

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl05z8vlc4	
Supplier Device Package	32-LQFP (7x7)	
Package / Case	32-LQFP	
Mounting Type	Surface Mount	
Operating Temperature	-40°C ~ 105°C (TA)	
Oscillator Type	Internal	
Data Converters	A/D 14x12b; D/A 1x12b	
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V	
RAM Size	1K x 8	
EEPROM Size	-	
Program Memory Type	FLASH	
Program Memory Size	8KB (8K x 8)	
Number of I/O	28	
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT	
Connectivity	I ² C, SPI, UART/USART	
Speed	48MHz	
Core Size	32-Bit Single-Core	
Core Processor	ARM® Cortex®-M0+	
Product Status	Active	
Details		

3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.2.1 Example

This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements:

Symbol	Description	Min.	Max.	Unit
I _{WP}	Digital I/O weak pullup/ pulldown current	10	130	μΑ

3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

3.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	_	7	pF

3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- Handling ratings apply when the chip is not powered.

3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A typical value is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

3.8.1 **Example 1**

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

3.8.2 **Example 2**

This is an example of a chart that shows typical values for various voltage and temperature conditions:

Table 1. Voltage and current operating requirements (continued)

Symbol	Description	Min.	Max.	Unit	Notes
I _{ICIO}	I/O pin DC injection current — single pin				1
	 V_{IN} < V_{SS}-0.3V (Negative current injection) 			mA	
	 V_{IN} > V_{DD}+0.3V (Positive current injection) 	-3	_		
	25	-	+3		
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins				
	Negative current injection	-25	_	mA	
	Positive current injection	_	+25		
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	_	V	

^{1.} All analog pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is greater than V_{AIO_MIN} (=V_{SS}-0.3V) and V_{IN} is less than V_{AIO_MAX}(=V_{DD}+0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{IC}I. The positive injection current limiting resistor is calculated as R=(V_{IN}-V_{AIO_MAX})/II_{IC}I. Select the larger of these two calculated resistances.

5.2.2 LVD and POR operating requirements

Table 2. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	
V_{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
	Low-voltage warning thresholds — high range					1
V_{LVW1H}	Level 1 falling (LVWV=00)	2.62	2.70	2.78	V	
V_{LVW2H}	Level 2 falling (LVWV=01)	2.72	2.80	2.88	V	
V_{LVW3H}	 Level 3 falling (LVWV=10) 	2.82	2.90	2.98	V	
V_{LVW4H}	Level 4 falling (LVWV=11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	±60	_	mV	
V_{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
	Low-voltage warning thresholds — low range					1
V_{LVW1L}	Level 1 falling (LVWV=00)	1.74	1.80	1.86	V	
V_{LVW2L}	Level 2 falling (LVWV=01)	1.84	1.90	1.96	V	
V_{LVW3L}	Level 3 falling (LVWV=10)	1.94	2.00	2.06	V	
V_{LVW4L}	Level 4 falling (LVWV=11)	2.04	2.10	2.16	V	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	±40	_	mV	

Table continues on the next page...

Table 2. V_{DD} supply LVD and POR operating requirements (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

1. Rising thresholds are falling threshold + hysteresis voltage

5.2.3 Voltage and current operating behaviors

Table 3. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — Normal drive pad				1
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OH} = -5 \text{ mA}$	$V_{DD} - 0.5$	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -1.5 mA	V _{DD} – 0.5	_	V	
V _{OH}	Output high voltage — High drive pad				1
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OH} = -18 \text{ mA}$	V _{DD} – 0.5	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -6 mA	V _{DD} – 0.5	_	V	
I _{OHT}	Output high current total for all ports	_	100	mA	
V _{OL}	Output low voltage — Normal drive pad				1
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OL} = 5 \text{ mA}$	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}, \text{I}_{OL} = 1.5 \text{ mA}$	_	0.5	V	
V _{OL}	Output low voltage — High drive pad				1
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$, $\text{I}_{OL} = 18 \text{ mA}$	_	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 6 mA	_	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μΑ	2
I _{IN}	Input leakage current (per pin) at 25 °C	_	0.025	μA	2
I _{IN}	Input leakage current (total all pins) for full temperature range	_	41	μA	2
l _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μΑ	
R _{PU}	Internal pullup resistors	20	50	kΩ	3

^{1.} PTA12, PTA13, PTB0 and PTB1 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.

