

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	28
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 14x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
racitage, case	
	32-LQFP (7x7)

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements:

Symbol	Description	Min.	Max.	Unit
	Digital I/O weak pullup/ pulldown current	10	130	μA

3.3 Definition: Attribute

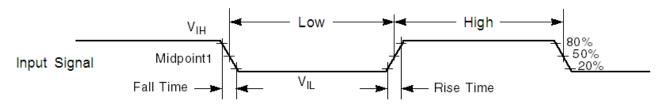
An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	—	7	pF

3.4 Definition: Rating


A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

General

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + $(V_{IH} - V_{IL})/2$.

Figure 1. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume:

- 1. output pins
 - have $C_L=30$ pF loads,
 - are slew rate disabled, and
 - are normal drive strength

5.2 Nonswitching electrical specifications

5.2.1 Voltage and current operating requirements

Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{\rm SS} - V_{\rm SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{IH}	Input high voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	$0.7 \times V_{DD}$	—	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	—	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	—	V	

Table continues on the next page...

Symbol	Description	Min.	Max.	Unit	Notes
I _{ICIO}	I/O pin DC injection current — single pin				1
	 V_{IN} < V_{SS}-0.3V (Negative current injection) 			mA	
	 V_{IN} > V_{DD}+0.3V (Positive current injection) 	-3	—		
		—	+3		
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins				
	Negative current injection	-25	—	mA	
	Positive current injection	—	+25		
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	_	V	

Table 1. Voltage and current operating requirements (continued)

All analog pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is greater than V_{AIO_MIN} (=V_{SS}-0.3V) and V_{IN} is less than V_{AIO_MAX}(=V_{DD}+0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{IC}I. The positive injection current limiting resistor is calculated the larger of these two calculated resistances.

5.2.2 LVD and POR operating requirements

Table 2. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	
V_{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
	Low-voltage warning thresholds — high range					1
V_{LVW1H}	Level 1 falling (LVWV=00)	2.62	2.70	2.78	v	
V_{LVW2H}	Level 2 falling (LVWV=01)	2.72	2.80	2.88	V	
V _{LVW3H}	Level 3 falling (LVWV=10)	2.82	2.90	2.98	V	
V_{LVW4H}	Level 4 falling (LVWV=11)	2.92	3.00	3.08	v	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	±60	_	mV	
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
	Low-voltage warning thresholds — low range					1
V_{LVW1L}	Level 1 falling (LVWV=00)	1.74	1.80	1.86	V	
V_{LVW2L}	Level 2 falling (LVWV=01)	1.84	1.90	1.96	V	
V _{LVW3L}	Level 3 falling (LVWV=10)	1.94	2.00	2.06	v	
V_{LVW4L}	Level 4 falling (LVWV=11)	2.04	2.10	2.16	v	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	±40	-	mV	

Table continues on the next page ...

General

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

Table 2. V_{DD} supply LVD and POR operating requirements (continued)

1. Rising thresholds are falling threshold + hysteresis voltage

5.2.3 Voltage and current operating behaviors Table 3. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — Normal drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -5 mA	V _{DD} – 0.5	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -1.5 mA	$V_{DD} - 0.5$	_	V	
V _{OH}	Output high voltage — High drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -18 mA	$V_{DD} - 0.5$	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -6 mA	$V_{DD} - 0.5$	_	V	
I _{OHT}	Output high current total for all ports	_	100	mA	
V _{OL}	Output low voltage — Normal drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 5 mA	_	0.5	V	
	• 1.71 V \leq V_{DD} \leq 2.7 V, I_{OL} = 1.5 mA	—	0.5	V	
V _{OL}	Output low voltage — High drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 18 mA	_	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 6 mA	—	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μA	2
I _{IN}	Input leakage current (per pin) at 25 °C	_	0.025	μA	2
I _{IN}	Input leakage current (total all pins) for full temperature range	—	41	μA	2
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μA	
R _{PU}	Internal pullup resistors	20	50	kΩ	3

