



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 4MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                         |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                     |
| Number of I/O              | 33                                                                        |
| Program Memory Size        | 7KB (4K x 14)                                                             |
| Program Memory Type        | OTP                                                                       |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 192 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 4V ~ 6V                                                                   |
| Data Converters            | A/D 8x8b                                                                  |
| Oscillator Type            | External                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 44-LCC (J-Lead)                                                           |
| Supplier Device Package    | 44-PLCC (16.59x16.59)                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16c74a-04i-l |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





### FIGURE 4-11: PIE1 REGISTER PIC16C73/73A/74/74A/76/77 (ADDRESS 8Ch)

| R/W-0                | R/W-0                    | R/W-0       | R/W-0       | R/W-0                    | R/W-0        | R/W-0        | R/W-0      |      |                                       |
|----------------------|--------------------------|-------------|-------------|--------------------------|--------------|--------------|------------|------|---------------------------------------|
| PSPIE <sup>(1)</sup> | ADIE                     | RCIE        | TXIE        | SSPIE                    | CCP1IE       | TMR2IE       | TMR1IE     | R    | = Readable bit                        |
| bit7                 |                          |             |             |                          |              |              | bit0       | W    | = Writable bit<br>= Unimplemented bit |
|                      |                          |             |             |                          |              |              |            |      | read as '0'                           |
|                      | (1)                      |             |             |                          |              |              |            | - n  | = Value at POR reset                  |
| bit 7:               | PSPIE <sup>(1)</sup> :   | Parallel S  | lave Port   | Read/Writ                | e Interrupt  | Enable bit   |            |      |                                       |
|                      | 1 = Enabl                | es the PS   | P read/wr   | ite interrup             | ot<br>•••    |              |            |      |                                       |
|                      | 0 = Disab                | les the PS  | P read/wi   |                          | pt           |              |            |      |                                       |
| bit 6:               | ADIE: A/E                | Converte    | er Interrup | t Enable b               | oit          |              |            |      |                                       |
|                      | 1 = Enable 0 = Disable 0 | les the Α/L | ) interrupt | ŀ                        |              |              |            |      |                                       |
| hit E.               |                          |             |             | .nt Enchla               | hit          |              |            |      |                                       |
| DIL D.               | 1 – Enabl                | AKI KECE    |             | ve interru               | ) DIL<br>Dt  |              |            |      |                                       |
|                      | 0 = Disab                | les the US  | SART rece   | ive interru              | ipt          |              |            |      |                                       |
| bit 4:               | TXIE: US                 | ART Trans   | mit Interru | upt Enable               | e bit        |              |            |      |                                       |
|                      | 1 = Enabl                | es the US   | ART trans   | mit interru              | upt          |              |            |      |                                       |
|                      | 0 = Disab                | les the US  | SART trans  | smit interr              | upt          |              |            |      |                                       |
| bit 3:               | SSPIE: S                 | ynchronou   | is Serial F | ort Interru              | pt Enable b  | oit          |            |      |                                       |
|                      | 1 = Enabl                | es the SS   | P interrup  | t                        |              |              |            |      |                                       |
|                      | 0 = Disab                | les the SS  | SP interrup | ot                       |              |              |            |      |                                       |
| bit 2:               | CCP1IE:                  | CCP1 Inte   | rrupt Ena   | ble bit                  |              |              |            |      |                                       |
|                      | 1 = Enabl                | es the CC   | P1 interru  | pt                       |              |              |            |      |                                       |
|                      | 0 = Disab                | les the CC  | P1 Interru  | lpt                      |              |              |            |      |                                       |
| bit 1:               | TMR2IE:                  | TMR2 to F   | PR2 Match   | Interrupt                | Enable bit   |              |            |      |                                       |
|                      | 1 = Enable 0 = Disable 1 | es the TM   |             | 2 match in<br>2 match ir | terrupt      |              |            |      |                                       |
| L:4 0.               |                          |             |             |                          |              |              |            |      |                                       |
| DIT U:               | 1 MR11E:                 | IMR1 OVE    | R1 overflo  | rrupt Enat               |              |              |            |      |                                       |
|                      | 0 = Disab                | les the TM  | IR1 overfl  | ow interru               | Dt           |              |            |      |                                       |
|                      | 2.2.0                    |             |             |                          | 1            |              |            |      |                                       |
| Note 1:              | PIC16C7                  | 3/73A/76 d  | devices do  | not have                 | a Parallel S | Slave Port i | implemente | d, t | his bit location is reserved          |
|                      | on these                 | devices, a  | lways mai   | ntain this l             | bit clear.   |              |            |      |                                       |
|                      |                          |             |             |                          |              |              |            |      |                                       |