^{2.} Measured at $V_{DD} = 3.6 \text{ V}$

^{3.} Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- FEI clock mode

Table 4. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.	_	_	300	μs	
	• VLLS0 → RUN	_	95	115	μs	
	• VLLS1 → RUN	_	93	115	μs	
	• VLLS3 → RUN	_	42	53	μs	
	• LLS → RUN	_	4	4.6	μs	
	VLPS → RUN	_	4	4.4	μs	
	• STOP → RUN	_	4	4.4	μs	

5.2.5 Power consumption operating behaviors

Table 5. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	_	See note	mA	1
I _{DD_RUNCO}	Run mode current in compute operation - 48 MHz core / 24 MHz flash / bus clock disabled, code of while(1) loop executing from flash • at 3.0 V	_	4.1	5.2	mA	2
I _{DD_RUN}	Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks disabled, code of while(1) loop executing from flash • at 3.0 V	_	4.9	5.6	mA	2

Table continues on the next page...

Table 5. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_STOP}	Stop mode current					
	• at 3.0 V					
	• at 25 °C	_	273	441		
	• at 50 °C	_	281.2	620	μΑ	
	• at 70 °C	_	301.6	647.64		
	• at 85 °C	_	331	710.64		
	• at 105 °C	_	406.6	1001.84		
I _{DD_VLPS}	Very-low-power stop mode current • at 3.0 V					
	• at 25 °C	_	3.08	16.01		
	• at 50 °C	_	5.46	34.73	μA	
	• at 70 °C	_	12.08	46.73	P	
	• at 85 °C	_	22.89	77.37		
	• at 105 °C	_	53.24	190.28		
I _{DD_LLS}	Low-leakage stop mode current • at 3.0 V					
	• at 25 °C		1.7	3.69		
	• at 50 °C			22		
	• at 70 °C		3	28.19	μΑ	
	• at 85 °C		5.8 10.4	40.29		
	• at 105 °C		24	65.5		
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current • at 3.0 V				μΑ	
	• at 25 °C					
	• at 50 °C	_	1.3	3		
	• at 70 °C	_	2.3	11.04		
	• at 85 °C	_	4.4	13.68		
	• at 105 °C	_	8	20.14		
		_	18.6	37.82		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current • at 3.0 V					
	• at 25°C	_	0.78	1.6		
	at 50°C	_	1.5	13.61	μΑ	
	• at 70°C	_	3.3	15.59		
	• at 85°C	_	6.3	16.68		
	• at 105°C		15.2	26.40		

Table continues on the next page...

General

Table 6. Low power mode peripheral adders — typical value (continued)

Symbol	Description		Temperature (°C)					Unit
		-40	25	50	70	85	105	
l _{ADC}	ADC peripheral adder combining the measured values at V _{DD} and V _{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	366	366	366	366	366	366	μА

5.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE for run mode, and BLPE for VLPR mode
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

General

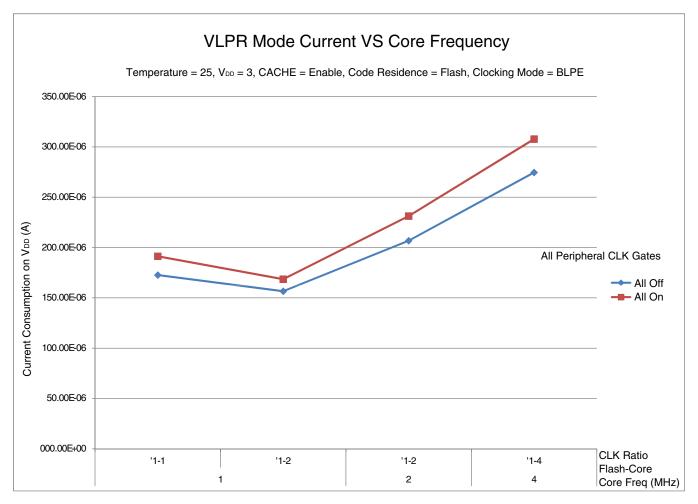


Figure 3. VLPR mode current vs. core frequency

5.2.6 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.7 Capacitance attributes

