

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c74a-04-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	· · - · ·										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (2)
Bank 0)										
00h ⁽⁴⁾	INDF	Addressing	this location	uses conten	ts of FSR to a	ddress data r	memory (not	a physical re	egister)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽⁴⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽⁴⁾	STATUS	IRP ⁽⁷⁾	RP1 ⁽⁷⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽⁴⁾	FSR	Indirect data	a memory ac	dress pointe	er	•				XXXX XXXX	uuuu uuuu
05h	PORTA	_	—	PORTA Dat	a Latch when	written: POR	TA pins wher	n read		0x 0000	0u 0000
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins whe	n read				XXXX XXXX	uuuu uuuu
07h	PORTC	PORTC Dat	ta Latch whe	n written: PC	ORTC pins whe	en read				XXXX XXXX	uuuu uuuu
08h ⁽⁵⁾	PORTD	PORTD Dat	ta Latch whe	n written: PC	ORTD pins whe	en read				XXXX XXXX	uuuu uuuu
09h (5)	PORTE	—	_	_	_	_	RE2	RE1	RE0	xxx	uuu
0Ah ^(1,4)	PCLATH	—	—	—	Write Buffer for	or the upper	5 bits of the I	Program Cou	inter	0 0000	0 0000
0Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	—	—	—	-	-	—	—	CCP2IF	0	0
0Eh	TMR1L	Holding reg	ister for the L	_east Signific	cant Byte of the	e 16-bit TMR	1 register			XXXX XXXX	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the I	Most Signific	ant Byte of the	16-bit TMR1	register			XXXX XXXX	uuuu uuuu
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	is Serial Port	Receive Bu	ffer/Transmit R	egister				XXXX XXXX	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	Register1 (I	_SB)					XXXX XXXX	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	Register1 (I	MSB)					XXXX XXXX	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Trai	nsmit Data R	egister	•					0000 0000	0000 0000
1Ah	RCREG	USART Red	ceive Data R	egister						0000 0000	0000 0000
1Bh	CCPR2L	Capture/Co	mpare/PWM	Register2 (I	_SB)					XXXX XXXX	uuuu uuuu
1Ch	CCPR2H	Capture/Co	mpare/PWM	Register2 (I	MSB)					XXXX XXXX	uuuu uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh	ADRES	A/D Result	Register							XXXX XXXX	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0

 TABLE 4-2:
 PIC16C73/73A/74/74A SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

4: These registers can be addressed from either bank.

5: PORTD and PORTE are not physically implemented on the PIC16C73/73A, read as '0'.

6: Brown-out Reset is not implemented on the PIC16C73 or the PIC16C74, read as '0'.

7: The IRP and RP1 bits are reserved on the PIC16C73/73A/74/74A, always maintain these bits clear.

									, , , , ,		
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (2)
Bank 2									•		
100h ⁽⁴⁾	INDF	Addressing	this location	uses conter	nts of FSR to a	ddress data ı	memory (not	a physical re	egister)	0000 0000	0000 0000
101h	TMR0	Timer0 mod	dule's registe	r						xxxx xxxx	uuuu uuuu
102h ⁽⁴⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
103h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
104h ⁽⁴⁾	FSR	Indirect dat	a memory ac	dress pointe	er	1			I	xxxx xxxx	uuuu uuuu
105h	_	Unimpleme	nted							_	_
106h	PORTB	PORTB Da	ta Latch whe	n written: PC	ORTB pins whe	en read				xxxx xxxx	uuuu uuuu
107h	—	Unimpleme	nted							—	—
108h	—	Unimpleme	nted							—	—
109h	—	Unimpleme	nted	_						—	—
10Ah ^(1,4)	PCLATH	—	_	_	Write Buffer f	or the upper	5 bits of the	Program Cou	Inter	0 0000	0 0000
10Bh (4)	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
10Ch- 10Fh	_	Unimpleme	nted	•		•	•		•	_	_
Bank 3											
180h ⁽⁴⁾	INDF	Addressing	this location	uses conter	nts of FSR to a	ddress data ı	memory (not	a physical re	egister)	0000 0000	0000 0000
181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
182h ⁽⁴⁾	PCL	Program Co	ounter's (PC)	Least Sigr	nificant Byte			•	•	0000 0000	0000 0000
183h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	с	0001 1xxx	000q quuu
184h ⁽⁴⁾	FSR	Indirect dat	a memory ac	dress pointe	er					xxxx xxxx	uuuu uuuu
185h	_	Unimpleme	nted							_	_
186h	TRISB	PORTB Da	ta Direction F	Register						1111 1111	1111 1111
187h	_	Unimpleme	Unimplemented					_	_		
188h	_	Unimpleme	nted							_	_
189h	—	Unimpleme	nted							—	—
18Ah ^(1,4)	PCLATH	_	_	_	Write Buffer f	or the upper	5 bits of the	Program Cou	Inter	0 0000	0 0000
18Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
18Ch- 18Fh	_	Unimpleme	nted							_	_

TABLE 4-3: PIC16C76/77 SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

 $\label{eq:logarder} \begin{array}{ll} \mbox{Legend:} & x = \mbox{unknown}, \mbox{u} = \mbox{unknown}, \mbox{q} = \mbox{value depends on condition, $-$ = unimplemented read as '0'.} \\ & \mbox{Shaded locations are unimplemented, read as '0'.} \end{array}$

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the PIC16C76, always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD and PORTE are not physically implemented on the PIC16C76, read as '0'.