## 4.2.2.8 PCON REGISTER Applicable Devices 72/73/73A/74/74A/76/77

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external  $\overline{\text{MCLR}}$  Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

#### FIGURE 4-16: PCON REGISTER (ADDRESS 8Eh)



| TABLE 5-0. SUIVINIANT OF REGISTERS ASSOCIATED WITH FORT | BLE 5-6: | JMMARY OF REGISTERS ASSOCIATED WITH PORTO |
|---------------------------------------------------------|----------|-------------------------------------------|
|---------------------------------------------------------|----------|-------------------------------------------|

| Address | Name  | Bit 7   | Bit 6       | Bit 5      | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:<br>POR,<br>BOR | Value on all other resets |
|---------|-------|---------|-------------|------------|-------|-------|-------|-------|-------|--------------------------|---------------------------|
| 07h     | PORTC | RC7     | RC6         | RC5        | RC4   | RC3   | RC2   | RC1   | RC0   | xxxx xxxx                | uuuu uuuu                 |
| 87h     | TRISC | PORTC I | Data Direct | ion Regist | ter   |       |       |       |       | 1111 1111                | 1111 1111                 |

Legend: x = unknown, u = unchanged.

# 5.5 PORTE and TRISE Register Applicable Devices 72/73/73A/74/74A/76/77

PORTE has three pins RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/AN7, which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs) and that register ADCON1 is configured for digital I/O. In this mode the input buffers are TTL.

Figure 5-9 shows the TRISE register, which also controls the parallel slave port operation.

PORTE pins are multiplexed with analog inputs. The operation of these pins is selected by control bits in the ADCON1 register. When selected as an analog input, these pins will read as '0's.

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.



# FIGURE 5-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)



#### FIGURE 5-9: TRISE REGISTER (ADDRESS 89h)

| <b>R</b> _0 | R-0                                                                                                                                                                                                                                     | P/\/_0                                     | R/M/-0                                   | 11-0         | P/\\/_1      | P/\/_1  | ₽/\\/_1 |                  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|--------------|--------------|---------|---------|------------------|--|--|--|
| IBF         | OBF                                                                                                                                                                                                                                     | IBOV                                       | PSPMODE                                  |              | bit2         | bit1    | bit0    | R = Readable bit |  |  |  |
| bit7        | bito<br>bito<br>bito<br>bito<br>bito<br>bito<br>bito<br>bito                                                                                                                                                                            |                                            |                                          |              |              |         |         |                  |  |  |  |
| bit 7 :     | <b>IBF:</b> Input<br>1 = A word<br>0 = No wor                                                                                                                                                                                           | Buffer Full<br>has been<br>rd has beer     | Status bit<br>received and<br>n received | is waiting t | o be read by | the CPU |         |                  |  |  |  |
| bit 6:      | <ul> <li>oBF: Output Buffer Full Status bit</li> <li>1 = The output buffer still holds a previously written word</li> <li>0 = The output buffer has been read</li> </ul>                                                                |                                            |                                          |              |              |         |         |                  |  |  |  |
| bit 5:      | <ul> <li>bit 5: IBOV: Input Buffer Overflow Detect bit (in microprocessor mode)</li> <li>1 = A write occurred when a previously input word has not been read (must be cleared in software)</li> <li>0 = No overflow occurred</li> </ul> |                                            |                                          |              |              |         |         |                  |  |  |  |
| bit 4:      | <b>PSPMODE</b><br>1 = Paralle<br>0 = Genera                                                                                                                                                                                             | E: Parallel S<br>I slave por<br>al purpose | Slave Port Moo<br>t mode<br>I/O mode     | de Select b  | bit          |         |         |                  |  |  |  |
| bit 3:      | Unimplem                                                                                                                                                                                                                                | ented: Re                                  | ad as '0'                                |              |              |         |         |                  |  |  |  |
|             | PORTE D                                                                                                                                                                                                                                 | Data Direc                                 | ction Bits                               |              |              |         |         |                  |  |  |  |
| bit 2:      | <b>Bit2</b> : Direc<br>1 = Input<br>0 = Output                                                                                                                                                                                          | tion Contro                                | ol bit for pin RI                        | E2/CS/AN7    | ,            |         |         |                  |  |  |  |
| bit 1:      | Bit1: Direction Control bit for pin RE1/WR/AN6<br>1 = Input<br>0 = Output                                                                                                                                                               |                                            |                                          |              |              |         |         |                  |  |  |  |
| bit 0:      | <b>Bit0</b> : Direc<br>1 = Input<br>0 = Output                                                                                                                                                                                          | tion Contro                                | ol bit for pin RI                        | E0/RD/AN5    | 5            |         |         |                  |  |  |  |