Table 7. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	_	7	pF
C _{IN_D}	Input capacitance: digital pins	_	7	pF

Table 11. MCG specifications (continued)

Symbol	Description		Min.	Тур.	Max.	Unit	Notes	
Δf_{dco_t}		rimmed average DCO output ed voltage and temperature	_	± 0.4	± 1.5	%f _{dco}	1, 2	
f _{intf_ft}		frequency (fast clock) — nominal V _{DD} and 25 °C	_	4	_	MHz		
Δf_{intf_ft}	(fast clock) over te	on of internal reference clock mperature and voltage — nominal V _{DD} and 25 °C	_	+1/-2	± 3	%f _{intf_ft}	2	
f _{intf_t}	Internal reference trimmed at nomina	frequency (fast clock) — user Il V _{DD} and 25 °C	3	_	5	MHz		
f _{loc_low}	Loss of external cle RANGE = 00	ock minimum frequency —	(3/5) x f _{ints_t}	_	_	kHz		
f _{loc_high}	Loss of external clo	ock minimum frequency — or 11	(16/5) x f _{ints_t}	_	_	kHz		
		F	LL					
f _{fII_ref}	FLL reference freq	uency range	31.25	_	39.0625	kHz		
f _{dco}	DCO output frequency range	Low range (DRS = 00) $640 \times f_{fil_ref}$	20	20.97	25	MHz	3, 4	
		Mid range (DRS = 01) $1280 \times f_{fll_ref}$	40	41.94	48	MHz		
f _{dco_t_DMX32}	DCO output frequency	Low range (DRS = 00) $732 \times f_{\text{fil_ref}}$	_	23.99	_	MHz	5, 6	
		Mid range (DRS = 01) $1464 \times f_{fll_ref}$	— 47.97 —		_	MHz		
J _{cyc_fll}	FLL period jitter • f _{VCO} = 48 MHz		_	180	_	ps	7	
t _{fll_acquire}		cy acquisition time	_	_	1	ms	8	

- This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. The deviation is relative to the factory trimmed frequency at nominal V_{DD} and 25 °C, f_{ints_ft}.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
- The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation
 (Δf_{dco_t}) over voltage and temperature must be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

6.3.2 Oscillator electrical specifications

This section provides the electrical characteristics of the module.

Table 19. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
EQ	Quantization error	12-bit modes	_	_	±0.5	LSB ⁴	
E _{IL}	Input leakage error			I _{In} × R _{AS}		mV	I _{In} = leakage current (refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	_	1.715	_	mV/°C	
V _{TEMP25}	Temp sensor voltage	25 °C	_	719	_	mV	

- 1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$
- Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power).For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed.
- 4. $1 LSB = (V_{REFH} V_{REFL})/2^{N}$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)