4.2.2.3 INTCON REGISTER

Applicable Devices

72 73 73A 74 74A 76 77

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

FIGURE 4-9: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	R = Readable bit
bit7							bitO	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset
bit 7:	GIE: ⁽¹⁾ GI 1 = Enabl 0 = Disab	lobal Inter es all un-r les all inte	rupt Enabl nasked in rrupts	e bit terrupts				
bit 6:	PEIE : Per 1 = Enabl 0 = Disab	ipheral Int es all un-r les all per	errupt Ena nasked pe ipheral int	able bit eripheral in errupts	terrupts			
bit 5:	TOIE : TMF 1 = Enabl 0 = Disab	R0 Overflo es the TM les the TM	ow Interrup R0 interru 1R0 interru	ot Enable b pt upt	bit			
bit 4:	INTE: RB 1 = Enabl 0 = Disab	INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt						
bit 3:	RBIE : RB 1 = Enabl 0 = Disab	Port Cha es the RB les the RE	nge Interr port char 3 port chai	upt Enable ige interruj nge interru	bit ot pt			
bit 2:	TOIF : TMF 1 = TMR0 0 = TMR0	R0 Overflo) register h) register o	w Interrup has overflo lid not ove	ot Flag bit owed (mus erflow	t be cleare	d in softwa	re)	
bit 1:	INTF : RB 1 = The R 0 = The R	0/INT Exte 80/INT ex 80/INT ex	ernal Intern tternal inte tternal inte	rupt Flag b errupt occu errupt did r	it Irred (must not occur	be cleared	d in softwar	e)
bit 0:	RBIF : RB 1 = At lea 0 = None	Port Cha st one of t of the RB	nge Interru he RB7:R 7:RB4 pin	upt Flag bit B4 pins ch s have cha	t langed stat anged state	e (must be	e cleared in	software)
Note 1:	 For the PIC16C73 and PIC16C74, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may be unintentionally re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 14.5 for a detailed description. 						it is being cleared, the GIE bit 's Interrupt Service Routine.	
Interro global enabl	upt flag bits (I enable bit, ing an interr	get set whe GIE (INTC) upt.	n an interru ON<7>). Us	upt conditior ser software	n occurs rega should ensi	ardless of th ure the appr	e state of its opriate inter	corresponding enable bit or the rupt flag bits are clear prior to

11.2.1 OPERATION OF SSP MODULE IN SPI MODE

Ар	pli	cabl	e D	evic	es	
72	73	73A	74	74A	76	77

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO)
- Serial Data In (SDI)
- Serial Clock (SCK)

Additionally a fourth pin may be used when in a slave mode of operation:

Slave Select (SS)

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>). These control bits allow the following to be specified:

- Master Mode (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Output/Input data on the Rising/ Falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select Mode (Slave mode only)

The SSP consists of a transmit/receive Shift Register (SSPSR) and a Buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR, until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the Buffer Full bit, BF (SSPSTAT<0>) and flag bit SSPIF are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit, WCOL (SSPCON<7>) will be set. User software must clear bit WCOL so that it can be determined if the following write(s) to the SSPBUF completed successfully. When the application software is expecting to receive valid data, the SSPBUF register should be read before the next byte of data to transfer is written to the SSPBUF register. The Buffer Full bit BF (SSPSTAT<0>) indicates when the SSPBUF register has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the SSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF register must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 11-1 shows the loading of the SSPBUF (SSPSR) register for data transmission. The shaded instruction is only required if the received data is meaningful.

EXAMPLE 11-1: LOADING THE SSPBUF (SSPSR) REGISTER

LOOP	BSF BTFSS	STATUS , SSPSTAT ,	RPO , BF	;Specify Bank 1 ;Has data been ;received ;(transmit ;complete)?
	GOTO	LOOP		;No
	BCF	STATUS,	RP0	;Specify Bank 0
	MOVF	SSPBUF,	W	;W reg = contents ;of SSPBUF
	MOVWF	RXDATA		;Save in user RAM
	MOVF	TXDATA,	W	;W reg = contents ; of TXDATA
	MOVWF	SSPBUF		;New data to xmit

The block diagram of the SSP module, when in SPI mode (Figure 11-3), shows that the SSPSR register is not directly readable or writable, and can only be accessed from addressing the SSPBUF register. Additionally, the SSP status register (SSPSTAT) indicates the various status conditions.

FIGURE 11-3: SSP BLOCK DIAGRAM (SPI MODE)

13.2 <u>Selecting the A/D Conversion Clock</u> Applicable Devices

72 73 73A 74 74A 76 77

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 13-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

13.3 Configuring Analog Port Pins Applicable Devices 72/73/73A/74/74A/76/77

The ADCON1, TRISA, and TRISE registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
- **Note 2:** Analog levels on any pin that is defined as a digital input (including the AN7:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.

AD Clock S	ource (TAD)	Device Frequency					
Operation	ADCS1:ADCS0	20 MHz	5 MHz	1.25 MHz	333.33 kHz		
2Tosc	00	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 µs		
8Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾		
32Tosc	10	1.6 μs	6.4 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾		
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾		

TABLE 13-1: TAD vs. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.