# 10.0 CAPTURE/COMPARE/PWM MODULE(s)

 Applicable Devices

 72
 73
 73A
 74
 74A
 76
 77
 CCP1

 72
 73
 73A
 74
 74A
 76
 77
 CCP2

Each CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register or as a PWM master/slave Duty Cycle register. Both the CCP1 and CCP2 modules are identical in operation, with the exception of the operation of the special event trigger. Table 10-1 and Table 10-2 show the resources and interactions of the CCP module(s). In the following sections, the operation of a CCP module is described with respect to CCP1. CCP2 operates the same as CCP1, except where noted.

#### CCP1 module:

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

#### CCP2 module:

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

For use of the CCP modules, refer to the Embedded Control Handbook, "Using the CCP Modules" (AN594).

#### TABLE 10-1: CCP MODE - TIMER RESOURCE

| CCP Mode | Timer Resource |
|----------|----------------|
| Capture  | Timer1         |
| Compare  | Timer1         |
| PWM      | Timer2         |

# TABLE 10-2: INTERACTION OF TWO CCP MODULES

| CCPx Mode | CCPy Mode | Interaction                                                                           |
|-----------|-----------|---------------------------------------------------------------------------------------|
| Capture   | Capture   | Same TMR1 time-base.                                                                  |
| Capture   | Compare   | The compare should be configured for the special event trigger, which clears TMR1.    |
| Compare   | Compare   | The compare(s) should be configured for the special event trigger, which clears TMR1. |
| PWM       | PWM       | The PWMs will have the same frequency, and update rate (TMR2 interrupt).              |
| PWM       | Capture   | None                                                                                  |
| PWM       | Compare   | None                                                                                  |

11.2.1 OPERATION OF SSP MODULE IN SPI MODE

| Ар | pli | cabl | e D | evic | es |    |
|----|-----|------|-----|------|----|----|
| 72 | 73  | 73A  | 74  | 74A  | 76 | 77 |

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO)
- Serial Data In (SDI)
- Serial Clock (SCK)

Additionally a fourth pin may be used when in a slave mode of operation:

Slave Select (SS)

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>). These control bits allow the following to be specified:

- Master Mode (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Output/Input data on the Rising/ Falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select Mode (Slave mode only)

The SSP consists of a transmit/receive Shift Register (SSPSR) and a Buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR, until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the Buffer Full bit, BF (SSPSTAT<0>) and flag bit SSPIF are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit, WCOL (SSPCON<7>) will be set. User software must clear bit WCOL so that it can be determined if the following write(s) to the SSPBUF completed successfully. When the application software is expecting to receive valid data, the SSPBUF register should be read before the next byte of data to transfer is written to the SSPBUF register. The Buffer Full bit BF (SSPSTAT<0>) indicates when the SSPBUF register has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the SSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF register must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 11-1 shows the loading of the SSPBUF (SSPSR) register for data transmission. The shaded instruction is only required if the received data is meaningful.