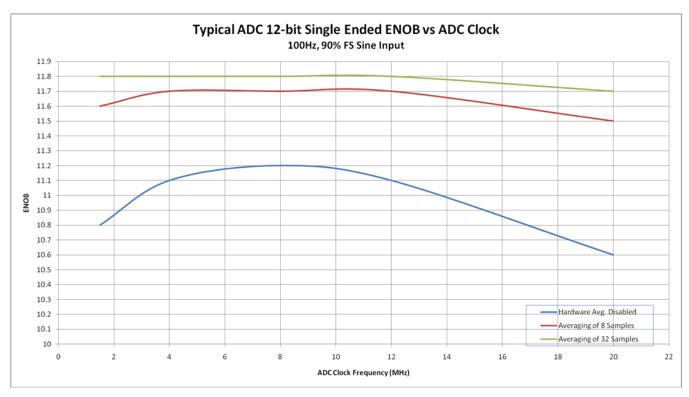


Figure 7. Typical ENOB vs. ADC_CLK for 12-bit single-ended mode

6.6.2 CMP and 6-bit DAC electrical specifications

Table 20. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, high-speed mode (EN = 1, PMODE = 1)	_	_	200	μΑ
I _{DDLS}	Supply current, low-speed mode (EN = 1, PMODE = 0)	_	_	20	μA
V _{AIN}	Analog input voltage	V _{SS}	_	V_{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	• CR0[HYSTCTR] = 11	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN = 1, PMODE = 1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN = 1, PMODE = 0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	I _{DAC6b} 6-bit DAC current adder (enabled)		7	_	μA
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

^{1.} Typical hysteresis is measured with input voltage range limited to 0.7 to V_{DD} – 0.7 V.

^{2.} Comparator initialization delay is defined as the time between software writes to change control inputs (writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

^{3. 1} LSB = V_{reference}/64

Peripheral operating requirements and behaviors

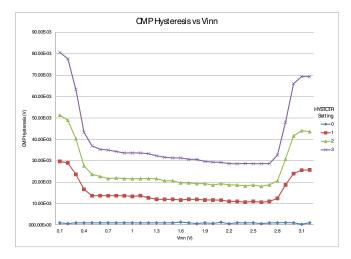


Figure 8. Typical hysteresis vs. Vin level ($V_{DD} = 3.3 \text{ V}$, PMODE = 0)

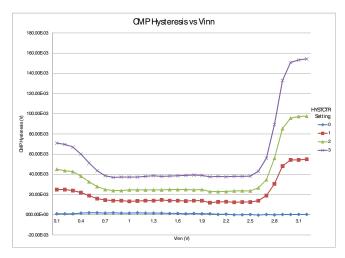


Figure 9. Typical hysteresis vs. Vin level ($V_{DD} = 3.3 \text{ V}$, PMODE = 1)

6.6.3 12-bit DAC electrical characteristics

6.6.3.1 12-bit DAC operating requirements Table 21. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage		3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
T _A	Temperature	Operating temperature range of the device		°C	
C _L	Output load capacitance	_	100	pF	2
ΙL	Output load current	_	1	mA	

- 1. The DAC reference can be selected to be V_{DDA} or the voltage output of the VREF module (VREF_OUT)
- 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC

