
E. Lattice Semiconductor Corporation - <u>LC4384B-35FTN256C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	3.5 ns
Voltage Supply - Internal	2.3V ~ 2.7V
Number of Logic Elements/Blocks	24
Number of Macrocells	384
Number of Gates	-
Number of I/O	192
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4384b-35ftn256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

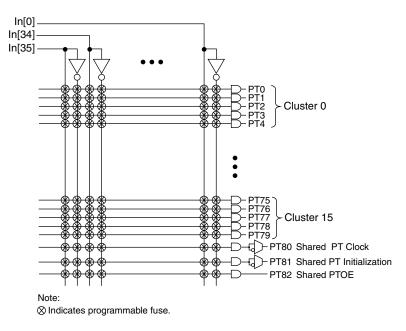
	ispMACH 4032ZC	ispMACH 4064ZC	ispMACH 4128ZC	ispMACH 4256ZC
Macrocells	32	64	128	256
I/O + Dedicated Inputs	32+4/32+4	32+4/32+12/ 64+10/64+10	64+10/96+4	64+10/96+6/ 128+4
t _{PD} (ns)	3.5	3.7	4.2	4.5
t _S (ns)	2.2	2.5	2.7	2.9
t _{CO} (ns)	3.0	3.2	3.5	3.8
f _{MAX} (MHz)	267	250	220	200
Supply Voltage (V)	1.8	1.8	1.8	1.8
Max. Standby Icc (µA)	20	25	35	55
Pins/Package	48 TQFP 56 csBGA	48 TQFP 56 csBGA 100 TQFP 132 csBGA	100 TQFP 132csBGA	100 TQFP 132 csBGA 176 TQFP

Table 2. ispMACH 4000Z Family Selection Guide

ispMACH 4000 Introduction

The high performance ispMACH 4000 family from Lattice offers a SuperFAST CPLD solution. The family is a blend of Lattice's two most popular architectures: the ispLSI[®] 2000 and ispMACH 4A. Retaining the best of both families, the ispMACH 4000 architecture focuses on significant innovations to combine the highest performance with low power in a flexible CPLD family.

The ispMACH 4000 combines high speed and low power with the flexibility needed for ease of design. With its robust Global Routing Pool and Output Routing Pool, this family delivers excellent First-Time-Fit, timing predictability, routing, pin-out retention and density migration.


The ispMACH 4000 family offers densities ranging from 32 to 512 macrocells. There are multiple density-I/O combinations in Thin Quad Flat Pack (TQFP), Chip Scale BGA (csBGA) and Fine Pitch Thin BGA (ftBGA) packages ranging from 44 to 256 pins/balls. Table 1 shows the macrocell, package and I/O options, along with other key parameters.

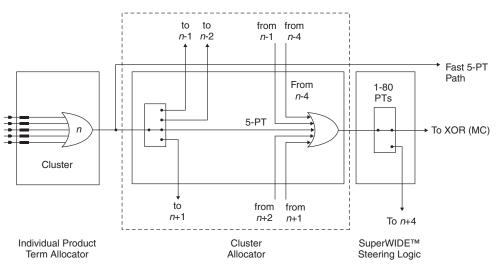
The ispMACH 4000 family has enhanced system integration capabilities. It supports 3.3V (4000V), 2.5V (4000B) and 1.8V (4000C/Z) supply voltages and 3.3V, 2.5V and 1.8V interface voltages. Additionally, inputs can be safely driven up to 5.5V when an I/O bank is configured for 3.3V operation, making this family 5V tolerant. The ispMACH 4000 also offers enhanced I/O features such as slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. The ispMACH 4000 family members are 3.3V/ 2.5V/1.8V in-system programmable through the IEEE Standard 1532 interface. IEEE Standard 1149.1 boundary scan testing capability also allows product testing on automated test equipment. The 1532 interface signals TCK, TMS, TDI and TDO are referenced to V_{CC} (logic core).

Overview

The ispMACH 4000 devices consist of multiple 36-input, 16-macrocell Generic Logic Blocks (GLBs) interconnected by a Global Routing Pool (GRP). Output Routing Pools (ORPs) connect the GLBs to the I/O Blocks (IOBs), which contain multiple I/O cells. This architecture is shown in Figure 1.

Figure 3. AND Array

Enhanced Logic Allocator


Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term cluster is associated with a macrocell. The cluster size for the ispMACH 4000 family is 4+1 (total 5) product terms. The software automatically considers the availability and distribution of product term clusters as it fits the functions within a GLB. The logic allocator is designed to provide three speed paths: 5-PT fast bypass path, 20-PT Speed Locking path and an up to 80-PT path. The availability of these three paths lets designers trade timing variability for increased performance.

The enhanced Logic Allocator of the ispMACH 4000 family consists of the following blocks:

- Product Term Allocator
- Cluster Allocator
- Wide Steering Logic

Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.

Figure 4. Macrocell Slice

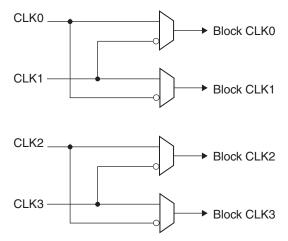
- Block CLK2
- Block CLK3
- PT Clock
- PT Clock Inverted
- Shared PT Clock
- Ground

Clock Enable Multiplexer

Each macrocell has a 4:1 clock enable multiplexer. This allows the clock enable signal to be selected from the following four sources:

- PT Initialization/CE
- PT Initialization/CE Inverted
- Shared PT Clock
- Logic High

Initialization Control


The ispMACH 4000 family architecture accommodates both block-level and macrocell-level set and reset capability. There is one block-level initialization term that is distributed to all macrocell registers in a GLB. At the macrocell level, two product terms can be "stolen" from the cluster associated with a macrocell to be used for set/reset functionality. A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, providing flexibility.

