E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, PWM, WDT
Number of I/O	82
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l476vgt7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

If in Range 1, then the following step can be applied:

5. Increase the system frequency if needed.

5.2 **Power supply supervisor**

5.2.1 Power-on reset (POR) / power-down reset (PDR) / brown-out reset (BOR)

The device has an integrated power-on reset (POR) / power-down reset (PDR), coupled with a brown-out reset (BOR) circuitry. The BOR is active in all power modes except Shutdown mode, and cannot be disabled.

Five BOR thresholds can be selected through option bytes.

During power-on, the BOR keeps the device under reset until the supply voltage V_{DD} reaches the specified V_{BORx} threshold. When V_{DD} drops below the selected threshold, a device reset is generated. When V_{DD} is above the V_{BORx} upper limit, the device reset is released and the system can start.

For more details on the brown-out reset thresholds, refer to the electrical characteristics section in the datasheet.

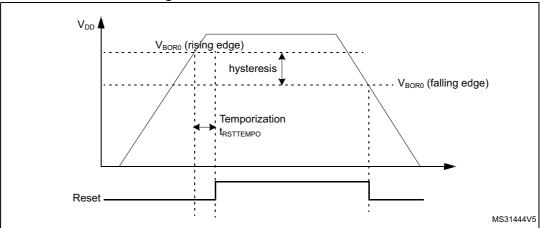


Figure 11. Brown-out reset waveform

1. The reset temporization $t_{RSTTEMPO}$ is present only for the BOR lowest threshold (V_{BOR0}).

5.2.2 Programmable voltage detector (PVD)

You can use the PVD to monitor the V_{DD} power supply by comparing it to a threshold selected by the PLS[2:0] bits in the *Power control register 2 (PWR_CR2)*.

The PVD is enabled by setting the PVDE bit.

A PVDO flag is available, in the *Power status register 2 (PWR_SR2)*, to indicate if V_{DD} is higher or lower than the PVD threshold. This event is internally connected to the EXTI line16 and can generate an interrupt if enabled through the EXTI registers. The PVD output interrupt can be generated when V_{DD} drops below the PVD threshold and/or when V_{DD} rises above the PVD threshold depending on EXTI line16 rising/falling edge configuration. As an example, the service routine could perform emergency shutdown tasks.

RM0351

 This register only configures the clock gating, not the clock source itself. Most of the peripherals are clocked by a single clock (AHB or APB clock), which is always disabled in Stop mode. In this case setting the bit has no effect in Stop mode.

6.4.24 AHB3 peripheral clocks enable in Sleep and Stop modes register (RCC_AHB3SMENR)

Address offset: 0x70

Reset value: 0x00000 0101

Access: no wait state, word, half-word and byte access

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	QSPI SMEN	Res.	FMC SMEN												
							rw								rw

Bits 31:9 Reserved, must be kept at reset value.

Bit 8 **QSPISMEN** Quad SPI memory interface clocks enable during Sleep and Stop modes

Set and cleared by software.

0: QUADSPI clocks disabled by the clock gating⁽¹⁾ during Sleep and Stop modes

1: QUADSPI clocks enabled by the clock gating⁽¹⁾ during Sleep and Stop modes

Bits 7:1 Reserved, must be kept at reset value.

Bit 0 **FMCSMEN**: Flexible memory controller clocks enable during Sleep and Stop modes

Set and cleared by software.

0: FMC clocks disabled by the clock gating⁽¹⁾ during Sleep and Stop modes

1: FMC clocks enabled by the clock gating⁽¹⁾ during Sleep and Stop modes

 This register only configures the clock gating, not the clock source itself. Most of the peripherals are clocked by a single clock (AHB or APB clock), which is always disabled in Stop mode. In this case setting the bit has no effect in Stop mode.

6.4.25 APB1 peripheral clocks enable in Sleep and Stop modes register 1 (RCC_APB1SMENR1)

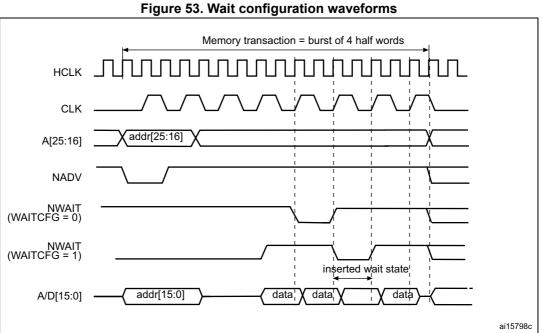
Address: 0x78

Reset value: 0xF7FE CE3F (for STM32L496xx/4A6xx devices)

0xF2FE CA3F (for STM32L475xx/476xx/486xx devices)