- 2: These values violate the minimum required TAD time.
- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.
- 5: For extended voltage devices (LC), please refer to Electrical Specifications section.

Note 1: The RC source has a typical TAD time of 4 μ s.

13.8 Use of the CCP Trigger Applicable Devices 72 73 73A 74 74A 76 77

Note: In the PIC16C72, the "special event trigger" is implemented in the CCP1 module.

An A/D conversion can be started by the "special event trigger" of the CCP2 module (CCP1 on the PIC16C72 only). This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRES to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

13.9 Connection Considerations Applicable Devices 72/73/73A/74/74A/76/77

If the input voltage exceeds the rail values (VSS or VDD) by greater than 0.2V, then the accuracy of the conversion is out of specification.

An external RC filter is sometimes added for anti-aliasing of the input signal. The R component should be selected to ensure that the total source impedance is kept under the 10 k Ω recommended specification. Any external components connected (via hi-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

13.10 Transfer Function Applicable Devices 72 73 73 74 74 76 77

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is Analog VREF/256 (Figure 13-5).

FIGURE 13-5: A/D TRANSFER FUNCTION

13.11 References

A very good reference for understanding A/D converters is the "Analog-Digital Conversion Handbook" third edition, published by Prentice Hall (ISBN 0-13-03-2848-0).

14.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 14-5 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 14-5: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 14-6 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 14-6: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

14.2.4 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 14-7 shows how the R/C combination is connected to the PIC16CXX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-4 for waveform).

FIGURE 14-7: RC OSCILLATOR MODE

14.4.5 TIME-OUT SEQUENCE

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 14-10, Figure 14-11, and Figure 14-12 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 14-11). This is useful for testing purposes or to synchronize more than one PIC16CXX device operating in parallel.

Table 14-7 shows the reset conditions for some special function registers, while Table 14-8 shows the reset conditions for all the registers.

14.4.6 POWER CONTROL/STATUS REGISTER (PCON)

Ар	pli	cabl	e D	evic	es	
72	73	73A	74	74A	76	77

The Power Control/Status Register, PCON has up to two bits, depending upon the device. Bit0 is not implemented on the PIC16C73 or PIC16C74.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent resets to see if bit BOR cleared, indicating a BOR occurred. The BOR bit is a "Don't Care" bit and is not necessarily predictable if the Brown-out Reset circuitry is disabled (by clearing bit BODEN in the Configuration Word).

Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 14-3: TIME-OUT IN VARIOUS SITUATIONS, PIC16C73/74

Oscillator Configuration	Power-up		Wake-up from SLEEP
	PWRTE = 1	PWRTE = 0	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024 Tosc
RC	72 ms	_	

TABLE 14-4: TIME-OUT IN VARIOUS SITUATIONS, PIC16C72/73A/74A/76/77

Oscillator Configuration	Power-up		Brown out	Wake-up from SLEEP
	PWRTE = 0	PWRTE = 1	Brown-out	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
RC	72 ms	—	72 ms	—

TABLE 14-5: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C73/74

POR	то	PD	
0	1	1	Power-on Reset
0	0	x	Illegal, TO is set on POR
0	x	0	Illegal, PD is set on POR
1	0	1	WDT Reset
1	0	0	WDT Wake-up
1	u	u	MCLR Reset during normal operation
1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

Legend: u = unchanged, x = unknown

14.5 <u>Interrupts</u> Applicable Devices 72|73|73|74|74|76|77

The PIC16C7X family has up to 12 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 14-17). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

- Note: For the PIC16C73/74, if an interrupt occurs while the Global Interrupt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:
 - 1. An instruction clears the GIE bit while an interrupt is acknowledged.
 - 2. The program branches to the Interrupt vector and executes the Interrupt Service Routine.
 - The Interrupt Service Routine completes with the execution of the RET-FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to disable interrupts.

Perform the following to ensure that interrupts are globally disabled:

LOOP	BCF	INTCON,	GIE	;	Disable global
				;	interrupt bit
	BTFSC	INTCON,	GIE	;	Global interrupt
				;	disabled?
	GOTO	LOOP		;	NO, try again
	:			;	Yes, continue
				;	with program
				;	flow

15.1 Instruction Descriptions

ADDLW	Add Literal and W								
Syntax:	[<i>label</i>] ADDLW k								
Operands:	$0 \le k \le 255$								
Operation:	(W) + k –	→ (W)							
Status Affected:	C, DC, Z								
Encoding:	11	111x	kkkk	kkkk					
Description:	The conter added to the result is pla	nts of the ne eight b aced in th	W register it literal 'k' ne W regist	are and the er.					
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read literal 'k'	Process data	Write to W					
Example:	ADDLW	0x15							
	Before In	struction	1						
	After Inst	W =	0x10						
	Aller Inst	W =	0x25						
ADDWF	Add W a	nd f							
Syntax:	[<i>label</i>] Al	DDWF	f,d						
Operands:	$0 \le f \le 12$	7							

ANDLW	AND Lite	eral with	w							
Syntax:	[<i>label</i>] ANDLW k									
Operands:	$0 \le k \le 255$									
Operation:	(W) .ANE	D. (k) \rightarrow (W)							
Status Affected:	Z									
Encoding:	11	1001	kkkk	kkkk						
Description:	The conter AND'ed wird result is pl	nts of W r ith the eig aced in th	egister are ht bit litera le W regist	e I 'k'. The er.						
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read literal "k"	Process data	Write to W						
Example	ANDLW	0x5F								
	Before In	struction	I							
	After leat	W =	0xA3							
	Aller Inst	W =	0x03							
ANDWF	AND W v	vith f								
Syntax:	[<i>label</i>] A	NDWF	f,d							
Operands:	$0 \le f \le 12$	27								