#### EXAMPLE 11-1: LOADING THE SSPBUF (SSPSR) REGISTER

| LOOP | BSF<br>BTFSS | STATUS ,<br>SSPSTAT , | RPO<br>, BF | ;Specify Bank 1<br>;Has data been<br>;received<br>;(transmit<br>;complete)? |
|------|--------------|-----------------------|-------------|-----------------------------------------------------------------------------|
|      | GOTO         | LOOP                  |             | ;No                                                                         |
|      | BCF          | STATUS,               | RP0         | ;Specify Bank 0                                                             |
|      | MOVF         | SSPBUF,               | W           | ;W reg = contents<br>;of SSPBUF                                             |
|      | MOVWF        | RXDATA                |             | ;Save in user RAM                                                           |
|      | MOVF         | TXDATA,               | W           | ;W reg = contents<br>; of TXDATA                                            |
|      | MOVWF        | SSPBUF                |             | ;New data to xmit                                                           |

The block diagram of the SSP module, when in SPI mode (Figure 11-3), shows that the SSPSR register is not directly readable or writable, and can only be accessed from addressing the SSPBUF register. Additionally, the SSP status register (SSPSTAT) indicates the various status conditions.

#### FIGURE 11-3: SSP BLOCK DIAGRAM (SPI MODE)



#### 11.5.1 SLAVE MODE

In slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge ( $\overline{ACK}$ ) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this  $\overline{ACK}$  pulse. These are if either (or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 11-4 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the  $I^2C$  specification as well as the requirement of the SSP module is shown in timing parameter #100 and parameter #101.

#### 11.5.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The

address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on the falling edge of the ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave (Figure 11-16). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit  $R/\overline{W}$  (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7- 9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

| Status Bits as Data<br>Transfer is Received |       |                    |                       | Set bit SSPIF                        |
|---------------------------------------------|-------|--------------------|-----------------------|--------------------------------------|
| BF                                          | SSPOV | $SSPSR \to SSPBUF$ | Generate ACK<br>Pulse | (SSP Interrupt occurs<br>if enabled) |
| 0                                           | 0     | Yes                | Yes                   | Yes                                  |
| 1                                           | 0     | No                 | No                    | Yes                                  |
| 1                                           | 1     | No                 | No                    | Yes                                  |
| 0                                           | 1     | No                 | No                    | Yes                                  |

#### TABLE 11-4: DATA TRANSFER RECEIVED BYTE ACTIONS

The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagrams of the A/D module are shown in Figure 13-3.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 13.1. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
  - Configure analog pins / voltage reference / and digital I/O (ADCON1)
  - Select A/D input channel (ADCON0)
  - Select A/D conversion clock (ADCON0)
  - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
  - Clear ADIF bit
  - Set ADIE bit
  - Set GIE bit

#### FIGURE 13-3: A/D BLOCK DIAGRAM

- 3. Wait the required acquisition time.
- 4. Start conversion:Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
  Polling for the GO/DONE bit to be cleared
  - OR
  - Waiting for the A/D interrupt
- 6. Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.