Access: no wait state, word, half-word and byte access

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LPTIM1 SMEN	OPAMP SMEN	DAC1 SMEN	PWR SMEN	Res.	CAN2 SMEN	CAN1 SMEN	CRSS MEN	I2C3 SMEN	I2C2 SMEN	I2C1 SMEN	UART5 SMEN	UART4 SMEN	USART3 SMEN	USART2 SMEN	Res.
rw	rw	rw	rw		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SPI3 SMEN	SPI2 SMEN	Res.	Res.	WWDG SMEN	RTCA PBSM EN	LCD SMEN	Res.	Res.	Res.	TIM7 SMEN	TIM6 SMEN	TIM5 SMEN	TIM4 SMEN	TIM3 SMEN	TIM2 SMEN
rw	rw			rw	rw	rw				rw	rw	rw	rw	rw	rw


DocID024597 Rev 5

259/1830

Position	Priority	Type of priority	Acronym	Description	Address							
12	19	settable	DMA1_CH2	DMA1 channel 2 interrupt	0x0000 0070							
13	20	settable	DMA1_CH3	DMA1 channel 3 interrupt	0x0000 0074							
14	21	settable	DMA1_CH4	DMA1 channel 4 interrupt	0x0000 0078							
15	22	settable	DMA1_CH5	DMA1 channel 5 interrupt	0x0000 007C							
16	23	settable	DMA1_CH6	DMA1 channel 6 interrupt	0x0000 0080							
17	24	settable	DMA1_CH7	DMA1 channel 7 interrupt	0x0000 0084							
18	25	settable	ADC1_2	ADC1 and ADC2 global interrupt	0x0000 0088							
19	26	settable	CAN1_TX	CAN1_TX interrupts	0x0000 008C							
20	27	settable	CAN1_RX0	CAN1_RX0 interrupts	0x0000 0090							
21	28	settable	CAN1_RX1	CAN1_RX1 interrupt	0x0000 0094							
22	29	settable	CAN1_SCE	CAN1_SCE interrupt	0x0000 0098							
23	30	settable	EXTI9_5	EXTI Line[9:5] interrupts	0x0000 009C							
24	31	settable	TIM1_BRK/TIM15	TIM1 Break/TIM15 global interrupts	0x0000 00A0							
25	32	settable	TIM1_UP/TIM16	TIM1 Update/TIM16 global interrupts	0x0000 00A4							
26	33	settable	TIM1_TRG_COM /TIM17	TIM1 trigger and commutation/TIM17 interrupts	0x0000 00A8							
27	34	settable	TIM1_CC	TIM1 capture compare interrupt	0x0000 00AC							
28	35	settable	TIM2	TIM2 global interrupt	0x0000 00B0							
29	36	settable	TIM3	TIM3 global interrupt	0x0000 00B4							
30	37	settable	TIM4	TIM4 global interrupt	0x0000 00B8							
31	38	settable	I2C1_EV	I2C1 event interrupt	0x0000 00BC							
32	39	settable	I2C1_ER	I2C1 error interrupt	0x0000 00C0							
33	40	settable	I2C2_EV	I2C2 event interrupt	0x0000 00C4							
34	41	settable	I2C2_ER	I2C2 error interrupt	0x0000 00C8							
35	42	settable	SPI1	SPI1 global interrupt	0x0000 00CC							
36	43	settable	SPI2	SPI2 global interrupt	0x0000 00D0							
37	44	settable	USART1	USART1 global interrupt	0x0000 00D4							
38	45	settable	USART2	USART2 global interrupt	0x0000 00D8							
39	46	settable	USART3	USART3 global interrupt	0x0000 00DC							
40	47	settable	EXTI15_10	EXTI Line[15:10] interrupts	0x0000 00E0							
41	48	settable	RTC_ALARM	RTC alarms through EXTI line 18 interrupts	0x0000 00E4							
42	49	settable	DFSDM1_FLT3	DFSDM1_FLT3 global interrupt	0x0000 00E8							
43	50	settable	TIM8_BRK	TIM8 Break interrupt	0x0000 00EC							

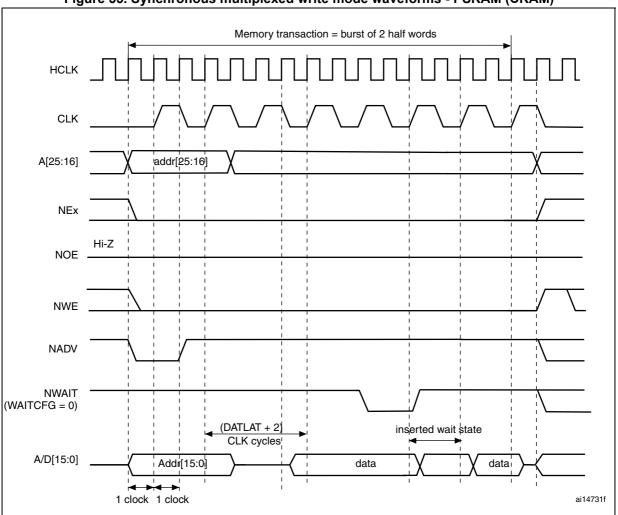

Table 57. STM32L4x5/STM32L4x6 vector table (contin
--

Figure 55. Synchronous multiplexed write mode waveforms - PSRAM (CRAM)