ADDWF	Add W a	nd f							
Syntax:	[<i>label</i>] Al	DDWF	f,d						
Operands:	$0 \le f \le 127$ $d \in [0,1]$								
Operation:	(W) + (f)	ightarrow (desti	nation)						
Status Affected:	C, DC, Z								
Encoding:	00	0111	dfff	ffff					
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write to destination					
Example	ADDWF	FSR,	0						
	Before In	struction	1						
	W = 0x17 FSR = 0xC2								
	After Inst	ruction W =	0xD9						
		FSR =	0xC2						

ANDWF	AND W v	vith f						
Syntax:	[<i>label</i>] Al	NDWF	f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$							
Operation:	(W) .AND	0. (f) \rightarrow (o	destinatio	n)				
Status Affected:	Z							
Encoding:	00	0101	dfff	ffff				
Description:	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W regis- ter. If 'd' is 1 the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process data	Write to destination				
Example	ANDWF	FSR,	1					
	Before In	struction	I					
	W = 0x17							
	After Inst	ruction						
		W = FSR =	0x17 0x02					

BTFSS	Bit Test f, Skip if Set		CALL	Call Sub	Call Subroutine					
Syntax:	[<i>label</i>] B1	FSS f,b			Syntax:	[label]	CALL k	(
Operands:	$0 \le f \le 12$	27			Operands:	$0 \le k \le 2047$				
	0 ≤ b < 7				Operation:	(PC)+ 1 \rightarrow TOS.				
Operation:	skip if (f) = 1				$k \rightarrow PC <$	$k \rightarrow PC < 10:0>,$				
Status Affected:	None			(PCLATH	+<4:3>) -	→ PC<12	:11>			
Encoding:	01	01 11bb bfff ffff		Status Affected:	None					
Description:	lf bit 'b' in	register 'f' i	s '0' then tl	he next	Encoding:	10	0kkk	kkkk	kkkk	
Marda.	If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2TCY instruction.			Description:	Call Subro (PC+1) is eleven bit into PC bit	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of				
vvoras:	1					is a two cy	cle instruc	ction.	III. CALL	
Cycles:	1(2)		Words:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4	Cycles:	2				
	Decode	Read register 'f'	Process data	No- Operation	Q Cycle Activity:	Q1	Q2	Q3	Q4	
If Skip:	(2nd Cycle)			1st Cycle	Decode	Read literal 'k'	Process	Write to PC		
·	Q1	Q2	Q3	Q4			Push PC to Stack	uulu		
	No- Operation	No- Operation	No- Operation	No- Operation	2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation	
Example	HERE FALSE	BTFSC GOTO	FLAG,1 PROCESS	CODE	Example	HERE	CALL	THERE		
	TRUE	•				Before Ir	nstruction	l		
		•				After Inc	PC = A	ddress HE	RE	
•			Alterins	PC = A	ddress TH	ERE				
	Before Instruction				TOS = A	ddress HE	RE+1			
	After Inst	ruction								
		if FLAG<1>	> = 0,							
		PC =	address F	ALSE						
		PC =	> = 1, address ⊤i	RUE						

SUBWF	Subtract	W from f		
Syntax:	[label]	SUBWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	7		
Operation:	(f) - (W) –	→ (destina	tion)	
Status Affected:	C, DC, Z			
Encoding:	00	0010	dfff	ffff
Description:	Subtract (2 ister from r stored in th result is sto	's compler egister 'f'. I ne W regist pred back i	nent metho f 'd' is 0 the er. If 'd' is 1 n register 'f	d) W reg- e result is the '.
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination
Example 1:	SUBWF	reg1,1		
	Before Ins	struction		
	REG1	=	3	
	W C	=	2	
	Z	=	?	
	After Instr	uction		
	REG1	=	1	
	C	=	∠ 1; result is	positive
	Z	=	0	
Example 2:	Before Ins	struction		
	REG1	=	2	
	W C	=	2	
	Z	=	?	
	After Instr	uction		
	REG1	=	0	
	W	=	2 1: result is	7010
	z	=	1, 10301113	2010
Example 3:	Before Ins	struction		
	REG1	=	1	
	W	=	2	
	Z	=	?	
	After Instr	uction		
	REG1	=	0xFF	
	W C	=	2 0: result is	negative
	7	_	0	guivo

SWAPF	Swap Ni	bbles in	f					
Syntax:	[label]	SWAPF 1	i,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	27						
Operation:	(f<3:0>) - (f<7:4>) -	ightarrow (destin $ ightarrow$ (destin	ation< ation<	7:4>), :3:0>)				
Status Affected:	None							
Encoding:	00	1110	dffi	E ffff				
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Proces data	ss Write to destination				
Example	SWAPF	REG,	0					
	Before In	struction						
	REG1 = 0xA5							
	After Inst	ruction						
		REG1 W	=	0xA5 0x5A				

TRIS	Load TR	IS Regis	ster				
Syntax:	[label]	TRIS	f				
Operands:	$5 \leq f \leq 7$						
Operation:	$(W) \rightarrow TF$	RIS regis	ster f;				
Status Affected:	None						
Encoding:	00	0000	0110	Offf			
Description:	The instruction is supported for code compatibility with the PIC16C5X prod- ucts. Since TRIS registers are read- able and writable, the user can directly address them.						
Words:	1						
Cycles:	1						
Example							
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.						