1. PTA12, PTA13, PTB0 and PTB1 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.

2. Measured at $V_{DD} = 3.6 V$

3. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_STOP}	Stop mode current • at 3.0 V					
	• at 3.0 v • at 25 °C					
	• at 25 °C	_	273	441		
		_	281.2	620	μA	
	• at 70 °C	_	301.6	647.64		
	• at 85 °C	_	331	710.64		
	• at 105 °C	_	406.6	1001.84		
I _{DD_VLPS}	Very-low-power stop mode current • at 3.0 V					
	• at 25 °C	_	3.08	16.01		
	• at 50 °C	_	5.46	34.73	μA	
	• at 70 °C	_	12.08	46.73	P	
	• at 85 °C	_	22.89	77.37		
	• at 105 °C	_	53.24	190.28		
I _{DD_LLS}	Low-leakage stop mode current • at 3.0 V					
	• at 25 °C		47	0.00		
	• at 50 °C	_	1.7	3.69		
	• at 70 °C	_	3	22	μA	
	• at 85 °C	_	5.8	28.19		
	• at 105 °C	_	10.4	40.29		
		—	24	65.5		
I _{DD_VLLS3}	Very-low-leakage stop mode 3 currentat 3.0 V				μA	
	• at 25 °C		1.3	3		
	• at 50 °C		2.3	11.04		
	• at 70 °C		4.4	13.68		
	• at 85 °C		8	20.14		
	• at 105 °C		18.6	37.82		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current • at 3.0 V		10.0	07.02		
	• at 25°C					
	• at 50°C	-	0.78	1.6		
	• at 70°C		1.5	13.61	μA	
	• at 85°C		3.3	15.59		
	• at 105°C	-	6.3	16.68		
	- at 103 0		15.2	26.40		

Table 5. Power consumption operating behaviors (continued)

Table continues on the next page...

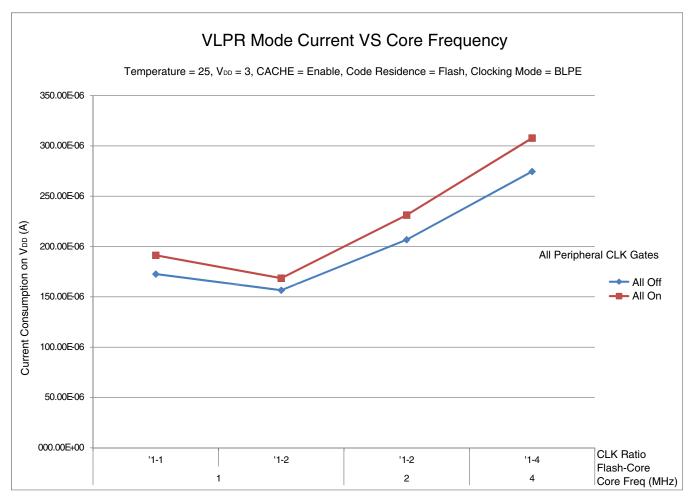


Figure 3. VLPR mode current vs. core frequency

5.2.6 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.7 Capacitance attributes

Table 7. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	_	7	pF
C _{IN_D}	Input capacitance: digital pins		7	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mod	e	•		
f _{SYS}	System and core clock		48	MHz	
f _{BUS}	Bus clock	_	24	MHz	
f _{FLASH}	Flash clock	_	24	MHz	
f _{LPTMR}	LPTMR clock	—	24	MHz	
	VLPR mode ¹				
f _{SYS}	System and core clock	—	4	MHz	
f _{BUS}	Bus clock	_	1	MHz	
f _{FLASH}	Flash clock	_	1	MHz	
f _{LPTMR}	LPTMR clock	_	24	MHz	
f _{ERCLK}	External reference clock	_	16	MHz	
f _{LPTMR_pin}	LPTMR clock	_	24	MHz	
f _{LPTMR_ERCL} K	LPTMR external reference clock	—	16	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	_	16	MHz	
f _{TPM}	TPM asynchronous clock	—	8	MHz	
f _{UART0}	UART0 asynchronous clock	_	8	MHz	