1. The memory must issue NWAIT signal one cycle in advance, accordingly WAITCFG must be programmed to 0.

2. Byte Lane (NBL) outputs are not shown, they are held low while NEx is active.

Table 90. FMC_BCRx bit fields

Bit number	Bit name	Value to set
31-22	Reserved	0x000
21	WFDIS	As needed (this bit is reserved for STM32L475xx/476xx/486xx devices)
20	CCLKEN	As needed
19	CBURSTRW	0x1
18:16	CPSIZE	As needed (0x1 for CRAM 1.5)
15	ASYNCWAIT	0x0
14	EXTMOD	0x0

16.7 FMC register map

														1		T										1						
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	2	9	2	4	3		- 0
0x00	FMC_BCR1	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	WFDIS ⁽¹⁾	CCLKEN	CBURSTRW		2951 [2:0	ZE)]	ASYNCWAIT	EXTMOD	WAITEN	WREN	WAITCFG	Res.	WAITPOL	BURSTEN	Res.	FACCEN		VID :0]	MT\ [1:(MBKEN
	Reset value											0	0	0	0	0		0	0	1	1	0		0	0		1	0	1	1	0	1 1
0x08	FMC_BCR2	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	CBURSTRW		2PSI [2:0	ZE)]	ASYNCWAIT	EXTMOD	WAITEN	WREN	WAITCFG	Res.	WAITPOL	BURSTEN	Res.	FACCEN		WID :0]	MT\ [1:(MBKEN
	Reset value													0	0	0		0	0	1	1	0		0	0		1	0	1	0	0	1 0
0x10	FMC_BCR3	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	CBURSTRW		2PSI [2:0		ASYNCWAIT	EXTMOD	WAITEN	WREN	WAITCFG	Res.	WAITPOL	BURSTEN	Res.	FACCEN		VID :0]	MT\ [1:()] 2	MBKEN
	Reset value													0	0	0	0	0	0	1	1	0		0	0		1	0	1	0	0	1 0
0x18	FMC_BCR4	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	CBURSTRW		2PSI [2:0	ZE)]	ASYNCWAIT	EXTMOD	WAITEN	WREN	WAITCFG	Res.	WAITPOL	BURSTEN	Res.	FACCEN		VID :0]	MT\ [1:((P)]	MBKEN
	Reset value													0	0	0	0	0	0	1	1	0		0	0		1	0	1	0	0	1 0
0x04	FMC_BTR1	Res.	Res.		<u> </u>		ATL/	-	-			IV[3	-		•		[3:0]				TAS						DDH	T				T[3:0]
	Reset value			0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1
0x0C	FMC_BTR2	Res.	Res.			DA	ΑTL/	AT[3	3:0]	CL	.KD	IV[3	8:0]	BU	STL	JRN	[3:0]			DA	TAS	ST[7	':0]			AE	DDH	LD[3:0]	ADI	DSE	T[3:0]
	Reset value			0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1
0x14	FMC_BTR3	Res.	Res.			DA	ATL/	AT[3	8:0]	CL	.KD	IV[3	8:0]	BU	STL	JRN	[3:0]			DA	TAS	ST[7	:0]			AC	DDH	LD[3:0]	ADI	DSE	T[3:0]
	Reset value			0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1
0x1C	FMC_BTR4	Res.	Res.			DA	ATL/	AT[3	8:0]	CL	.KD	IV[3	8:0]	BU	STL	JRN	[3:0]			DA	TAS	ST[7	':0]			AD	DDH	LD[3:0]	ADI	DSE	T[3:0]
	Reset value			0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1
0x104	FMC_BWTR1	Res.	Res.			Res.	Res.	Res.	Res.	Res.		Res.	Res.	BU	STL	JRN	[3:0]			DA	TAS	ST[7	':0]			AD	DDH	LD[3:0]	ADI	DSE	T[3:0]
	Reset value			0	0									1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1
0x10C	FMC_BWTR2	Res.	Res.			Res.	Res.	BU	STL	JRN	[3:0]			DA	TAS	ST[7	':0]			AD	DDH	LD[3:0]	ADI	DSE	T[3:0]						
	Reset value			0	0									1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1