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

16.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

16.12 <u>C Compiler (MPLAB-C)</u>

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of micro-controllers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display (PICMASTER emulator software versions 1.13 and later).

16.13 <u>Fuzzy Logic Development System</u> (fuzzyTECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

16.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC16/17 device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

16.15 <u>SEEVAL[®] Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

16.16 <u>TrueGauge[®] Intelligent Battery</u> <u>Management</u>

The TrueGauge development tool supports system development with the MTA11200B TrueGauge Intelligent Battery Management IC. System design verification can be accomplished before hardware prototypes are built. User interface is graphically-oriented and measured data can be saved in a file for exporting to Microsoft Excel.

16.17 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters. Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 17-11: A/D CONVERSION TIMING

TABLE 17-11: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
130	TAD	A/D clock period	PIC16 C 72	1.6	_	_	μs	Tosc based, VREF ≥ 3.0V
			PIC16 LC 72	2.0	—	_	μs	Tosc based, VREF full range
			PIC16 C 72	2.0	4.0	6.0	μs	A/D RC Mode
			PIC16 LC 72	3.0	6.0	9.0	μs	A/D RC Mode
131	TCNV	Conversion time (not ir time) (Note 1)	cluding S/H	—	9.5	_	TAD	
132	TACQ	Acquisition time		Note 2	20	_	μs	
				5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start		_	Tosc/2 §	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from convert	\rightarrow sample time	1.5 §	—		TAD	

These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 13.1 for min conditions.

Applicable Devices 72 73 73A 74 74A 76 77

18.2 DC Characteristics: PIC16LC73/74-04 (Commercial, Industrial)

DC CHA	RACTERISTICS		Standard Operating Conditions (unless otherwise stated) Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial					
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions	
D001	Supply Voltage	Vdd	3.0	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)	
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V		
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details	
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details	
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)	
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled	
D020	Power-down Current	IPD	-	7.5	30	μA	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$	
D021	(Note 3,5)		-	0.9	13.5	μA	VDD = $3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$	
D021A			-	0.9	18	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

Applicable Devices 72 73 73A 74 74A 76 77

TABLE 20-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	_	_	ns	
71*	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72*	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	100	—	—	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100	—	—	ns	
75*	TdoR	SDO data output rise time	_	10	25	ns	
76*	TdoF	SDO data output fall time	_	10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	_	10	25	ns	
79*	TscF	SCK output fall time (master mode)	_	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	—	50	ns	
81*	TdoV2scH, TdoV2scL	SDO data output setup to SCK edge	Тсү	—	—	ns	
82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge	—	—	50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5Tcy + 40	—	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C7X

22.2 40-Lead Ceramic CERDIP Dual In-line with Window (600 mil) (JW)

Package Group: Ceramic CERDIP Dual In-Line (CDP)						
	Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	10°		0°	10°	
А	4.318	5.715		0.170	0.225	
A1	0.381	1.778		0.015	0.070	
A2	3.810	4.699		0.150	0.185	
A3	3.810	4.445		0.150	0.175	
В	0.355	0.585		0.014	0.023	
B1	1.270	1.651	Typical	0.050	0.065	Typical
С	0.203	0.381	Typical	0.008	0.015	Typical
D	51.435	52.705		2.025	2.075	
D1	48.260	48.260	Reference	1.900	1.900	Reference
E	15.240	15.875		0.600	0.625	
E1	12.954	15.240		0.510	0.600	
e1	2.540	2.540	Reference	0.100	0.100	Reference
eA	14.986	16.002	Typical	0.590	0.630	Typical
eB	15.240	18.034		0.600	0.710	
L	3.175	3.810		0.125	0.150	
N	40	40		40	40	
S	1.016	2.286		0.040	0.090	
S1	0.381	1.778		0.015	0.070	

Instruction Set
ADDLW 149
ADDWF 149
ANDLW149
ANDWF149
BCF
BSF150
BTFSC
BTFSS
CALL
CLRF
CLRW
CLRWDT
COMF
DECE97 153
DEGF52
GOTO
INCE
INCESZ
IORLW
MO\/F 156
MOVI W 156
MOV/WF 156
NOP 157
OPTION
RETFIE
RETLW
RETURN
RLF
RRF 159
SLEEP
SUBLW 160
SUBWF 161
SWAPF161
TRIS161
XORLW 162
XORWF 162
Section
Summary Table148
INT Interrupt
INTCON
INTEON Register
INTEDG Dit
Internal Sampling Switch (RSS) Impedance
Dorte Change 142
PULD UIdilye
Section 141
TMR0 143
IRP bit 30
L
Loading of PC40

-	1		
٨	l		
N	ľ	L	L

MCLR	133, 136
Memory	
Data Memory	20
Program Memory	19
Program Memory Maps	
PIC16C72	19
PIC16C73	19
PIC16C73A	19
PIC16C74	19
PIC16C74A	19
PIC16C76	20
PIC16C77	20
Register File Maps	
PIC16C72	21
PIC16C73	21
PIC16C73A	21
PIC16C74	21
PIC16C74A	21
PIC16C76	21
PIC16C77	21
MPASM Assembler	163
MPLAB-C	165
MPSIM Software Simulator	163, 165