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

5.3.2 General Switching Specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and I²C signals.

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1
	External RESET and NMI pin interrupt pulse width — Asynchronous path	100	_	ns	2
	GPIO pin interrupt pulse width — Asynchronous path	16	—	ns	2
	Port rise and fall time				3
		—	36	ns	

General

- 1. The greater synchronous and asynchronous timing must be met.
- 2. This is the shrtest pulse that is guaranteed to be recognized.
- 3. 75 pF load

5.4 Thermal specifications

5.4.1 Thermal operating requirements

Table 8. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	°C

5.4.2 Thermal attributes

Board type	Symbol	Description	48 LQFP	32 LQFP	32 QFN	24 QFN	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	82	88	97	110	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	58	59	34	42	°C/W	
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	70	74	81	92	°C/W	
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	52	52	28	36	°C/W	
_	R _{θJB}	Thermal resistance, junction to board	36	35	13	18	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	27	26	2.3	3.7	°C/W	3
_	Ψ_{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	8	8	8	10	°C/W	4

Table 9. Thermal attributes

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions — Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions —Junction-to-Board.

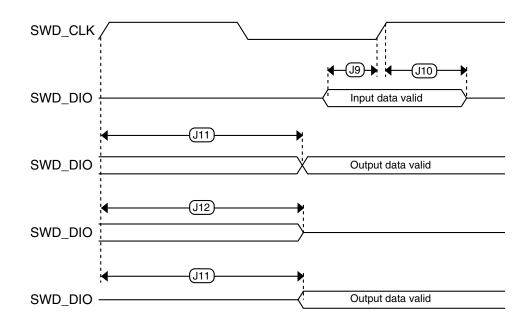


Figure 5. Serial wire data timing

6.2 System modules

There are no specifications necessary for the device's system modules.

6.3 Clock modules

6.3.1 MCG specifications

Table 11.	MCG s	specifications
-----------	-------	----------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference frequency (slow clock) — factory trimmed at nominal V _{DD} and 25 °C	_	32.768	_	kHz	
f _{ints_t}	Internal reference frequency (slow clock) — user trimmed	31.25	—	39.0625	kHz	
$\Delta_{fdco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
Δf _{dco_t}	Total deviation of trimmed average DCO output frequency over voltage and temperature		+0.5/-0.7	± 3	%f _{dco}	1, 2

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71	_	3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	—	500	_	nA	
	• 4 MHz	—	200	—	μA	
	• 8 MHz (RANGE=01)	—	300	—	μA	
	• 16 MHz	—	950	—	μA	
	• 24 MHz	—	1.2	—	mA	
	• 32 MHz	—	1.5	—	mA	
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	—	25	_	μA	
	• 4 MHz	—	400	_	μA	
	• 8 MHz (RANGE=01)	—	500	_	μA	
	• 16 MHz	—	2.5	_	mA	
	• 24 MHz	—	3	_	mA	
	• 32 MHz	—	4	_	mA	
C _x	EXTAL load capacitance					2, 3
Cy	XTAL load capacitance	_	_	_		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	_	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	_	MΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	_	_	—	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	—	1	_	MΩ	
R_S	Series resistor — low-frequency, low-power mode (HGO=0)	—	_	—	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	—	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_	—	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	

6.3.2.1 Oscillator DC electrical specifications Table 12. Oscillator DC electrical specifications

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	—	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)		V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	—	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}		V	

 Table 12.
 Oscillator DC electrical specifications (continued)

- 1. V_{DD}=3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x,C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.3.2.2 Oscillator frequency specifications

Table 13. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00)	32	-	40	kHz	
f _{osc_hi_1}	i_1 Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01)		_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—	—	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_		-	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_		-	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	—	1	—	ms	

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
- 2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.

Peripheral operating requirements and behaviors

- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

6.4 Memories and memory interfaces

6.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

6.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Table 14. NVM program/erase timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	
t _{hversscr}	Sector Erase high-voltage time	_	13	113	ms	1

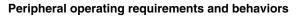
1. Maximum time based on expectations at cycling end-of-life.