Table 97. FMC register map

RM0351

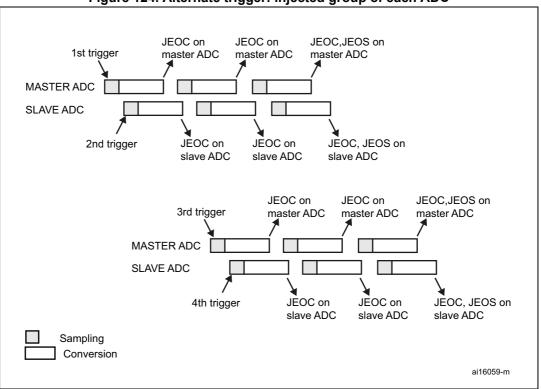

										• •			- 9				- F 1					7											
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
0x114	FMC_BWTR3	Res.	Res.			Res.	BUS	STU	RN[[3:0]			DA	TAS	6T[7	':0]			AD	DH	LD[:	3:0]	A	DDS	ET[3	:0]							
	Reset value			0	0									1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0x11C	FMC_BWTR4	Res.	Res.			Res.	BUS	STU	RN[[3:0]			DA	TAS	ST[7	':0]			AD	DH	LD[3	3:0]	AE	DDS	ET[3	:0]							
	Reset value			0	0									1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0x80	FMC_PCR	Res.		CCF [2:0]		-	TAR	[3:0]	Т	CLF	२[3:	0]	Res.	Res.	ECCEN	PV [1	VID :0]	РТҮР	PBKEN	PWAITEN	Res.											
	Reset value													0	0	0	0	0	0	0	0	0	0	0			0	0	1	1	0	0	
0x84	FMC_SR	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	FEMPT	IFEN	ILEN	IREN	IFS	ILS	IRS													
	Reset value																										1	0	0	0	0	0	0
0x88	FMC_PMEM			ME	MH	Zx[7:0]				I	MEN	но	LDx	[7:0]				MEN	1WA	١Tx	[7:0]				ME	MSE	ΞTx	[7:0]		
0,000	Reset value	1	1	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1	1	1	1	1	0	0
0x8C	FMC_PATT		ı	A	ГТН	Z[7	:0]					AT	ГНО	LD[7:0]					AT	ΓWA	NT[7:0]		•			AT	TSE	ET[7	7:0]		
UXOC	Reset value	1	1	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1	1	1	1	1	0	0
0x94	FMC_ECCR		•	•		•	•									Е	CC×	(31	[0]				•	•			•			•			
0794	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 Thie	hit is reserved	for	ет	N124	01.4	75.	×/4	76	~//	06.	vd							-					-								•		

Table 97. FMC register map (continued)

1. This bit is reserved for STM32L475xx/476xx/486xx devices.

Refer to Section 2.2.2 on page 75 for the register boundary addresses.

Figure 124. Alternate trigger: injected group of each ADC

Note:

Regular conversions can be enabled on one or all ADCs. In this case the regular conversions are independent of each other. A regular conversion is interrupted when the ADC has to perform an injected conversion. It is resumed when the injected conversion is finished.

The time interval between 2 trigger events must be greater than or equal to 1 ADC clock period. The minimum time interval between 2 trigger events that start conversions on the same ADC is the same as in the single ADC mode.

Injected discontinuous mode enabled (JDISCEN=1 for both ADC)

If the injected discontinuous mode is enabled for both master and slave ADCs:

- When the 1st trigger occurs, the first injected channel of the master ADC is converted.
- When the 2nd trigger occurs, the first injected channel of the slave ADC is converted.
- And so on.

A JEOS interrupt, if enabled, is generated after all injected channels of the master ADC in the group have been converted.

A JEOS interrupt, if enabled, is generated after all injected channels of the slave ADC in the group have been converted.

JEOC interrupts, if enabled, can also be generated after each injected conversions.

If another external trigger occurs after all injected channels in the group have been converted then the alternate trigger process restarts.

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

- Configure the channel 1 to detect low levels on TI1. Configure the input filter duration (in this example, we don't need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so you don't need to configure it. The CC1S bits select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write CC1P=1 and CC1NP='0' in TIMx_CCER register to validate the polarity (and detect low level only).
- Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register.
- Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the counter doesn't start if CEN=0, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the resynchronization circuit on TI1 input.

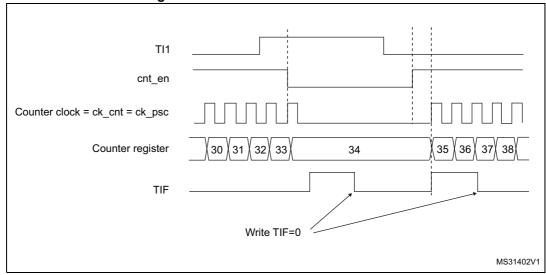


Figure 269. Control circuit in Gated mode

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

 Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration (in this example, we don't need any filter, so we keep IC2F=0000). The capture prescaler is not used for triggering, so you don't need to configure it. The CC2S bits are configured to select the input capture source only, CC2S=01 in TIMx_CCMR1 register.