0

-
OERR bit10
OPCODE14
OPTION2
OPTION Register
Orthogonal
OSC selection
Oscillator
HS
LP
RC 13
XT 131 13
Oscillator Configurations
Output of TMR2
Р
P 78.8
Packaging
28-Lead Ceramic w/Window 25
28-Lead PDIP 25
28-Lead SOIC 25
28-Lead SSOP 25
40-Lead CERDIP w/Window 25
40-Lead CEI(Dir W/Window20
40-Lead FDIF25
44-Lead MQFF
44-Lead FLCC
44-Lead TQFP
Paging, Program Memory4
PCFG2 bit
PCL Register23, 24, 25, 26, 27, 28, 29, 4
PCLATH Register23, 24, 25, 26, 27, 28, 29, 4
PCON Register
PD bit
PICDEM-1 Low-Cost PIC16/17 Demo Board163, 16
PICDEM-2 Low-Cost PIC16CXX Demo Board163, 16
PICDEM-3 Low-Cost PIC16C9XXX Demo Board16
PICMASTER In-Circuit Emulator16

LIST OF FIGURES

Figure 3-1:	PIC16C72 Block Diagram 10
Figure 3-2	PIC16C73/73A/76 Block Diagram 11
Figure 3-3	PIC16C74/74A/77 Block Diagram 12
Figure 3-4	Clock/Instruction Cycle 17
Figure 4-1	PIC16C72 Program Memory Map
riguio + 1.	and Stack 19
Figure 4-2	PIC16C73/73A/74/74A Program
rigure + 2.	Memory Man and Stack 10
Figure 4-3	PIC16C76/77 Program Memory
rigure + 0.	Man and Stack 20
Figure 4-4	PIC16C72 Register File Man 21
Figure 4-5:	PIC16C73/73A/74/74A Register
rigure + 0.	File Man 21
Figure 4-6	PIC16C76/77 Register File Map 22
Figure 4-7:	Status Register (Address 03b
rigure + 7.	83h 103h 183h) 30
Figure 4-8	OPTION Register (Address 81h
rigure + 0.	181h) 31
Figure 4-9	INTCON Register
riguro + 0.	(Address 0Bh 8Bh 10bh 18bh) 32
Figure 4-10	PIE1 Register PIC16C72
riguie 4 io.	(Address 8Ch) 33
Figure 4-11	PIE1 Register PIC16C73/73A/
rigulo i i i.	74/74A/76/77 (Address 8Ch) 34
Figure 4-12	PIR1 Register PIC16C72
rigulo i iz.	(Address 0Ch)
Figure 4-13	PIR1 Register PIC16C73/73A/
rigure + ro.	74/74A/76/77 (Address 0Ch) 36
Figure 4-14	PIF2 Register (Address 8Dh) 37
Figure 4-15	PIR2 Register (Address ODh) 38
Figure 4-16:	PCON Register (Address 8Eh) 39
Figure 4-17	Loading of PC. In Different
riguio + 17.	Situations 40
Figure 4-18	Direct/Indirect Addressing 41
Figure 5-1:	Block Diagram of RA3:RA0
. iguie e ii	and RA5 Pins 43
Figure 5-2:	Block Diagram of RA4/T0CKI Pin 43
Figure 5-3:	Block Diagram of RB3:RB0 Pins 45
Figure 5-4:	Block Diagram of RB7:RB4 Pins
. iguie e ii	(PIC16C73/74)
Figure 5-5:	Block Diagram of
0	RB7:RB4 Pins (PIC16C72/73A/
	74A/76/77)46
Figure 5-6:	PORTC Block Diagram
Ū.	(Peripheral Output Override)
Figure 5-7:	PORTD Block Diagram
-	(in I/O Port Mode)50
Figure 5-8:	PORTE Block Diagram
C C	(in I/O Port Mode)51
Figure 5-9:	TRISE Register (Address 89h)51
Figure 5-10:	Successive I/O Operation53
Figure 5-11:	PORTD and PORTE Block Diagram
	(Parallel Slave Port)54
Figure 5-12:	Parallel Slave Port Write Waveforms 55
Figure 5-13:	Parallel Slave Port Read Waveforms 55
Figure 7-1:	Timer0 Block Diagram59
Figure 7-2:	Timer0 Timing: Internal Clock/No
	Prescale
Figure 7-3:	
0	Timer0 Timing: Internal
0	Timer0 Timing: Internal Clock/Prescale 1:260
Figure 7-4:	Timer0 Timing: Internal Clock/Prescale 1:260 Timer0 Interrupt Timing60
Figure 7-4: Figure 7-5:	Timer0 Timing: Internal Clock/Prescale 1:260 Timer0 Interrupt Timing60 Timer0 Timing with External Clock61
Figure 7-4: Figure 7-5: Figure 7-6:	Timer0 Timing: Internal Clock/Prescale 1:2