Note that the reset/preset swapping selection feature affects power-up reset as well. All flip-flops power up to a known state for predictable system initialization. If a macrocell is configured to SET on a signal from the block-level initialization, then that macrocell will be SET during device power-up. If a macrocell is configured to RESET on a signal from the block-level initialization or is not configured for set/reset, then that macrocell will RESET on power-up. To guarantee initialization values, the V_{CC} rise must be monotonic, and the clock must be inactive until the reset delay time has elapsed.

GLB Clock Generator

Each ispMACH 4000 device has up to four clock pins that are also routed to the GRP to be used as inputs. These pins drive a clock generator in each GLB, as shown in Figure 6. The clock generator provides four clock signals that can be used anywhere in the GLB. These four GLB clock signals can consist of a number of combinations of the true and complement edges of the global clock signals.

Figure 6. GLB Clock Generator

I/O Cell	Available Macrocells
I/O 0	M0, M1, M2, M3, M4, M5, M6, M7
I/O 1	M1, M2, M3, M4, M5, M6, M7, M8
I/O 2	M2, M3, M4, M5, M6, M7, M8, M9
I/O 3	M3, M4, M5, M6, M7, M8, M9, M10
I/O 4	M4, M5, M6, M7, M8, M9, M10, M11
I/O 5	M5, M6, M7, M8, M9, M10, M11, M12
I/O 6	M6, M7, M8, M9, M10, M11, M12, M13
I/O 7	M7, M8, M9, M10, M11, M12, M13, M14
I/O 8	M8, M9, M10, M11, M12, M13, M14, M15
I/O 9	M9, M10, M11, M12, M13, M14, M15, M0
I/O 10	M10, M11, M12, M13, M14, M15, M0, M1
I/O 11	M11, M12, M13, M14, M15, M0, M1, M2
I/O 12	M12, M13, M14, M15, M0, M1, M2, M3
I/O 13	M13, M14, M15, M0, M1, M2, M3, M4
I/O 14	M14, M15, M0, M1, M2, M3, M4, M5
I/O 15	M15, M0, M1, M2, M3, M4, M5, M6

Table 7. ORP Combinations for I/O Blocks with 16 I/Os

Table 8. ORP Combinations for I/O Blocks with 4 I/Os

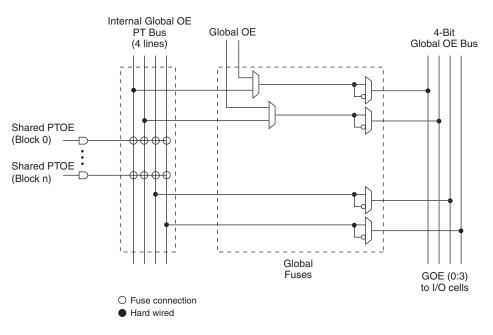
I/O Cell	Available Macrocells
I/O 0	M0, M1, M2, M3, M4, M5, M6, M7
I/O 1	M4, M5, M6, M7, M8, M9, M10, M11
I/O 2	M8, M9, M10, M11, M12, M13, M14, M15
I/O 3	M12, M13, M14, M15, M0, M1, M2, M3

Table 9. ORP Combinations for I/O Blocks with 10 I/Os

I/O Cell	Available Macrocells
I/O 0	M0, M1, M2, M3, M4, M5, M6, M7
I/O 1	M2, M3, M4, M5, M6, M7, M8, M9
I/O 2	M4, M5, M6, M7, M8, M9, M10, M11
I/O 3	M6, M7, M8, M9, M10, M11, M12, M13
I/O 4	M8, M9, M10, M11, M12, M13, M14, M15
I/O 5	M10, M11, M12, M13, M14, M15, M0, M1
I/O 6	M12, M13, M14, M15, M0, M1, M2, M3
I/O 7	M14, M15, M0, M1, M2, M3, M4, M5
I/O 8	M2, M3, M4, M5, M6, M7, M8, M9
I/O 9	M10, M11, M12, M13, M14, M15, M0, M1

- LVTTL
- LVCMOS 1.8
- LVCMOS 3.3
- 3.3V PCI Compatible
- LVCMOS 2.5

All of the I/Os and dedicated inputs have the capability to provide a bus-keeper latch, Pull-up Resistor or Pull-down Resistor. A fourth option is to provide none of these. The selection is done on a global basis. The default in both hardware and software is such that when the device is erased or if the user does not specify, the input structure is configured to be a Pull-up Resistor.


Each ispMACH 4000 device I/O has an individually programmable output slew rate control bit. Each output can be individually configured for fast slew or slow slew. The typical edge rate difference between fast and slow slew setting is 20%. For high-speed designs with long, unterminated traces, the slow-slew rate will introduce fewer reflections, less noise and keep ground bounce to a minimum. For designs with short traces or well terminated lines, the fast slew rate can be used to achieve the highest speed.

Global OE Generation

Most ispMACH 4000 family devices have a 4-bit wide Global OE Bus, except the ispMACH 4032 device that has a 2-bit wide Global OE Bus. This bus is derived from a 4-bit internal global OE PT bus and two dual purpose I/O or GOE pins. Each signal that drives the bus can optionally be inverted.

Each GLB has a block-level OE PT that connects to all bits of the Global OE PT bus with four fuses. Hence, for a 256-macrocell device (with 16 blocks), each line of the bus is driven from 16 OE product terms. Figures 9 and 10 show a graphical representation of the global OE generation.

IEEE 1532-Compliant In-System Programming

Programming devices in-system provides a number of significant benefits including: rapid prototyping, lower inventory levels, higher quality and the ability to make in-field modifications. All ispMACH 4000 devices provide In-System Programming (ISP[™]) capability through the Boundary Scan Test Access Port. This capability has been implemented in a manner that ensures that the port remains complaint to the IEEE 1149.1 standard. By using IEEE 1149.1 as the communication interface through which ISP is achieved, users get the benefit of a standard, welldefined interface. All ispMACH 4000 devices are also compliant with the IEEE 1532 standard.