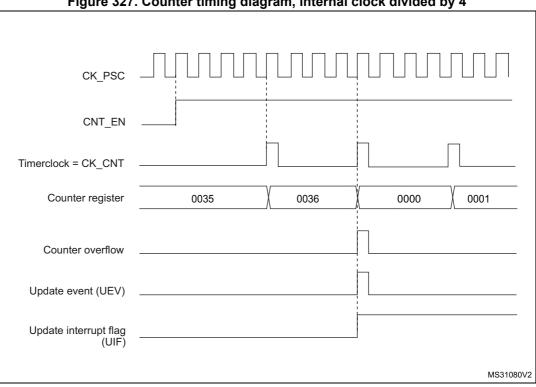
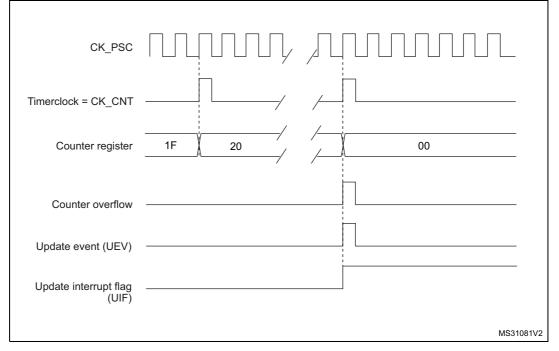



Figure 327. Counter timing diagram, internal clock divided by 4

Figure 328. Counter timing diagram, internal clock divided by N

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	OR_1	OR_0													
														rw	rw

Bits 31:2 Reserved, must be kept at reset value.

- Bit 1 **OR_1**: Option register bit 1
 - 0: LPTIM2 input 1 is connected to I/O
 - 1: LPTIM2 input 1 is connected to COMP2_OUT
- Bit 0 **OR_0**: Option register bit 0
 - 0: LPTIM2 input 1 is connected to I/O
 - 1: LPTIM2 input 1 is connected to COMP1_OUT
- *Note:* When both OR_1 and OR_0 are set, LPTIM2 input 1 is connected to (COMP1_OUT OR COMP2_OUT).

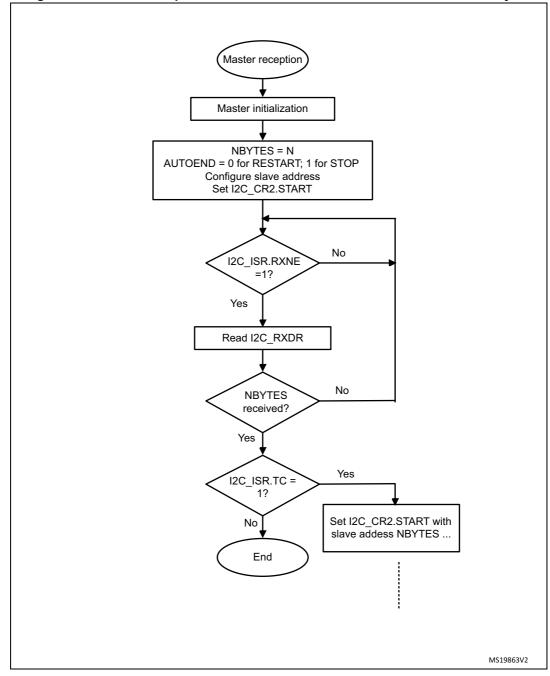


Figure 395. Transfer sequence flowchart for I2C master receiver for N≤255 bytes

Specific address (Slave mode)

The specific SMBus addresses should be enabled if needed. Refer to *Bus idle detection on page 1269* for more details.

- The SMBus Device Default address (0b1100 001) is enabled by setting the SMBDEN bit in the I2C_CR1 register.
- The SMBus Host address (0b0001 000) is enabled by setting the SMBHEN bit in the I2C_CR1 register.
- The Alert Response Address (0b0001100) is enabled by setting the ALERTEN bit in the I2C_CR1 register.

Packet error checking

PEC calculation is enabled by setting the PECEN bit in the I2C_CR1 register. Then the PEC transfer is managed with the help of a hardware byte counter: NBYTES[7:0] in the I2C_CR2 register. The PECEN bit must be configured before enabling the I2C.

The PEC transfer is managed with the hardware byte counter, so the SBC bit must be set when interfacing the SMBus in slave mode. The PEC is transferred after NBYTES-1 data have been transferred when the PECBYTE bit is set and the RELOAD bit is cleared. If RELOAD is set, PECBYTE has no effect.

Caution: Changing the PECEN configuration is not allowed when the I2C is enabled.