Peripheral operating requirements and behaviors

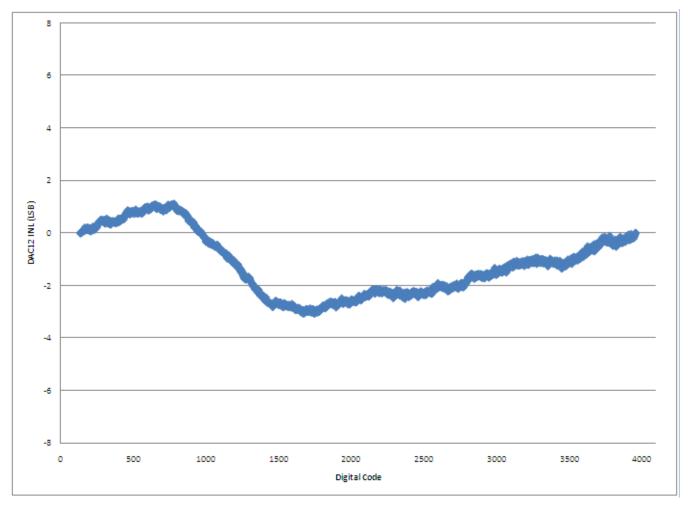


Figure 10. Typical INL error vs. digital code

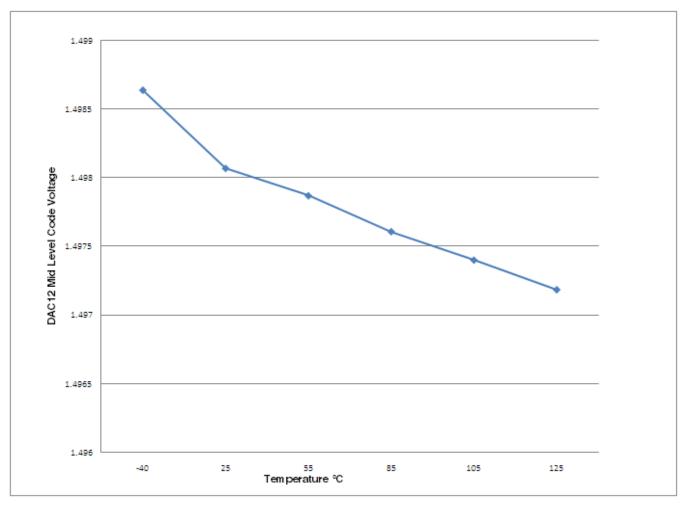
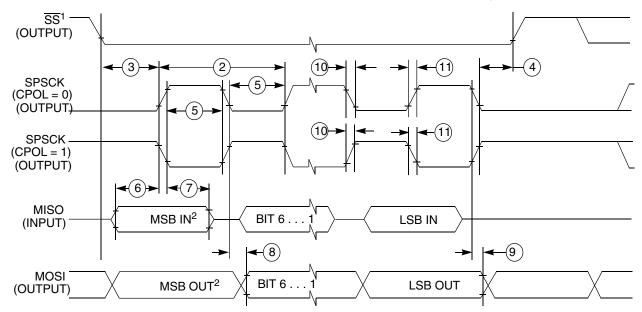


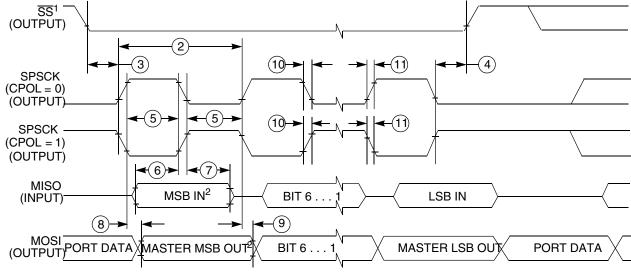
Figure 11. Offset at half scale vs. temperature

6.7 Timers


See General switching specifications.

6.8 Communication interfaces

6.8.1 SPI switching specifications


The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012.

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 12. SPI master mode timing (CPHA = 0)

- 1.If configured as output
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 13. SPI master mode timing (CPHA = 1)

Table 25. SPI slave mode timing on slew rate disabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	_
4	t _{Lag}	Enable lag time	1	_	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	_	ns	_

Table continues on the next page...

KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012.

Table 25. SPI slave mode timing on slew rate disabled pads (continued)

Num.	Symbol	Description	Min.	Max.	Unit	Note
6	t _{SU}	Data setup time (inputs)	2	_	ns	_
7	t _{HI}	Data hold time (inputs)	7	_	ns	_
8	ta	Slave access time	_	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	22	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

- 1. For SPI0 f_{periph} is the bus clock ($f_{\text{BUS}}).$
- t_{periph} = 1/f_{periph}
 Time to data active from high-impedance state
- 4. Hold time to high-impedance state

Table 26. SPI slave mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	_
4	t _{Lag}	Enable lag time	1	_	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	2	_	ns	_
7	t _{HI}	Data hold time (inputs)	7	_	ns	_
8	ta	Slave access time	_	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	122	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	36	ns	_
	t _{FO}	Fall time output				

- 1. For SPI0 f_{periph} is the bus clock (f_{BUS}).
- 2. $t_{periph} = 1/f_{periph}$
- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