The ispMACH 4000 devices can be programmed across the commercial temperature and voltage range. The PCbased Lattice software facilitates in-system programming of ispMACH 4000 devices. The software takes the JEDEC file output produced by the design implementation software, along with information about the scan chain, and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain via the parallel port of a PC. Alternatively, the software can output files in formats understood by common automated test equipment. This equipment can then be used to program ispMACH 4000 devices during the testing of a circuit board.

User Electronic Signature

The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the device, stored in E²CMOS memory. The ispMACH 4000 device contains 32 UES bits that can be configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.

Security Bit

A programmable security bit is provided on the ispMACH 4000 devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.

Hot Socketing

The ispMACH 4000 devices are well-suited for applications that require hot socketing capability. Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The isp-MACH 4000 devices provide this capability for input voltages in the range 0V to 3.0V.

Density Migration

The ispMACH 4000 family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Supply Current, ispMACH 4000Z (Cont.)

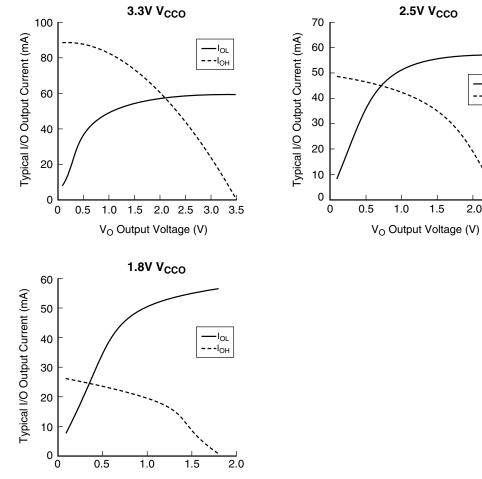
Over Recommended	Operating	Conditions
-------------------------	-----------	------------

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
ispMACH 4	256ZC			L		
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	341	—	μΑ
ICC ^{1, 2, 3, 5}	Operating Power Supply Current	$Vcc = 1.8V, T_A = 25^{\circ}C$ — 3 $Vcc = 1.9V, T_A = 70^{\circ}C$ — 3 $Vcc = 1.9V, T_A = 85^{\circ}C$ — 3 $Vcc = 1.9V, T_A = 125^{\circ}C$ — 4 $Vcc = 1.8V, T_A = 25^{\circ}C$ — 4 $Vcc = 1.9V, T_A = 70^{\circ}C$ — 5 $Vcc = 1.9V, T_A = 85^{\circ}C$ — 5 $Vcc = 1.9V, T_A = 85^{\circ}C$ — 5	361	—	μA	
	Operating Fower Supply Current	$Vcc = 1.9V, T_A = 85^{\circ}C$	—	372	341 — 361 — 372 — 468 — 13 — 32 55 43 90	μA
		$Vcc = 1.9V, T_A = 125^{\circ}C$	_	468	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	_	13	—	μA
ICC ^{4, 5} Standby Power Supply Current	Standby Power Supply Current	$Vcc = 1.9V, T_A = 70^{\circ}C$	_	32	55	μA
	Standby I ower Supply Surrent	$Vcc = 1.9V, T_A = 85^{\circ}C$	—	43	90	μA
		$Vcc = 1.9V, T_A = 125^{\circ}C$	_	135	_	μA

 1. $T_A = 25^{\circ}C$, frequency = 1.0 MHz.

 2. Device configured with 16-bit counters.

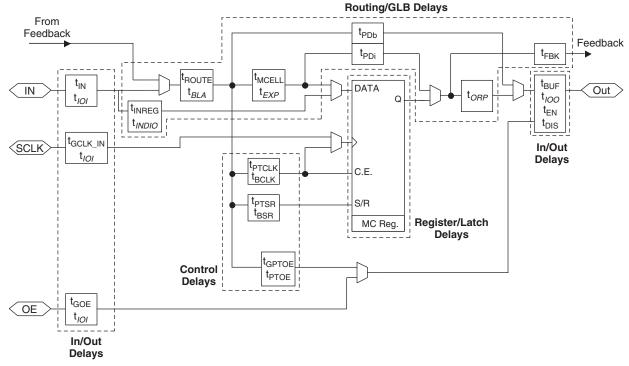
 3. I_{CC} varies with specific device configuration and operating frequency.


 4. $V_{CCO} = 3.6V$, $V_{IN} = 0V$ or V_{CCO} , bus maintenance turned off. V_{IN} above V_{CCO} will add transient current above the specified standby I_{CC} .

 5. Includes V_{CCO} current without output loading.

— I_{OL} - - - I_{OH}

2.0


2.5

V_O Output Voltage (V)

Timing Model

The task of determining the timing through the ispMACH 4000 family, like any CPLD, is relatively simple. The timing model provided in Figure 11 shows the specific delay paths. Once the implementation of a given function is determined either conceptually or from the software report file, the delay path of the function can easily be determined from the timing model. The Lattice design tools report the timing delays based on the same timing model for a particular design. Note that the internal timing parameters are given for reference only, and are not tested. The external timing parameters are tested and guaranteed for every device. For more information on the timing model and usage, refer to TN1004, <u>ispMACH 4000 Timing Model Design and Usage Guidelines</u>.

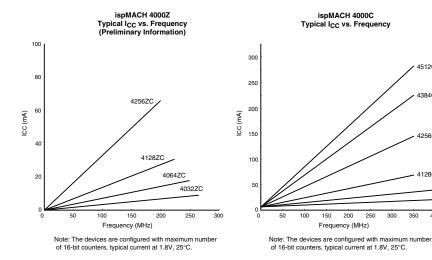
Note: Italicized items are optional delay adders.

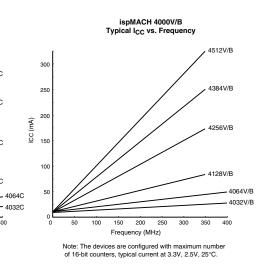
ispMACH 4000Z Internal Timing Parameters (Cont.)

