C/V devices.
April 2004	21z	Updated I $_{PU}$ (I/O Weak Pull-up Resistor Current) max. specification for the ispMACH 4000V/B/C; -150 μ A to -200 μ A.
November 2004	22z	Added User Electronic Signature section.
		Added ispMACH 4000B (2.5V) Lead-Free Ordering Part Numbers.
December 2004	22z.1	Updated Further Information section.
February 2006	22z.2	Clarification to ispMACH 4000Z Input Leakage (I _{IH}) specification.
March 2007	22.3	Updated ispMACH 4000 Introduction section.
		Updated Signal Descriptions table.
June 2007	22.4	Updated Features bullets to include reference to "LA" automotive data sheet under the "Broad Device Offering" bullet.
		Added footnote 1 to Part Number Description to reference the "LA" automotive data sheet.
		Changed device temperature references from 'Automotive' to "Extended Temperature" for non-AEC-Q100 qualified devices.
November 2007	23.0	Added 256-ftBGA package Ordering Part Number information per PCN#14A-07.
May 2009	23.1	Correction to $t_{\rm CW}$, $t_{\rm GW}$, $t_{\rm WIR}$ and $f_{\rm MAX}$ parameters in ispMACH 4000Z External Switching Characteristics table.
		Correction to t_{CW} , t_{GW} , t_{WIR} and f_{MAX} parameters in ispMACH 4000V/B/C External Switching Characteristics table.