8.1 KL05 signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

48 LQFP	32 QFN	32 LQFP	24 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3
1	1	1	1	PTB6/ IRQ_2/ LPTMR0_ALT3	DISABLED	DISABLED	PTB6/ IRQ_2/ LPTMR0_ALT3	TPM0_CH3	TPM_CLKIN1
2	2	2	2	PTB7/ IRQ_3	DISABLED	DISABLED	PTB7/ IRQ_3	TPM0_CH2	
3	-	-	-	PTA14	DISABLED	DISABLED	PTA14		TPM_CLKIN0
4	1	_	_	PTA15	DISABLED	DISABLED	PTA15		CLKOUT
5	3	3	3	VDD	VDD	VDD			
6	4	4	3	VREFH	VREFH	VREFH			
7	5	5	4	VREFL	VREFL	VREFL			
8	6	6	4	VSS	VSS	VSS			
9	7	7	5	PTA3	EXTAL0	EXTAL0	PTA3	I2C0_SCL	I2C0_SDA
10	8	8	6	PTA4/ LLWU_P0	XTAL0	XTAL0	PTA4/ LLWU_P0	I2C0_SDA	I2C0_SCL
11	1	_	_	VSS	VSS	VSS			
12	-	_	_	PTB18	DISABLED	DISABLED	PTB18		
13	ı	_	_	PTB19	DISABLED	DISABLED	PTB19		
14	9	9	7	PTA5/ LLWU_P1/ RTC_CLK_IN	DISABLED	DISABLED	PTA5/ LLWU_P1/ RTC_CLK_IN	TPM0_CH5	SPI0_SS_b
15	10	10	8	PTA6/ LLWU_P2	DISABLED	DISABLED	PTA6/ LLWU_P2	TPM0_CH4	SPI0_MISO
16	11	11	-	PTB8	ADC0_SE11	ADC0_SE11	PTB8	TPM0_CH3	
17	12	12	_	PTB9	ADC0_SE10	ADC0_SE10	PTB9	TPM0_CH2	
18	-	1	_	PTA16/ IRQ_4	DISABLED	DISABLED	PTA16/ IRQ_4		
19	ı	ı	_	PTA17/ IRQ_5	DISABLED	DISABLED	PTA17/ IRQ_5		
20	1	-	_	PTA18/ IRQ_6	DISABLED	DISABLED	PTA18/ IRQ_6		
21	13	13	9	PTB10	ADC0_SE9/ TSI0_IN7	ADC0_SE9/ TSI0_IN7	PTB10	TPM0_CH1	
22	14	14	10	PTB11	ADC0_SE8/ TSI0_IN6	ADC0_SE8/ TSI0_IN6	PTB11	TPM0_CH0	
23	15	15	11	PTA7/ IRQ_7/ LLWU_P3	ADC0_SE7/ TSI0_IN5	ADC0_SE7/ TSI0_IN5	PTA7/ IRQ_7/ LLWU_P3	SPI0_MISO	SPI0_MOSI
24	16	16	12	PTB0/ IRQ_8/ LLWU_P4	ADC0_SE6/ TSI0_IN4	ADC0_SE6/ TSI0_IN4	PTB0/ IRQ_8/ LLWU_P4	EXTRG_IN	SPI0_SCK