# PIC16C7X

| BCF               | Bit Clear                                                           | r f                     |                 |                       | BTFSC             |                                                                    | Bit Test,                            | Skip if Cl           | ear                 |                  |  |
|-------------------|---------------------------------------------------------------------|-------------------------|-----------------|-----------------------|-------------------|--------------------------------------------------------------------|--------------------------------------|----------------------|---------------------|------------------|--|
| Syntax:           | [ <i>label</i> ] B0                                                 | CF f,b                  |                 |                       | Syntax:           |                                                                    | [ <i>label</i> ] BT                  |                      |                     |                  |  |
| Operands:         | $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$ |                         |                 | Operands              | :                 | $\begin{array}{l} 0 \leq f \leq 12 \\ 0 \leq b \leq 7 \end{array}$ | 27                                   |                      |                     |                  |  |
| Operation:        | $0 \rightarrow (f < b >)$                                           |                         |                 | Operation             | n:                | skip if (f <b>) = 0</b>                                            |                                      |                      |                     |                  |  |
| Status Affected:  | None                                                                |                         |                 |                       | Status Aff        | fected:                                                            | None                                 |                      |                     |                  |  |
| Encoding:         | 01                                                                  | 00bb                    | bfff            | ffff                  | Encoding          | :                                                                  | 01                                   | 10bb                 | bfff                | ffff             |  |
| Description:      | Bit 'b' in re                                                       | egister 'f' is          | s cleared.      |                       | Descriptio        | on:                                                                | If bit 'b' in                        | register 'f' is      | s '1' then th       | ne next          |  |
| Words:            | 1                                                                   |                         |                 |                       |                   |                                                                    | instruction                          | is executed          | d.<br>is '0' then ' | the next         |  |
| Cycles:           | 1                                                                   |                         |                 |                       |                   |                                                                    | instruction                          | is discarde          | d, and a N          | IOP is           |  |
| Q Cycle Activity: | Q1                                                                  | Q2                      | Q3              | Q4                    |                   |                                                                    | executed instead, making this a 2TCN |                      |                     | 2Tcy             |  |
|                   | Decode                                                              | Read<br>register<br>'f' | Process<br>data | Write<br>register 'f' | Words:<br>Cycles: |                                                                    | 1<br>1(2)                            | -                    |                     |                  |  |
| Example           | BCF                                                                 | FLAG_                   | REG, 7          |                       | Q Cycle A         | Activity:                                                          | Q1                                   | Q2                   | Q3                  | Q4               |  |
| ·                 | Before In                                                           | struction               |                 | ,                     |                   |                                                                    | Decode                               | Read<br>register 'f' | Process<br>data     | No-<br>Operation |  |
|                   | After Inst                                                          | truction                | =G = 0xC7       |                       | I                 | f Skip:                                                            | (2nd Cycle)                          |                      |                     |                  |  |
|                   |                                                                     | FLAG_RE                 | EG = 0x47       |                       |                   |                                                                    | Q1                                   | Q2                   | Q3                  | Q4               |  |
|                   |                                                                     |                         |                 |                       |                   |                                                                    | No-<br>Operation                     | No-<br>Operation     | No-<br>Operation    | No-<br>Operation |  |
|                   |                                                                     |                         |                 |                       | Example           |                                                                    | HERE<br>FALSE<br>TRUE                | BTFSC<br>GOTO<br>•   | FLAG,1<br>PROCESS_  | _CODE            |  |

| BSF                                   | Bit Set f                                                           |                         |                 |                       |  |  |  |  |
|---------------------------------------|---------------------------------------------------------------------|-------------------------|-----------------|-----------------------|--|--|--|--|
| Syntax:                               | [ <i>label</i> ] BS                                                 | SF f,b                  |                 |                       |  |  |  |  |
| Operands:                             | $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$ |                         |                 |                       |  |  |  |  |
| Operation:                            | $1 \rightarrow (f < b >)$                                           |                         |                 |                       |  |  |  |  |
| Status Affected:                      | None                                                                |                         |                 |                       |  |  |  |  |
| Encoding:                             | 01                                                                  | 01bb                    | bfff            | ffff                  |  |  |  |  |
| Description:                          | Bit 'b' in register 'f' is set.                                     |                         |                 |                       |  |  |  |  |
| Words:                                | 1                                                                   |                         |                 |                       |  |  |  |  |
| Cycles:                               | 1                                                                   |                         |                 |                       |  |  |  |  |
| Q Cycle Activity:                     | Q1                                                                  | Q2                      | Q3              | Q4                    |  |  |  |  |
|                                       | Decode                                                              | Read<br>register<br>ˈfˈ | Process<br>data | Write<br>register 'f' |  |  |  |  |
| Example                               | BSF                                                                 | FLAG_F                  | REG, 7          |                       |  |  |  |  |
| Before Instruction<br>FLAG_REG = 0x0A |                                                                     |                         |                 |                       |  |  |  |  |
|                                       | After Inst                                                          | ruction<br>FLAG_RE      | EG = 0x8A       | A                     |  |  |  |  |