		-4	1 5	-	5	-75			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units	
In/Out Delay	ys	I			l	l		1	
t _{IN}	Input Buffer Delay	—	0.95	_	1.25	—	1.80	ns	
t _{GOE}	Global OE Pin Delay	—	3.00	_	3.50	—	4.30	ns	
t _{GCLK_IN}	Global Clock Input Buffer Delay	—	1.95	_	2.05	—	2.15	ns	
t _{BUF}	Delay through Output Buffer	—	1.10	_	1.00		1.30	ns	
t _{EN}	Output Enable Time	—	2.50	—	2.50	—	2.70	ns	
t _{DIS}	Output Disable Time	—	2.50	—	2.50	—	2.70	ns	
Routing/GL	B Delays								
t _{route}	Delay through GRP	—	2.25	—	2.05	—	2.50	ns	
t _{MCELL}	Macrocell Delay	—	0.65		0.65	—	1.00	ns	
t _{INREG}	Input Buffer to Macrocell Register Delay	—	1.00		1.00	—	1.00	ns	
t _{FBK}	Internal Feedback Delay	—	0.35	_	0.05	_	0.05	ns	
t _{PDb}	5-PT Bypass Propagation Delay	—	0.20		0.70	—	1.90	ns	
t _{PDi}	Macrocell Propagation Delay	—	0.45	_	0.65		1.00	ns	
Register/La	tch Delays								
t _S	D-Register Setup Time (Global Clock)	1.00	—	1.10		1.35	—	ns	
t _{S_PT}	D-Register Setup Time (Product Term Clock)	2.10	—	1.90		2.45	_	ns	
t _{ST}	T-Register Setup Time (Global Clock)	1.20	—	1.30		1.55	-	ns	
t _{ST_PT}	T-register Setup Time (Product Term Clock)	2.30	—	2.10		2.75	_	ns	
t _H	D-Register Hold Time	1.90	_	1.90		3.15	_	ns	
t _{HT}	T-Resister Hold Time	1.90	-	1.90	_	3.15	-	ns	
t _{SIR}	D-Input Register Setup Time (Global Clock)	1.30	_	1.10		0.75	_	ns	
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45		1.45	_	ns	
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.30	—	1.50	—	1.95	—	ns	
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	1.00	_	1.00		1.18	_	ns	
t _{COi}	Register Clock to Output/Feedback MUX Time	_	0.75		1.15	_	1.05	ns	
t _{CES}	Clock Enable Setup Time	2.00	—	2.00	—	2.00	—	ns	
t _{CEH}	Clock Enable Hold Time	0.00	—	0.00	—	0.00	—	ns	
t _{SL}	Latch Setup Time (Global Clock)	1.00	—	1.00	—	1.65	—	ns	
t _{SL_PT}	Latch Setup Time (Product Term Clock)	2.10	—	1.90	—	2.15	—	ns	
t _{HL}	Latch Hold Time	2.00	—	2.00	—	1.17	—	ns	
t _{GOi}	Latch Gate to Output/Feedback MUX Time	—	0.33	—	0.33	—	0.33	ns	
t _{PDLi}	Propagation Delay through Transparent Latch to Output/ Feedback MUX	—	0.25	—	0.25	—	0.25	ns	
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	—	0.97		0.97	_	0.28	ns	
t _{SRR}	Asynchronous Reset or Set Recovery Delay		1.80		1.80	_	1.67	ns	
Control Del	ays								
t _{BCLK}	GLB PT Clock Delay	—	1.55	—	1.55	_	1.25	ns	
t _{PTCLK}	Macrocell PT Clock Delay	—	1.55		1.55	—	1.25	ns	
t _{BSR}	GLB PT Set/Reset Delay	—	1.83		1.83	—	1.83	ns	
t _{PTSR}	Macrocell PT Set/Reset Delay	—	1.83		1.83	—	2.72	ns	
t _{GPTOE}	Global PT OE Delay	—	4.30		4.20	—	3.50	ns	

Over Recommended Operating Conditions

4512C


4384C


4256C

- 4128C

350 400

Power Consumption

Power Estimation Coefficients¹

Device	A	В
ispMACH 4032V/B	11.3	0.010
ispMACH 4032C	1.3	0.010
ispMACH 4064V/B	11.5	0.010
ispMACH 4064C	1.5	0.010
ispMACH 4128V/B	11.5	0.011
ispMACH 4128C	1.5	0.011
ispMACH 4256V/B	12	0.011
ispMACH 4256C	2	0.011
ispMACH 4384V/B	12.5	0.013
ispMACH 4384C	2.5	0.013
ispMACH 4512V/B	13	0.013
ispMACH 4512C	3	0.013
ispMACH 4032ZC	0.010	0.010
ispMACH 4064ZC	0.011	0.010
ispMACH 4128ZC	0.012	0.010
ispMACH 4256ZC	0.013	0.010

1. For further information about the use of these coefficients, refer to TN1005, Power Estimation in ispMACH 4000V/B/C/Z Devices.

Switching Test Conditions

Figure 12 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 11.

Figure 12. Output Test Load, LVTTL and LVCMOS Standards

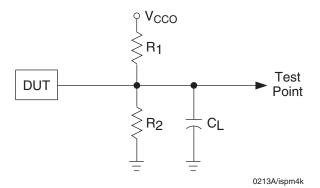
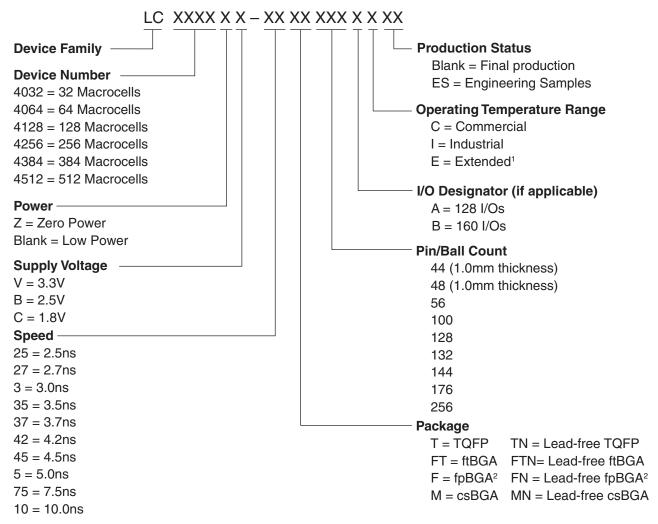