Figure 8-1:	T1CON: Timer1 Control Register (Address 10h)65	5
Figure 8-2:	Timer1 Block Diagram	3
Figure 9-1:	Timer2 Block Diagram 69	à
Figure 9-2	T2CON: Timer2 Control Register	
rigule 5 2.	(Address 12b) 70	h
Figure 10-1	CCP1CON Register (Address 17b)/	,
Figure 10-1.	CCP2CON Register (Address 1711)/	•
F '	CCP2CON Register (Address TDI)	-
Figure 10-2:	Capture Mode Operation	
	Block Diagram	<u>'</u>
Figure 10-3:	Compare Mode Operation	
	Block Diagram73	3
Figure 10-4:	Simplified PWM Block Diagram 74	ł
Figure 10-5:	PWM Output74	ŧ
Figure 11-1:	SSPSTAT: Sync Serial Port Status	
	Register (Address 94h)78	3
Figure 11-2:	SSPCON: Sync Serial Port Control	
-	Register (Address 14h)79)
Figure 11-3:	SSP Block Diagram (SPI Mode) 80)
Figure 11-4:	SPI Master/Slave Connection 81	I
Figure 11-5	SPI Mode Timing Master Mode	
rigulo il ol	or Slave Mode w/o SS Control 82	,
Figure 11-6	SPI Mode Timing Slave Mode with	-
rigule 11-0.	SE Control	,
Figure 11 7	SS COILIOI 02	-
Figure 11-7:	SSPSTAT: Sync Senar Port Status	
	Register (Address 94n)(PIC16C76/77) 83	5
Figure 11-8:	SSPCON: Sync Serial Port Control	
	Register (Address 14h)(PIC16C76/77) 84	ł
Figure 11-9:	SSP Block Diagram (SPI Mode)	
	(PIC16C76/77)	5
Figure 11-10:	SPI Master/Slave Connection	
	PIC16C76/77) 86	5
Figure 11-11:	SPI Mode Timing, Master Mode	
0	(PIC16C76/77)	7
Figure 11-12:	SPI Mode Timing (Slave Mode	
	With $CKF = 0$ (PIC16C76/77) 87	7
Figure 11-13	SPI Mode Timing (Slave Mode	
rigule il lo.	With $CKE = 1$ (PIC16C76/77)	2
Figure 11-14	Start and Stop Conditions	, 2
Figure 11 15:	7 bit Address Format	י ר
Figure 11-15.	1 ² C 10 bit Address Format	, ,
Figure 11-16.	1 C 10-bit Address Format	,
Figure 11-17:	Slave-receiver Acknowledge)
Figure 11-18:	Data Transfer Wait State)
Figure 11-19:	Master-transmitter Sequence 91]
Figure 11-20:	Master-receiver Sequence 91	
Figure 11-21:	Combined Format 91	
Figure 11-22:	Multi-master Arbitration	
	(Two Masters)92	2
Figure 11-23:	Clock Synchronization 92	2
Figure 11-24:	SSP Block Diagram	
0	(I ² C Mode)	3
Figure 11-25	1 ² C Waveforms for Reception	
1 iguro 11 20.	(7-bit Address)	5
Figuro 11 26	I^2 C Wayoforms for Transmission	ʻ
Figure 11-20.	(7 bit Addroso)	
Einung 44 07	(7-bit Address))
Figure 11-27:	Operation of the I ⁻ C Module in	
	IDLE_MODE, RCV_MODE or	
	XMIT_MODE 98	3
Figure 12-1:	TXSTA: Transmit Status and	
	Control Register (Address 98h) 99)
Figure 12-2:	RCSTA: Receive Status and	
	Control Register (Address 18h) 100)
Figure 12-3:	RX Pin Sampling Scheme. BRGH = 0	
-	(PIC16C73/73A/74/74A) 104	ŧ
Figure 12-4:	RX Pin Sampling Scheme. BRGH = 1	
5	(PIC16C73/73A/74/74A)	1
	, , , , , , , , , , , , , , , , , , , ,	