• Before Instruction

PC =

After Instruction

PC = address HERE

address TRUE

address FALSE

if FLAG < 1 > = 0,

if FLAG<1>=1, PC = addre

| GOTO              | Uncondi                                                            | tional Br                                                                                                                                                                                    | anch             |                  |                  | INCF              | Increme                                           | nt f                                                        |                                                         |                                   |
|-------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|-------------------|---------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|-----------------------------------|
| Syntax:           | [ label ]                                                          | GOTO                                                                                                                                                                                         | k                |                  | I                | Syntax:           | [ label ]                                         | INCF f                                                      | ,d                                                      |                                   |
| Operands:         | $0 \le k \le 20$                                                   | 047                                                                                                                                                                                          |                  |                  |                  | Operands:         | $0 \le f \le 12$                                  | 27                                                          |                                                         |                                   |
| Operation:        | $k \rightarrow PC <$                                               | 10:0>                                                                                                                                                                                        |                  |                  |                  |                   | d ∈ [0,1]                                         |                                                             |                                                         |                                   |
|                   | PCLATH                                                             | $<4:3> \rightarrow 1$                                                                                                                                                                        | PC<12:11         | >                |                  | Operation:        | (f) + 1 $\rightarrow$ (destination)               |                                                             |                                                         |                                   |
| Status Affected:  | None                                                               | one                                                                                                                                                                                          |                  |                  | Status Affected: | Z                 |                                                   |                                                             |                                                         |                                   |
| Encoding:         | 10                                                                 | 1kkk                                                                                                                                                                                         | kkkk             | kkkk             |                  | Encoding:         | 00                                                | 1010                                                        | dfff                                                    | ffff                              |
| Description:      | GOTO is ar<br>eleven bit<br>into PC bit<br>PC are loa<br>GOTO is a | JOTO is an unconditional branch. The<br>aleven bit immediate value is loaded<br>nto PC bits <10:0>. The upper bits of<br>PC are loaded from PCLATH<4:3>.<br>JOTO is a two cvcle instruction. |                  |                  |                  | Description:      | The conte<br>mented. If<br>the W reg<br>placed ba | nts of regi<br>'d' is 0 the<br>ister. If 'd'<br>ck in regis | ister 'f' an<br>e result is<br>is 1 the re<br>ster 'f'. | e incre-<br>placed in<br>esult is |
| Words:            | 1                                                                  | -                                                                                                                                                                                            |                  |                  |                  | Words:            | 1                                                 |                                                             |                                                         |                                   |
| Cycles:           | 2                                                                  |                                                                                                                                                                                              |                  |                  |                  | Cycles:           | 1                                                 |                                                             |                                                         |                                   |
| Q Cycle Activity: | Q1                                                                 | Q2                                                                                                                                                                                           | Q3               | Q4               |                  | Q Cycle Activity: | Q1                                                | Q2                                                          | Q3                                                      | Q4                                |
| 1st Cycle         | Decode                                                             | Read<br>literal 'k'                                                                                                                                                                          | Process<br>data  | Write to<br>PC   |                  |                   | Decode                                            | Read<br>register<br>'f'                                     | Process<br>data                                         | Write to destination              |
| 2nd Cycle         | No-<br>Operation                                                   | No-<br>Operation                                                                                                                                                                             | No-<br>Operation | No-<br>Operation |                  |                   |                                                   |                                                             |                                                         |                                   |
|                   |                                                                    |                                                                                                                                                                                              |                  |                  |                  | Example           | INCF                                              | CNT,                                                        | 1                                                       |                                   |
| Example           | GOTO T                                                             | HERE                                                                                                                                                                                         |                  |                  |                  |                   | Before Ir                                         | struction                                                   | ۱<br>۵۰۰۲                                               |                                   |
|                   | After Inst                                                         | ruction                                                                                                                                                                                      |                  |                  |                  |                   |                                                   | 7<br>7                                                      | = 0                                                     | F                                 |
|                   |                                                                    | PC = .                                                                                                                                                                                       | Address          | THERE            |                  |                   | After Inst                                        | ruction                                                     | Ũ                                                       |                                   |
|                   |                                                                    |                                                                                                                                                                                              |                  |                  |                  |                   |                                                   | CNT                                                         | = 0x0                                                   | 0                                 |
|                   |                                                                    |                                                                                                                                                                                              |                  |                  |                  |                   |                                                   | Z                                                           | = 1                                                     |                                   |