Table 11. Test Fixture Required Components


Test Condition	R ₁	R ₂	$C_{L^{1}}$	Timing Ref.	V _{cco}
				LVCMOS 3.3 = 1.5V	LVCMOS 3.3 = 3.0V
LVCMOS I/O, (L -> H, H -> L)	106Ω	106Ω	35pF	LVCMOS 2.5 = $V_{CCO}/2$	LVCMOS 2.5 = 2.3V
				LVCMOS 1.8 = $V_{CCO}/2$	LVCMOS 1.8 = 1.65V
LVCMOS I/O (Z -> H)	∞	106Ω	35pF	1.5V	3.0V
LVCMOS I/O (Z -> L)	106Ω	x	35pF	1.5V	3.0V
LVCMOS I/O (H -> Z)	x	106Ω	5pF	V _{OH} - 0.3	3.0V
LVCMOS I/O (L -> Z)	106Ω	x	5pF	V _{OL} + 0.3	3.0V

1. C_L includes test fixtures and probe capacitance.

ispMACH 4128V and 4256V Logic Signal Connections: 144-Pin TQFP

		ispMACH 4		ispMACH 4	4256V
Pin Number	Bank Number	GLB/MC/Pad	ORP	GLB/MC/Pad	ORP
1	-	GND	-	GND	-
2	-	TDI	-	TDI	-
3	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-
4	0	B0	B^0	C12	C^6
5	0	B1	B^1	C10	C^5
6	0	B2	B^2	C8	C^4
7	0	B4	B^3	C6	C^3
8	0	B5	B^4	C4	C^2
9	0	B6	B^5	C2	C^1
10	0	GND (Bank 0)	-	GND (Bank 0)	-
11	0	B8	B^6	D14	D^7
12	0	B9	B^7	D12	D^6
13	0	B10	B^8	D10	D^5
14	0	B12	B^9	D8	D^4
15	0	B13	B^10	D6	D^3
16	0	B14	B^11	D4	D^2
17	-	NC ²	-	²	-
18	0	GND (Bank 0)1	-	NC ¹	-
19	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-
20	0	NC ²	-	²	-
21	0	C14	C^11	E2	E^1
22	0	C13	C^10	E4	E^2
23	0	C12	C^9	E6	E^3
24	0	C10	C^8	E8	E^4
25	0	C9	C^7	E10	E^5
26	0	C8	C^6	E12	E^6
27	0	GND (Bank 0)	-	GND (Bank 0)	-
28	0	C6	C^5	F2	F^1
29	0	C5	C^4	F4	F^2
30	0	C4	C^3	F6	F^3
31	0	C2	C^2	F8	F^4
32	0	C1	C^1	F10	F^5
33	0	CO	C^0	F12	F^6
34	0	VCCO (Bank 0)	-	VCCO (Bank 0)	-
35	-	TCK	-	TCK	-
36	-	VCC	-	VCC	-
37	-	GND	-	GND	-
38	0	NC ²	-	l ²	-
39	0	D14	D^11	G12	G^6
40	0	D13	D^10	G10	G^5
41	0	D12	D^9	G8	G^4
42	0	D10	D^8	G6	G^3

Part Number Description

1. For automotive AEC-Q100 compliant devices, refer to the LA-ispMACH 4000V/Z Automotive Family Data Sheet (DS1017).

2. Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000 Family Speed Grade Offering

	-25	-27	-3	-35	-37	-42	-45		5		-75		-10
	Com	Ind	Com	Ind	Ext	Ind							
ispMACH 4032V/B/C												1	
ispMACH 4064V/B/C												1	
ispMACH 4128V/B/C												1	
ispMACH 4256V/B/C													
ispMACH 4384V/B/C													
ispMACH 4512V/B/C													
ispMACH 4032ZC												1	
ispMACH 4064ZC												1	
ispMACH 4128ZC												1	
ispMACH 4256ZC													

Ordering Information

Note: ispMACH 4000 devices are all dual marked except the slowest commercial speed grade ispMACH 4000Z devices. For example, the commercial speed grade LC4128C-5T100C is also marked with the industrial grade -75I. The commercial grade is always one speed grade faster than the associated dual mark industrial grade. The slowest commercial speed grade ispMACH 4000Z devices are marked as commercial grade only.

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032ZC-35M56C	32	1.8	3.5	csBGA	56	32	C
	LC4032ZC-5M56C	32	1.8	5	csBGA	56	32	C
	LC4032ZC-75M56C	32	1.8	7.5	csBGA	56	32	C
LC4032ZC	LC4032ZC-35T48C	32	1.8	3.5	TQFP	48	32	С
	LC4032ZC-5T48C	32	1.8	5	TQFP	48	32	С
	LC4032ZC-75T48C	32	1.8	7.5	TQFP	48	32	С
	LC4064ZC-37M132C	64	1.8	3.7	csBGA	132	64	С
	LC4064ZC-5M132C	64	1.8	5	csBGA	132	64	С
	LC4064ZC-75M132C	64	1.8	7.5	csBGA	132	64	С
	LC4064ZC-37T100C	64	1.8	3.7	TQFP	100	64	С
	LC4064ZC-5T100C	64	1.8	5	TQFP	100	64	С
10406470	LC4064ZC-75T100C	64	1.8	7.5	TQFP	100	64	С
LC4064ZC	LC4064ZC-37M56C	64	1.8	3.7	csBGA	56	32	С
	LC4064ZC-5M56C	64	1.8	5	csBGA	56	32	С
	LC4064ZC-75M56C	64	1.8	7.5	csBGA	56	32	С
	LC4064ZC-37T48C	64	1.8	3.7	TQFP	48	32	С
	LC4064ZC-5T48C	64	1.8	5	TQFP	48	32	С
	LC4064ZC-75T48C	64	1.8	7.5	TQFP	48	32	С
	LC4128ZC-42M132C	128	1.8	4.2	csBGA	132	96	С
LC4128ZC	LC4128ZC-75M132C	128	1.8	7.5	csBGA	132	96	С
LU41202U	LC4128ZC-42T100C	128	1.8	4.2	TQFP	100	64	С
	LC4128ZC-75T100C	128	1.8	7.5	TQFP	100	64	С
	LC4256ZC-45T176C	256	1.8	4.5	TQFP	176	128	С
	LC4256ZC-75T176C	256	1.8	7.5	TQFP	176	128	С
LC4256ZC	LC4256ZC-45M132C	256	1.8	4.5	csBGA	132	96	С
20423020	LC4256ZC-75M132C	256	1.8	7.5	csBGA	132	96	С
	LC4256ZC-45T100C	256	1.8	4.5	TQFP	100	64	С
	LC4256ZC-75T100C	256	1.8	7.5	TQFP	100	64	С