PIC16C7X

Figure 10 Fr	DV Dia Compling Cohomo DDCI1 1
Figure 12-5:	RA PIN Sampling Scheme, BRGH = 1
Figure 10 C	(FICTOC73/73A/74/74A)
Figure 12-6:	RA PIN Sampling Scheme,
	D(C16C76/77) 105
Figure 12 7	LISART Transmit Block Diagram 106
Figure 12-7.	Asynchronous Master Transmission 107
Figure 12-0.	Asynchronous Master Transmission
Figure 12-9.	
Figure 12 10.	(Dack IO Dack)
Figure 12-10.	Asymphronous Decention 100
Figure 12-11:	Asynchronous Reception
Figure 12-12:	Synchronous Transmission
Figure 12-13:	Synchronous Transmission
	(Ihrough IXEN)111
Figure 12-14:	Synchronous Reception
	(Master Mode, SREN)113
Figure 13-1:	ADCON0 Register (Address 1Fh) 117
Figure 13-2:	ADCON1 Register (Address 9Fh) 118
Figure 13-3:	A/D Block Diagram119
Figure 13-4:	Analog Input Model 120
Figure 13-5:	A/D Transfer Function 125
Figure 13-6:	Flowchart of A/D Operation 126
Figure 14-1:	Configuration Word for
	PIC16C73/74129
Figure 14-2:	Configuration Word for
	PIC16C72/73A/74A/76/77130
Figure 14-3:	Crystal/Ceramic Resonator
U	Operation (HS, XT or LP
	OSC Configuration)
Figure 14-4:	External Clock Input Operation
0.	(HS, XT or LP OSC Configuration)
Figure 14-5:	External Parallel Resonant Crystal
. igure i i ei	Oscillator Circuit 132
Figure 14-6	External Series Resonant Crystal
rigulo i i o.	Oscillator Circuit 132
Figure 14-7	RC Oscillator Mode 132
Figure 14-8:	Simplified Block Diagram of On-chip
riguio 14 0.	Reset Circuit 133
Figure 14-9	Brown-out Situations 134
Figure $14-3$.	Time-out Sequence on Power-up
riguie 14-10.	$(\overline{\text{MCLR}} \text{ not Tied to } \sqrt{\text{DD}})$: Case 1 130
Figuro 14 11:	Time out Sequence on Power up
Figure 14-11.	(MCL P Not Tigd To Vop): Case 2 120
Figure 14 12:	Time out Sequence on Power up
Figure 14-12.	$(\overline{MCLP}$ Tipd to $V(DP)$ 120
Figure 14 12:	(NICLE THEU to VDD)
Figure 14-13.	(for Slow Voo Dower up)
Figure 14 14	(IOI SIOW VDD FOWEI-up)
Figure 14-14.	Circuit 4 40
E '	Circuit 1
Figure 14-15:	External Brown-out Protection
	Circuit 2140
Figure 14-16:	Interrupt Logic 142
Figure 14-17:	INT Pin Interrupt Timing 142
Figure 14-18:	Watchdog Timer Block Diagram 144
Figure 14-19:	Summary of Watchdog
	Timer Registers144
Figure 14-20:	Wake-up from Sleep Through
	Interrupt146
Figure 14-21:	Typical In-Circuit Serial
	Programming Connection146
Figure 15-1:	General Format for Instructions 147
Figure 17-1:	Load Conditions 172
Figure 17-2:	External Clock Timing 173
Figure 17-3:	CLKOUT and I/O Timing 174

Figure 17-4:	Reset, Watchdog Timer, Oscillator	
	Start-up Timer and Power-up Timer	
	Timing1	75
Figure 17-5:	Brown-out Reset Timing1	75
Figure 17-6:	Timer0 and Timer1 External	
	Clock Timings1	76
Figure 17-7:	Capture/Compare/PWM	
E: 17.0	1 mings (CCP1)1	11
Figure 17-8:	SPI Mode Timing1	78
Figure 17-9:	I ² C Bus Start/Stop Bits Timing1	79
Figure 17-10:	I ² C Bus Data Timing1	80
Figure 17-11:	A/D Conversion Timing1	82
Figure 18-1:	Load Conditions1	88
Figure 18-2:	External Clock Timing1	89
Figure 18-3:	CLKOUT and I/O Timing1	90
Figure 18-4:	Reset, Watchdog Timer,	
	Oscillator Start-up Timer and Power-up T	Im-
	er Liming1	91
Figure 18-5:	Limer0 and Limer1 External	
	Clock Timings1	92
Figure 18-6:	Capture/Compare/PWM Timings	
	(CCP1 and CCP2)1	93
Figure 18-7:	Parallel Slave Port Timing	
	(PIC16C74)1	94
Figure 18-8:	SPI Mode Timing1	95
Figure 18-9:	I ² C Bus Start/Stop Bits Timing1	96
Figure 18-10:	I ² C Bus Data Timing1	97
Figure 18-11:	USART Synchronous Transmission	
	(Master/Slave) Timing1	98
Figure 18-12:	USART Synchronous Receive	
	(Master/Slave) Timing1	98
Figure 18-13:	A/D Conversion Timing2	200
Figure 19-1:	Load Conditions2	206
Figure 19-2:	External Clock Timing2	207
Figure 19-3:	CLKOUT and I/O Timing2	208
Figure 19-4:	Reset, Watchdog Timer,	
	Oscillator Start-up Timer and	
	Power-up Timer Timing2	209
Figure 19-5:	Brown-out Reset Timing2	209
Figure 19-6:	Timer0 and Timer1 External	
	Clock Timings2	210
Figure 19-7:	Capture/Compare/PWM Timings	
	(CCP1 and CCP2)2	211
Figure 19-8:	Parallel Slave Port Timing	
	(PIC16C74A)2	212
Figure 19-9:	SPI Mode Timing2	213
Figure 19-10:	I ² C Bus Start/Stop Bits Timing2	214
Figure 19-11:	I ² C Bus Data Timing2	215
Figure 19-12:	USART Synchronous Transmission	
	(Master/Slave) Timing2	216
Figure 19-13:	USART Synchronous Receive	
	(Master/Slave) Timing2	216
Figure 19-14:	A/D Conversion Timing2	218
Figure 20-1:	Load Conditions2	225
Figure 20-2:	External Clock Timing2	226
Figure 20-3:	CLKOUT and I/O Timing2	227
Figure 20-4:	Reset, Watchdog Timer,	
-	Oscillator Start-up Timer and	
	Power-up Timer Timing2	228
Figure 20-5:	Brown-out Reset Timing2	228
Figure 20-6:	Timer0 and Timer1 External	
	Clock Timings2	229
Figure 20-7:	Capture/Compare/PWM Timings	
-	(CCP1 and CCP2)2	230
Figure 20-8:	Parallel Slave Port Timing	
	(PIC16C77)2	231