		-		
Mode	SBC bit	RELOAD bit	AUTOEND bit	PECBYTE bit
Master Tx/Rx NBYTES + PEC+ STOP	х	0	1	1
Master Tx/Rx NBYTES + PEC + ReSTART	х	0	0	1
Slave Tx/Rx with PEC	1	0	х	1

Table 225. SMBUS with PEC configuration

Timeout detection

The timeout detection is enabled by setting the TIMOUTEN and TEXTEN bits in the I2C_TIMEOUTR register. The timers must be programmed in such a way that they detect a timeout before the maximum time given in the SMBus specification version 2.0.

t_{TIMEOUT} check

In order to enable the $t_{TIMEOUT}$ check, the 12-bit TIMEOUTA[11:0] bits must be programmed with the timer reload value in order to check the $t_{TIMEOUT}$ parameter. The TIDLE bit must be configured to '0' in order to detect the SCL low level timeout.

Then the timer is enabled by setting the TIMOUTEN in the I2C_TIMEOUTR register. If SCL is tied low for a time greater than (TIMEOUTA+1) x 2048 x t_{I2CCLK} , the TIMEOUT flag is set in the I2C_ISR register.

Refer to Table 226: Examples of TIMEOUTA settings for various I2CCLK frequencies (max tTIMEOUT = 25 ms).

- **Caution:** Changing the TIMEOUTA[11:0] bits and TIDLE bit configuration is not allowed when the TIMEOUTEN bit is set.
 - t_{LOW:SEXT} and t_{LOW:MEXT} check
 Depending on if the peripheral is configured as a master or as a slave, The 12-bit TIMEOUTB timer must be configured in order to check t_{LOW:SEXT} for a slave and

41.7 LPUART registers

Refer to Section 1.1 on page 67 for a list of abbreviations used in register descriptions.

41.7.1 Control register 1 (LPUART_CR1)

Address offset: 0x00

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	M1	Res.	Res.			DEAT[4:0]			[DEDT[4:0]	
			rw			rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	CMIE	MME	M0	WAKE	PCE	PS	PEIE	TXEIE	TCIE	RXNEIE	IDLEIE	TE	RE	UESM	UE
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:29 Reserved, must be kept at reset value

Bit 28 M1: Word length

This bit, with bit 12 (M0) determines the word length. It is set or cleared by software.

M[1:0] = 00: 1 Start bit, 8 data bits, n stop bits

M[1:0] = 01: 1 Start bit, 9 data bits, n stop bits

M[1:0] = 10: 1 Start bit, 7 data bits, n stop bits

This bit can only be written when the LPUART is disabled (UE=0).

- Note: In 7-bit data length mode, the Smartcard mode, LIN master mode and Auto baud rate (0x7F and 0x55 frames detection) are not supported.
- Bit 27 Reserved, must be kept at reset value
- Bit 26 Reserved, must be kept at reset value
- Bits 25:21 DEAT[4:0]: Driver Enable assertion time

This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in UCLK (USART clock) clock cycles. For more details, refer to RS485 Driver Enable paragraph.

This bit field can only be written when the LPUART is disabled (UE=0).

Bits 20:16 DEDT[4:0]: Driver Enable de-assertion time

This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal. It is expressed in UCLK (USART clock) clock cycles. For more details, refer to RS485 Driver Enable paragraph. If the LPUART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed.

This bit field can only be written when the LPUART is disabled (UE=0).

- Bit 15 Reserved, must be kept at reset value
- Bit 14 CMIE: Character match interrupt enable

This bit is set and cleared by software.

0: Interrupt is inhibited

1: A LPUART interrupt is generated when the CMF bit is set in the LPUART_ISR register.

Bit 4 **TRIS**: Tristate management on data line.

This bit is set and cleared by software. It is meaningful only if the audio block is configured as a transmitter. This bit is not used when the audio block is configured in SPDIF mode. It should be configured when SAI is disabled.

Refer to Section : Output data line management on an inactive slot for more details.

0: SD output line is still driven by the SAI when a slot is inactive.

1: SD output line is released (HI-Z) at the end of the last data bit of the last active slot if the next one is inactive.

Bit 3 FFLUSH: FIFO flush.

This bit is set by software. It is always read as 0. This bit should be configured when the SAI is disabled.

0: No FIFO flush.

1: FIFO flush. Programming this bit to 1 triggers the FIFO Flush. All the internal FIFO pointers (read and write) are cleared. In this case data still present in the FIFO are lost (no more transmission or received data lost). Before flushing, SAI DMA stream/interruption must be disabled

Bits 2:0 FTH: FIFO threshold.