Conventional Packaging

ispMACH 4000ZC (Zero Power, 1.8V) Commercial Devices

ispMACH 4000ZC (1.8V, Zero Power) Industrial Devices

Device	Part Number	Macrocells	Voltage	tPD	Package	Pin/Ball Count	I/O	Grade
	LC4032ZC-5M56I	32	1.8	5	csBGA	56	32	I
LC4032ZC	LC4032ZC-75M56I	32	1.8	7.5	csBGA	56	32	I
10403220	LC4032ZC-5T48I	32	1.8	5	TQFP	48	32	I
	LC4032ZC-75T48I	32	1.8	7.5	TQFP	48	32	I

ispMACH 4000V (3.3V) Commercial De	evices (Cont.)
------------------------------------	----------------

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4128V-27T144C	128	3.3	2.7	TQFP	144	96	С
	LC4128V-5T144C	128	3.3	5	TQFP	144	96	С
	LC4128V-75T144C	128	3.3	7.5	TQFP	144	96	С
	LC4128V-27T128C	128	3.3	2.7	TQFP	128	92	С
LC4128V	LC4128V-5T128C	128	3.3	5	TQFP	128	92	С
	LC4128V-75T128C	128	3.3	7.5	TQFP	128	92	С
	LC4128V-27T100C	128	3.3	2.7	TQFP	100	64	С
	LC4128V-5T100C	128	3.3	5	TQFP	100	64	С
	LC4128V-75T100C	128	3.3	7.5	TQFP	100	64	С
	LC4256V-3FT256AC	256	3.3	3	ftBGA	256	128	С
	LC4256V-5FT256AC	256	3.3	5	ftBGA	256	128	С
	LC4256V-75FT256AC	256	3.3	7.5	ftBGA	256	128	С
	LC4256V-3FT256BC	256	3.3	3	ftBGA	256	160	С
	LC4256V-5FT256BC	256	3.3	5	ftBGA	256	160	С
	LC4256V-75FT256BC	256	3.3	7.5	ftBGA	256	160	С
	LC4256V-3F256AC1	256	3.3	3	fpBGA	256	128	С
	LC4256V-5F256AC1	256	3.3	5	fpBGA	256	128	С
	LC4256V-75F256AC1	256	3.3	7.5	fpBGA	256	128	С
	LC4256V-3F256BC1	256	3.3	3	fpBGA	256	160	С
LC4256V	LC4256V-5F256BC1	256	3.3	5	fpBGA	256	160	С
	LC4256V-75F256BC1	256	3.3	7.5	fpBGA	256	160	С
	LC4256V-3T176C	256	3.3	3	TQFP	176	128	С
	LC4256V-5T176C	256	3.3	5	TQFP	176	128	С
	LC4256V-75T176C	256	3.3	7.5	TQFP	176	128	С
	LC4256V-3T144C	256	3.3	3	TQFP	144	96	С
	LC4256V-5T144C	256	3.3	5	TQFP	144	96	С
	LC4256V-75T144C	256	3.3	7.5	TQFP	144	96	С
	LC4256V-3T100C	256	3.3	3	TQFP	100	64	С
	LC4256V-5T100C	256	3.3	5	TQFP	100	64	С
	LC4256V-75T100C	256	3.3	7.5	TQFP	100	64	С
	LC4384V-35FT256C	384	3.3	3.5	ftBGA	256	192	С
	LC4384V-5FT256C	384	3.3	5	ftBGA	256	192	С
	LC4384V-75FT256C	384	3.3	7.5	ftBGA	256	192	С
	LC4384V-35F256C1	384	3.3	3.5	fpBGA	256	192	С
LC4384V	LC4384V-5F256C1	384	3.3	5	fpBGA	256	192	С
	LC4384V-75F256C1	384	3.3	7.5	fpBGA	256	192	С
	LC4384V-35T176C	384	3.3	3.5	TQFP	176	128	С
	LC4384V-5T176C	384	3.3	5	TQFP	176	128	С
	LC4384V-75T176C	384	3.3	7.5	TQFP	176	128	С

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4512V-35FT256C	512	3.3	3.5	ftBGA	256	208	С
	LC4512V-5FT256C	512	3.3	5	ftBGA	256	208	С
	LC4512V-75FT256C	512	3.3	7.5	ftBGA	256	208	С
	LC4512V-35F256C1	512	3.3	3.5	fpBGA	256	208	С
LC4512V	LC4512V-5F256C1	512	3.3	5	fpBGA	256	208	С
	LC4512V-75F256C1	512	3.3	7.5	fpBGA	256	208	С
	LC4512V-35T176C	512	3.3	3.5	TQFP	176	128	С
	LC4512V-5T176C	512	3.3	5	TQFP	176	128	С
	LC4512V-75T176C	512	3.3	7.5	TQFP	176	128	С

ispMACH 4000V (3.3V) Commercial Devices (Cont.)

1. Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000V (3.3V) Industrial Devices

Family	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032V-5T48I	32	3.3	5	TQFP	48	32	I
	LC4032V-75T48I	32	3.3	7.5	TQFP	48	32	I
LC4032V	LC4032V-10T48I	32	3.3	10	TQFP	48	32	I
LC4032V	LC4032V-5T44I	32	3.3	5	TQFP	44	30	I
	LC4032V-75T44I	32	3.3	7.5	TQFP	44	30	I
	LC4032V-10T44I	32	3.3	10	TQFP	44	30	I
	LC4064V-5T100I	64	3.3	5	TQFP	100	64	I
	LC4064V-75T100I	64	3.3	7.5	TQFP	100	64	I
	LC4064V-10T100I	64	3.3	10	TQFP	100	64	I
	LC4064V-5T48I	64	3.3	5	TQFP	48	32	I
LC4064V	LC4064V-75T48I	64	3.3	7.5	TQFP	48	32	I
	LC4064V-10T48I	64	3.3	10	TQFP	48	32	I
	LC4064V-5T44I	64	3.3	5	TQFP	44	30	I
	LC4064V-75T44I	64	3.3	7.5	TQFP	44	30	I
	LC4064V-10T44I	64	3.3	10	TQFP	44	30	I
	LC4128V-5T144I	128	3.3	5	TQFP	144	96	I
	LC4128V-75T144I	128	3.3	7.5	TQFP	144	96	I
	LC4128V-10T144I	128	3.3	10	TQFP	144	96	I
	LC4128V-5T128I	128	3.3	5	TQFP	128	92	I
LC4128V	LC4128V-75T128I	128	3.3	7.5	TQFP	128	92	I
	LC4128V-10T128I	128	3.3	10	TQFP	128	92	I
	LC4128V-5T100I	128	3.3	5	TQFP	100	64	I
	LC4128V-75T100I	128	3.3	7.5	TQFP	100	64	I
	LC4128V-10T100I	128	3.3	10	TQFP	100	64	I

Lead-Free Packaging

ispMACH 4000Z (Zero Power, 1.8V) Lead-Free Commercial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032ZC-35MN56C	32	1.8	3.5	Lead-free csBGA	56	32	С
	LC4032ZC-5MN56C	32	1.8	5	Lead-free csBGA	56	32	С
LC4032ZC	LC4032ZC-75MN56C	32	1.8	7.5	Lead-free csBGA	56	32	С
LC4032ZC	LC4032ZC-35TN48C	32	1.8	3.5	Lead-free TQFP	48	32	С
	LC4032ZC-5TN48C	32	1.8	5	Lead-free TQFP	48	32	С
	LC4032ZC-75TN48C	32	1.8	7.5	Lead-free TQFP	48	32	С
	LC4064ZC-37MN132C	64	1.8	3.7	Lead-free csBGA	132	64	С
	LC4064ZC-5MN132C	64	1.8	5	Lead-free csBGA	132	64	С
	LC4064ZC-75MN132C	64	1.8	7.5	Lead-free csBGA	132	64	С
	LC4064ZC-37TN100C	64	1.8	3.7	Lead-free TQFP	100	64	С
	LC4064ZC-5TN100C	64	1.8	5	Lead-free TQFP	100	64	С
LC4064ZC	LC4064ZC-75TN100C	64	1.8	7.5	Lead-free TQFP	100	64	С
LC4004ZC	LC4064ZC-37MN56C	64	1.8	3.7	Lead-free csBGA	56	32	С
	LC4064ZC-5MN56C	64	1.8	5	Lead-free csBGA	56	32	С
	LC4064ZC-75MN56C	64	1.8	7.5	Lead-free csBGA	56	32	С
	LC4064ZC-37TN48C	64	1.8	3.7	Lead-free TQFP	48	32	С
	LC4064ZC-5TN48C	64	1.8	5	Lead-free TQFP	48	32	С
	LC4064ZC-75TN48C	64	1.8	7.5	Lead-free TQFP	48	32	С
	LC4128ZC-42MN132C	128	1.8	4.2	Lead-free csBGA	132	96	С
LC4128ZC	LC4128ZC-75MN132C	128	1.8	7.5	Lead-free csBGA	132	96	С
10412020	LC4128ZC-42TN100C	128	1.8	4.2	Lead-free TQFP	100	64	С
	LC4128ZC-75TN100C	128	1.8	7.5	Lead-free TQFP	100	64	С
	LC4256ZC-45TN176C	256	1.8	4.5	Lead-free TQFP	176	128	С
	LC4256ZC-75TN176C	256	1.8	7.5	Lead-free TQFP	176	128	С
LC4256ZC	LC4256ZC-45MN132C	256	1.8	4.5	Lead-free csBGA	132	96	С
10420020	LC4256ZC-75MN132C	256	1.8	7.5	Lead-free csBGA	132	96	С
	LC4256ZC-45TN100C	256	1.8	4.5	Lead-free TQFP	100	64	С
	LC4256ZC-75TN100C	256	1.8	7.5	Lead-free TQFP	100	64	С

ispMACH 4000Z (Zero Power, 1.8V) Lead-Free Industrial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032ZC-5MN56I	32	1.8	5	Lead-free csBGA	56	32	I
LC4032ZC	LC4032ZC-75MN56I	32	1.8	7.5	Lead-free csBGA	56	32	I
LC40322C	LC4032ZC-5TN48I	32	1.8	5	Lead-free TQFP	48	32	I
	LC4032ZC-75TN48I	32	1.8	7.5	Lead-free TQFP	48	32	I

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4512C-35FTN256C	512	1.8	3.5	Lead-free ftBGA	256	208	С
	LC4512C-5FTN256C	512	1.8	5	Lead-free ftBGA	256	208	С
	LC4512C-75FTN256C	512	1.8	7.5	Lead-free ftBGA	256	208	С
	LC4512C-35FN256C1	512	1.8	3.5	Lead-free fpBGA	256	208	С
LC4512C	LC4512C-5FN256C1	512	1.8	5	Lead-free fpBGA	256	208	С
	LC4512C-75FN256C1	512	1.8	7.5	Lead-free fpBGA	256	208	С
	LC4512C-35TN176C	512	1.8	3.5	Lead-free TQFP	176	128	С
	LC4512C-5TN176C	512	1.8	5	Lead-free TQFP	176	128	С
	LC4512C-75TN176C	512	1.8	7.5	Lead-free TQFP	176	128	С

ispMACH 4000C (1.8V) Lead-Free Commercial Devices (Cont.)