Pinout

48 LQFP	32 QFN	32 LQFP	24 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3
25	17	17	13	PTB1/ IRQ_9	ADC0_SE5/ TSI0_IN3/ DAC0_OUT/ CMP0_IN3	ADCO_SE5/ TSIO_IN3/ DACO_OUT/ CMPO_IN3	PTB1/ IRQ_9	UARTO_TX	UARTO_RX
26	18	18	14	PTB2/ IRQ_10/ LLWU_P5	ADC0_SE4/ TSI0_IN2	ADC0_SE4/ TSI0_IN2	PTB2/ IRQ_10/ LLWU_P5	UARTO_RX	UARTO_TX
27	19	19	15	PTA8	ADC0_SE3/ TSI0_IN1	ADC0_SE3/ TSI0_IN1	PTA8		
28	20	20	16	PTA9	ADC0_SE2/ TSI0_IN0	ADC0_SE2/ TSI0_IN0	PTA9		
29	1	_	-	PTB20	DISABLED	DISABLED	PTB20		
30	_	_	_	VSS	VSS	VSS			
31	_	_	_	VDD	VDD	VDD			
32	_	_	-	PTB14/ IRQ_11	DISABLED	DISABLED	PTB14/ IRQ_11	EXTRG_IN	
33	21	21	-	PTA10/ IRQ_12	DISABLED	TSI0_IN11	PTA10/ IRQ_12		
34	22	22	-	PTA11/ IRQ_13	DISABLED	TSI0_IN10	PTA11/ IRQ_13		
35	23	23	17	PTB3/ IRQ_14	DISABLED	DISABLED	PTB3/ IRQ_14	I2CO_SCL	UARTO_TX
36	24	24	18	PTB4/ IRQ_15/ LLWU_P6	DISABLED	DISABLED	PTB4/ IRQ_15/ LLWU_P6	12C0_SDA	UARTO_RX
37	25	25	19	PTB5/ IRQ_16	NMI_b	ADC0_SE1/ CMP0_IN1	PTB5/ IRQ_16	TPM1_CH1	NMI_b
38	26	26	20	PTA12/ IRQ_17/ LPTMR0_ALT2	ADC0_SE0/ CMP0_IN0	ADC0_SE0/ CMP0_IN0	PTA12/ IRQ_17/ LPTMR0_ALT2	TPM1_CH0	TPM_CLKIN0
39	27	27	-	PTA13	TSI0_IN9	TSI0_IN9	PTA13		
40	28	28	_	PTB12	TSI0_IN8	TSI0_IN8	PTB12		
41	_	_	_	PTA19	DISABLED	DISABLED	PTA19		SPI0_SS_b
42	_	_	_	PTB15	DISABLED	DISABLED	PTB15	SPI0_MOSI	SPI0_MISO
43	_	_	_	PTB16	DISABLED	DISABLED	PTB16	SPI0_MISO	SPI0_MOSI
44	_	_	_	PTB17	DISABLED	DISABLED	PTB17	TPM_CLKIN1	SPI0_SCK
45	29	29	21	PTB13	ADC0_SE13	ADC0_SE13	PTB13	TPM1_CH1	RTC_CLKOUT
46	30	30	22	PTA0/ IRQ_0/ LLWU_P7	SWD_CLK	ADC0_SE12/ CMP0_IN2	PTA0/ IRQ_0/ LLWU_P7	TPM1_CH0	SWD_CLK
47	31	31	23	PTA1/ IRQ_1/ LPTMR0_ALT1	RESET_b	DISABLED	PTA1/ IRQ_1/ LPTMR0_ALT1	TPM_CLKIN0	RESET_b
48	32	32	24	PTA2	SWD_DIO	DISABLED	PTA2	CMP0_OUT	SWD_DIO

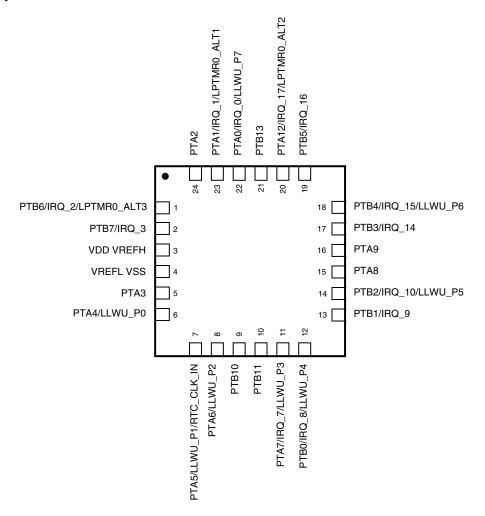


Figure 19. KL05 24-pin QFN pinout diagram

9 Revision History

The following table provides a revision history for this document.

Table 28. Revision History

Rev. No.	Date	Substantial Changes
1	7/2012	Initial NDA release.
2	9/2012	Initial public release.
3	11/2012	Completed all the TBDs.

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

FreescaleTM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

Document Number: KL05P48M48SF1

Rev. 3, 11/29/2012