6.4.1.2 Flash timing specifications — commands Table 15. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	—	—	60	μs	1
t _{pgmchk}	Program Check execution time	_	—	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	—	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	—	0.5	ms	
t _{rdonce}	Read Once execution time	_	—	25	μs	1
t _{pgmonce}	Program Once execution time	_	65	—	μs	
t _{ersall}	Erase All Blocks execution time	_	55	465	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	—	30	μs	1

1. Assumes 25 MHz flash clock frequency.

6.6.1.1 12-bit ADC operating conditions Table 18. 12-bit ADC operating conditions

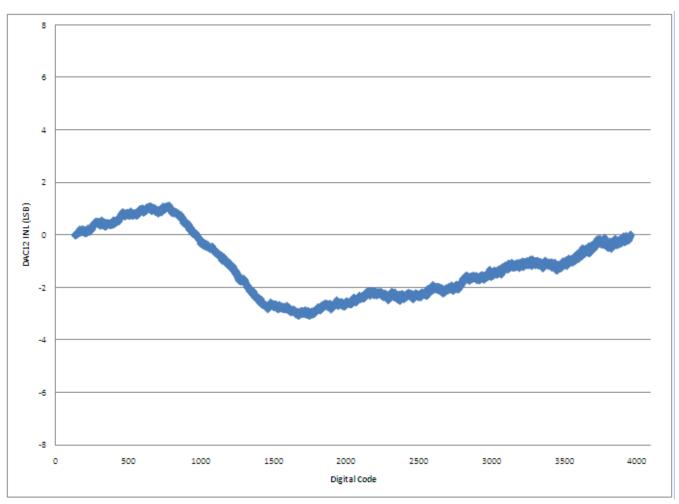
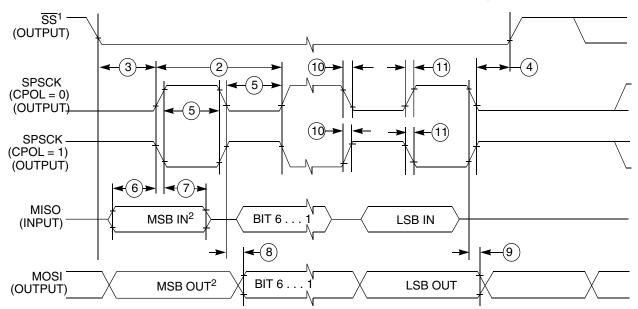

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	—	3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} - V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} - V _{SSA})	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	3
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	3
V _{ADIN}	Input voltage		V _{REFL}	_	V _{REFH}	V	
C _{ADIN}	Input capacitance	• 8-/10-/12-bit modes	—	4	5	pF	
R _{ADIN}	Input resistance		_	2	5	kΩ	
R _{AS}	Analog source resistance	12-bit modes f _{ADCK} < 4 MHz	_	_	5	kΩ	4
f _{ADCK}	ADC conversion clock frequency	≤ 12-bit mode	1.0	_	18.0	MHz	5
C _{rate}	ADC conversion rate	≤ 12 bit modes No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	20.000	_	818.330	Ksps	6

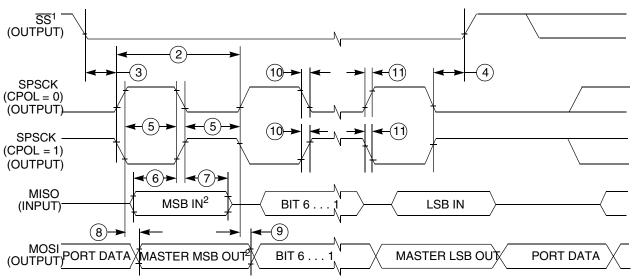
1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

2. DC potential difference.

For packages without dedicated VREFH and VREFL pins, V_{REFH} is internally tied to V_{DDA}, and V_{REFL} is internally tied to V_{SSA}.