1. Use ftBGA package. fpBGA package devices have been discontinued via PCN#14A-07.

ispMACH 4000C (1.8V) Lead-Free Industrial Devices

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032C-5TN48I	32	1.8	5	Lead-free TQFP	48	32	I
	LC4032C-75TN48I	32	1.8	7.5	Lead-free TQFP	48	32	I
LC4032C	LC4032C-10TN48I	32	1.8	10	Lead-free TQFP	48	32	I
LC4032C	LC4032C-5TN44I	32	1.8	5	Lead-free TQFP	44	30	I
	LC4032C-75TN44I	32	1.8	7.5	Lead-free TQFP	44	30	I
	LC4032C-10TN44I	32	1.8	10	Lead-free TQFP	44	30	I
	LC4064C-5TN100I	64	1.8	5	Lead-free TQFP	100	64	I
	LC4064C-75TN100I	64	1.8	7.5	Lead-free TQFP	100	64	I
	LC4064C-10TN100I	64	1.8	10	Lead-free TQFP	100	64	I
	LC4064C-5TN48I	64	1.8	5	Lead-free TQFP	48	32	I
LC4064C	LC4064C-75TN48I	64	1.8	7.5	Lead-free TQFP	48	32	I
	LC4064C-10TN48I	64	1.8	10	Lead-free TQFP	48	32	I
	LC4064C-5TN44I	64	1.8	5	Lead-free TQFP	44	30	I
	LC4064C-75TN44I	64	1.8	5	Lead-free TQFP	44	30	I
	LC4064C-10TN44I	64	1.8	10	Lead-free TQFP	44	30	I
	LC4128C-5TN128I	128	1.8	5	Lead-free TQFP	128	92	I
	LC4128C-75TN128I	128	1.8	7.5	Lead-free TQFP	128	92	I
LC4128C	LC4128C-10TN128I	128	1.8	10	Lead-free TQFP	128	92	I
1041200	LC4128C-5TN100I	128	1.8	5	Lead-free TQFP	100	64	I
	LC4128C-75TN100I	128	1.8	7.5	Lead-free TQFP	100	64	I
	LC4128C-10TN100I	128	1.8	10	Lead-free TQFP	100	64	I

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
LC4032V	LC4032V-75TN48E	32	3.3	7.5	Lead-free TQFP	48	32	E
L04032V	LC4032V-75TN44E	32	3.3	7.5	Lead-free TQFP	44	30	E
	LC4064V-75TN100E	64	3.3	7.5	Lead-free TQFP	100	64	E
LC4064V	LC4064V-75TN48E	64	3.3	7.5	Lead-free TQFP	48	32	E
	LC4064V-75TN44E	64	3.3	7.5	Lead-free TQFP	44	30	E
	LC4128V-75TN144E	128	3.3	7.5	Lead-free TQFP	144	96	E
LC4128V	LC4128V-75TN128E	128	3.3	7.5	Lead-free TQFP	128	92	E
	LC4128V-75TN100E	128	3.3	7.5	Lead-free TQFP	100	64	E
	LC4256V-75TN176E	256	3.3	7.5	Lead-free TQFP	176	128	E
LC4256V	LC4256V-75TN144E	256	3.3	7.5	Lead-free TQFP	144	96	E
	LC4256V-75TN100E	256	3.3	7.5	Lead-free TQFP	100	64	E

ispMACH 4000V (3.3V) Lead-Free Extended Temperature Devices

For Further Information

In addition to this data sheet, the following technical notes may be helpful when designing with the ispMACH 4000V/B/C/Z family:

- TN1004, ispMACH 4000 Timing Model Design and Usage Guidelines
- TN1005, Power Estimation in ispMACH 4000V/B/C/Z Devices

Revision History

Date	Version	Change Summary
—	—	Previous Lattice releases.
July 2003	17z	Changed device status for LC4064ZC and LC4128ZC to production release and updated/added AC and DC parameters as well as ordering part numbers for LC4064ZC and LC4128ZC devices.
		Improved leakage current specifications for ispMACH 4000Z. For ispMACH 4000V/B/C IIL, IIH condition now includes 0V and 3.6V end points ($0 \le VIN \le 3.6V$).
		Added 132-ball chip scale BGA power supply and NC connections.
		Added 132-ball chip scale BGA logic signal connections for LC4064ZC, LC4128ZC and LC4256ZC devices.
		Added lead-free package designators.
October 2003	18z	Hot socketing characteristics footnote 1. has been enhanced; Insensitive to sequence of VCC or VCCO. However, assumes monotonic rise/fall rates for Vcc and Vcco, provided (VIN - VCCO) \leq 3.6V.
		Improved LC4064ZC t _S to 2.5ns, t _{ST} to 2.7ns and f_{MAX} (Ext.) to 175MHz, LC4128ZC t _{CO} to 3.5ns and f_{MAX} (Ext.) to 161MHz (version v.2.1).
		Improved associated internal timing numbers and timing adders (version v.2.1).
		Added ispMACH 4000V/B/C/Z ORP Reference Tables.
		Enhanced ORP information in device pinout tables consistent with the ORP Combinations for I/O Blocks tables (table 6, 7, 8 and 9 in page 9-11).
		Corrected GLB/MC/Pad information in the 256-fpBGA pinouts for the LC4256V/B/C 160-I/O version.
		Added the ispMACH 4000 Family Speed Grade Offering table.
		Added the ispMACH 4128ZC Industrial and Automotive Device OPNs
December 2003	19z	Added the ispMACH 4032ZC and 4064ZC Industrial and Automotive Device OPNs