This bit is set and cleared by software. 000: FIFO empty 001: ¼ FIFO 010: ½ FIFO 011: ¾ FIFO 100: FIFO full 101: Reserved 110: Reserved 111: Reserved

43.5.4 Frame configuration register (SAI_AFRCR / SAI_BFRCR)

Address offset: Block A: 0x00C

Address offset: Block B: 0x02C

Reset value: 0x0000 0007

Note: This register has no meaning in AC'97 and SPDIF audio protocol

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	FSOFF	FSPOL	FSDEF
													rw	rw	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	FSALL[6:0]					FRL[7:0]									
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

RM0351

46.3 bxCAN general description

In today's CAN applications, the number of nodes in a network is increasing and often several networks are linked together via gateways. Typically the number of messages in the system (and thus to be handled by each node) has significantly increased. In addition to the application messages, Network Management and Diagnostic messages have been introduced.

• An enhanced filtering mechanism is required to handle each type of message.

Furthermore, application tasks require more CPU time, therefore real-time constraints caused by message reception have to be reduced.

 A receive FIFO scheme allows the CPU to be dedicated to application tasks for a long time period without losing messages.

The standard HLP (Higher Layer Protocol) based on standard CAN drivers requires an efficient interface to the CAN controller.

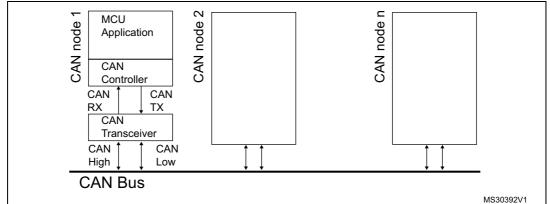


Figure 501. CAN network topology

46.3.1 CAN 2.0B active core

The bxCAN module handles the transmission and the reception of CAN messages fully autonomously. Standard identifiers (11-bit) and extended identifiers (29-bit) are fully supported by hardware.

46.3.2 Control, status and configuration registers

The application uses these registers to:

- Configure CAN parameters, e.g. baud rate
- Request transmissions
- Handle receptions
- Manage interrupts
- Get diagnostic information

46.3.3 Tx mailboxes

Three transmit mailboxes are provided to the software for setting up messages. The transmission Scheduler decides which mailbox has to be transmitted first.

DocID024597 Rev 5

this mode, the bxCAN clock is stopped, however software can still access the bxCAN mailboxes.

If software requests entry to **initialization** mode by setting the INRQ bit while bxCAN is in **Sleep** mode, it must also clear the SLEEP bit.

bxCAN can be woken up (exit Sleep mode) either by software clearing the SLEEP bit or on detection of CAN bus activity.

On CAN bus activity detection, hardware automatically performs the wakeup sequence by clearing the SLEEP bit if the AWUM bit in the CAN_MCR register is set. If the AWUM bit is cleared, software has to clear the SLEEP bit when a wakeup interrupt occurs, in order to exit from Sleep mode.

Note: If the wakeup interrupt is enabled (WKUIE bit set in CAN_IER register) a wakeup interrupt will be generated on detection of CAN bus activity, even if the bxCAN automatically performs the wakeup sequence.

After the SLEEP bit has been cleared, Sleep mode is exited once bxCAN has synchronized with the CAN bus, refer to *Figure 503: bxCAN operating modes*. The Sleep mode is exited once the SLAK bit has been cleared by hardware.

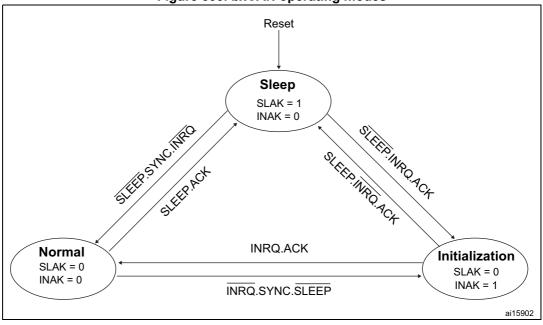


Figure 503. bxCAN operating modes

1. ACK = The wait state during which hardware confirms a request by setting the INAK or SLAK bits in the CAN_MSR register

2. SYNC = The state during which bxCAN waits until the CAN bus is idle, meaning 11 consecutive recessive bits have been monitored on CANRX

46.5 Test mode

Test mode can be selected by the SILM and LBKM bits in the CAN_BTR register. These bits must be configured while bxCAN is in Initialization mode. Once test mode has been selected, the INRQ bit in the CAN_MCR register must be reset to enter Normal mode.

DocID024597 Rev 5

47.16 OTG_FS programming model

47.16.1 Core initialization

The application must perform the core initialization sequence. If the cable is connected during power-up, the current mode of operation bit in the OTG_GINTSTS (CMOD bit in OTG_GINTSTS) reflects the mode. The OTG_FS controller enters host mode when an "A" plug is connected or device mode when a "B" plug is connected.