- 4. This resistance is external to MCU. The analog source resistance must be kept as low as possible to achieve the best results. The results in this data sheet were derived from a system which has < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1ns.
- 5. To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear.
- 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool


Figure 10. Typical INL error vs. digital code

Peripheral operating requirements and behaviors

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 13. SPI master mode timing (CPHA = 1)

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	—	t _{periph}	—
4	t _{Lag}	Enable lag time	1	_	t _{periph}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30		ns	—

Table continues on the next page...

Peripheral operating requirements and behaviors

Num.	Symbol	Description	Min.	Max.	Unit	Note
6	t _{SU}	Data setup time (inputs)	2	—	ns	_
7	t _{HI}	Data hold time (inputs)	7	_	ns	_
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	22	ns	_
11	t _{HO}	Data hold time (outputs)	0	—	ns	_
12	t _{RI}	Rise time input	—	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	25	ns	—
	t _{FO}	Fall time output				

Table 25. SPI slave mode timing on slew rate disabled pads (continued)

1. For SPI0 f_{periph} is the bus clock (f_{BUS}).

- 2. $t_{periph} = 1/f_{periph}$ 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

Table 26. SPI slave mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	—	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	_
4	t _{Lag}	Enable lag time	1	—	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	2	_	ns	—
7	t _{HI}	Data hold time (inputs)	7	_	ns	_
8	t _a	Slave access time		t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	122	ns	_
11	t _{HO}	Data hold time (outputs)	0		ns	_
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	36	ns	—
	t _{FO}	Fall time output				

1. For SPI0 f_{periph} is the bus clock (f_{\text{BUS}}).

- 2. $t_{periph} = 1/f_{periph}$
- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

6.9 Human-machine interfaces (HMI)

6.9.1 TSI electrical specifications

Table 27. TSI electrical specifications

Symbol	Description	Min.	Туре	Max	Unit
TSI_RUNF	Fixed power consumption in run mode	—	100	—	μA
TSI_RUNV	Variable power consumption in run mode (depends on oscillator's current selection)	1.0	-	128	μA
TSI_EN	Power consumption in enable mode	—	100	_	μA
TSI_DIS	Power consumption in disable mode	—	1.2		μΑ
TSI_TEN	TSI analog enable time	—	66		μs
TSI_CREF	TSI reference capacitor	—	1.0	—	pF
TSI_DVOLT	Voltage variation of VP & VM around nominal values	0.19	—	1.03	V

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to www.freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number		
24-pin QFN	98ASA00474D		
32-pin QFN	98ASA00473D		
32-pin LQFP	98ASH70029A		
48-pin LQFP	98ASH00962A		

8 Pinout

48 LQFP	32 QFN	32 LQFP	24 QFN	Pin Name	Default	ALTO	ALT1	ALT2	ALT3
25	17	17	13	PTB1/ IRQ_9	ADC0_SE5/ TSI0_IN3/ DAC0_OUT/ CMP0_IN3	ADC0_SE5/ TSI0_IN3/ DAC0_OUT/ CMP0_IN3	PTB1/ IRQ_9	UARTO_TX	UARTO_RX
26	18	18	14	PTB2/ IRQ_10/ LLWU_P5	ADC0_SE4/ TSI0_IN2	ADC0_SE4/ TSI0_IN2	PTB2/ IRQ_10/ LLWU_P5	UARTO_RX	UARTO_TX
27	19	19	15	PTA8	ADC0_SE3/ TSI0_IN1	ADC0_SE3/ TSI0_IN1	PTA8		
28	20	20	16	PTA9	ADC0_SE2/ TSI0_IN0	ADC0_SE2/ TSI0_IN0	PTA9		
29	-	—	-	PTB20	DISABLED	DISABLED	PTB20		
30	_	-	-	VSS	VSS	VSS			
31	-	-	-	VDD	VDD	VDD			
32	-	-	-	PTB14/ IRQ_11	DISABLED	DISABLED	PTB14/ IRQ_11	EXTRG_IN	
33	21	21	-	PTA10/ IRQ_12	DISABLED	TSIO_IN11	PTA10/ IRQ_12		
34	22	22	-	PTA11/ IRQ_13	DISABLED	TSIO_IN10	PTA11/ IRQ_13		
35	23	23	17	PTB3/ IRQ_14	DISABLED	DISABLED	PTB3/ IRQ_14	I2C0_SCL	UART0_TX
36	24	24	18	PTB4/ IRQ_15/ LLWU_P6	DISABLED	DISABLED	PTB4/ IRQ_15/ LLWU_P6	I2C0_SDA	UARTO_RX
37	25	25	19	PTB5/ IRQ_16	NMI_b	ADC0_SE1/ CMP0_IN1	PTB5/ IRQ_16	TPM1_CH1	NMI_b
38	26	26	20	PTA12/ IRQ_17/ LPTMR0_ALT2	ADC0_SE0/ CMP0_IN0	ADC0_SE0/ CMP0_IN0	PTA12/ IRQ_17/ LPTMR0_ALT2	TPM1_CH0	TPM_CLKIN0
39	27	27	-	PTA13	TSI0_IN9	TSI0_IN9	PTA13		
40	28	28	_	PTB12	TSI0_IN8	TSI0_IN8	PTB12		
41	-	-	-	PTA19	DISABLED	DISABLED	PTA19		SPI0_SS_b
42	-	-	-	PTB15	DISABLED	DISABLED	PTB15	SPI0_MOSI	SPI0_MISO
43	-	-	-	PTB16	DISABLED	DISABLED	PTB16	SPI0_MISO	SPI0_MOSI
44	-	-	-	PTB17	DISABLED	DISABLED	PTB17	TPM_CLKIN1	SPI0_SCK
45	29	29	21	PTB13	ADC0_SE13	ADC0_SE13	PTB13	TPM1_CH1	RTC_CLKOUT
46	30	30	22	PTA0/ IRQ_0/ LLWU_P7	SWD_CLK	ADC0_SE12/ CMP0_IN2	PTA0/ IRQ_0/ LLWU_P7	TPM1_CH0	SWD_CLK
47	31	31	23	PTA1/ IRQ_1/ LPTMR0_ALT1	RESET_b	DISABLED	PTA1/ IRQ_1/ LPTMR0_ALT1	TPM_CLKIN0	RESET_b
48	32	32	24	PTA2	SWD_DIO	DISABLED	PTA2	CMP0_OUT	SWD_DIO

8.2 KL05 Pinouts

The following figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

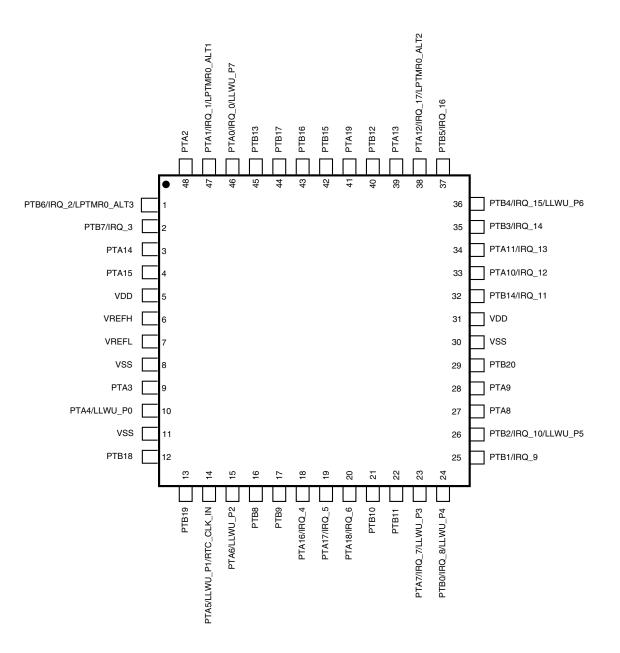


Figure 16. KL05 48-pin LQFP pinout diagram

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

 $\label{eq:FreescaleTM} Freescale TM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.$

© 2012 Freescale Semiconductor, Inc.

Document Number: KL05P48M48SF1 Rev. 3, 11/29/2012