This section explains the initialization of the OTG_FS controller after power-on. The application must follow the initialization sequence irrespective of host or device mode operation. All core global registers are initialized according to the core's configuration:

- 1. Program the following fields in the OTG_GAHBCFG register:
 - Global interrupt mask bit GINTMSK = 1
 - Rx FIFO non-empty (RXFLVL bit in OTG_GINTSTS)
 - Periodic Tx FIFO empty level
- 2. Program the following fields in the OTG_GUSBCFG register:
 - HNP capable bit
 - SRP capable bit
 - OTG_FS timeout calibration field
 - USB turnaround time field
- 3. The software must unmask the following bits in the OTG_GINTMSK register: OTG interrupt mask

Mode mismatch interrupt mask

4. The software can read the CMOD bit in OTG_GINTSTS to determine whether the OTG_FS controller is operating in host or device mode.

47.16.2 Host initialization

To initialize the core as host, the application must perform the following steps:

- 1. Program the HPRTINT in the OTG_GINTMSK register to unmask
- 2. Program the OTG_HCFG register to select full-speed host
- 3. Program the PPWR bit in OTG_HPRT to 1. This drives V_{BUS} on the USB.
- 4. Wait for the PCDET interrupt in OTG_HPRT0. This indicates that a device is connecting to the port.
- 5. Program the PRST bit in OTG_HPRT to 1. This starts the reset process.
- 6. Wait at least 10 ms for the reset process to complete.
- 7. Program the PRST bit in OTG_HPRT to 0.
- 8. Wait for the PENCHNG interrupt in OTG_HPRT.
- 9. Read the PSPD bit in OTG_HPRT to get the enumerated speed.
- 10. Program the HFIR register with a value corresponding to the selected PHY clock 1
- 11. Program the FSLSPCS field in the OTG_HCFG register following the speed of the device detected in step 9. If FSLSPCS has been changed a port reset must be performed.
- 12. Program the OTG_GRXFSIZ register to select the size of the receive FIFO.
- 13. Program the OTG_HNPTXFSIZ register to select the size and the start address of the Non-periodic transmit FIFO for non-periodic transactions.
- 14. Program the OTG_HPTXFSIZ register to select the size and start address of the periodic transmit FIFO for periodic transactions.

To communicate with devices, the system software must initialize and enable at least one channel.

47.16.3 Device initialization

The application must perform the following steps to initialize the core as a device on powerup or after a mode change from host to device.

- 1. Program the following fields in the OTG_DCFG register:
 - Device speed
 - Non-zero-length status OUT handshake
- 2. Program the OTG_GINTMSK register to unmask the following interrupts:
 - USB reset
 - Enumeration done
 - Early suspend
 - USB suspend
 - SOF
- 3. Wait for the USBRST interrupt in OTG_GINTSTS. It indicates that a reset has been detected on the USB that lasts for about 10 ms on receiving this interrupt.

Wait for the ENUMDNE interrupt in OTG_GINTSTS. This interrupt indicates the end of reset on the USB. On receiving this interrupt, the application must read the OTG_DSTS register to determine the enumeration speed and perform the steps listed in *Endpoint initialization on enumeration completion on page 1747*.

IDCODE read or CTRL/STAT read or ABORT write which are accepted even if the write buffer is full.

• Because of the asynchronous clock domains SWCLK and HCLK, two extra SWCLK cycles are needed after a write transaction (after the parity bit) to make the write effective internally. These cycles should be applied while driving the line low (IDLE state)

This is particularly important when writing the CTRL/STAT for a power-up request. If the next transaction (requiring a power-up) occurs immediately, it will fail.

48.8.5 SW-DP registers

Access to these registers are initiated when APnDP=0

A(3:2)	R/W	CTRLSEL bit of SELECT register	Register	Notes				
00	Read	-	IDCODE	The manufacturer code is not set to ST code 0x2BA01477 (identifies the SW-DP)				
00	Write	-	ABORT	-				
01	Read/Write	0	DP- CTRL/STAT	 Purpose is to: request a system or debug power-up configure the transfer operation for AP accesses control the pushed compare and pushed verify operations. read some status flags (overrun, power-up acknowledges) 				
01	Read/Write	1	WIRE CONTROL	Purpose is to configure the physical serial port protocol (like the duration of the turnaround time)				
10	Read	-	READ RESEND	Enables recovery of the read data from a corrupted debugger transfer, without repeating the original AP transfer.				
10	Write	-	SELECT	The purpose is to select the current access port and the active 4-words register window				
11	Read/Write -		READ BUFFER	This read buffer is useful because AP accesses are posted (the result of a read AP request is available on the next AP transaction). This read buffer captures data from the AP, presented as the result of a previous read, without initiating a new transaction				

Table 317. SW-DP registers