# 16.0 DEVELOPMENT SUPPORT

#### 16.1 <u>Development Tools</u>

The PIC16/17 microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER/PICMASTER CE Real-Time In-Circuit Emulator
- ICEPIC Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE<sup>®</sup> II Universal Programmer
- PICSTART<sup>®</sup> Plus Entry-Level Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB-SIM Software Simulator
- MPLAB-C (C Compiler)
- Fuzzy logic development system (*fuzzy*TECH<sup>®</sup>–MP)

#### 16.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC12C5XX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX families. PICMASTER is supplied with the MPLAB<sup>™</sup> Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new Microchip microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows<sup>®</sup> 3.x environment were chosen to best make these features available to you, the end user.

A CE compliant version of PICMASTER is available for European Union (EU) countries.

#### 16.3 ICEPIC: Low-cost PIC16CXXX In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 286-AT<sup>®</sup> through Pentium<sup>™</sup> based machines under Windows 3.x environment. ICEPIC features real time, non-intrusive emulation.

#### 16.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC16C5X, PIC16CXXX, PIC17CXX and PIC14000 devices. It can also set configuration and code-protect bits in this mode.

#### 16.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923 and PIC16C924 may be supported with an adapter socket.

## Applicable Devices 72 73 73A 74 74A 76 77

#### 17.1 DC Characteristics: PIC16C72-04 (Commercial, Industrial, Extended) PIC16C72-10 (Commercial, Industrial, Extended) PIC16C72-20 (Commercial, Industrial, Extended)

|               |                                                                   |               | Standa     | ard Ope | erating    | g Cond       | litions (unless otherwise stated)                                                                                  |
|---------------|-------------------------------------------------------------------|---------------|------------|---------|------------|--------------|--------------------------------------------------------------------------------------------------------------------|
| DC CHA        | RACTERISTICS                                                      |               | Operat     | ing tem | peratu     | re -4۔<br>1- | $10^{\circ}$ C $\leq$ IA $\leq$ +125 °C for extended,<br>$10^{\circ}$ C $\leq$ TA $\leq$ +85 °C for industrial and |
|               |                                                                   |               |            |         |            | 0°           | $C \leq TA \leq +70^{\circ}C$ for commercial                                                                       |
| Param<br>No.  | Characteristic                                                    | Sym           | Min        | Тур†    | Мах        | Units        | Conditions                                                                                                         |
| D001<br>D001A | Supply Voltage                                                    | Vdd           | 4.0<br>4.5 | -       | 6.0<br>5.5 | V<br>V       | XT, RC and LP osc configuration<br>HS osc configuration                                                            |
| D002*         | RAM Data Retention<br>Voltage (Note 1)                            | Vdr           | -          | 1.5     | -          | V            |                                                                                                                    |
| D003          | VDD start voltage to<br>ensure internal Power-<br>on Reset Signal | VPOR          | -          | Vss     | -          | V            | See section on Power-on Reset for details                                                                          |
| D004*         | VDD rise rate to ensure<br>internal Power-on Reset<br>Signal      | Svdd          | 0.05       | -       | -          | V/ms         | See section on Power-on Reset for details                                                                          |
| D005          | Brown-out Reset Voltage                                           | Bvdd          | 3.7        | 4.0     | 4.3        | V            | BODEN bit in configuration word enabled                                                                            |
|               |                                                                   |               | 3.7        | 4.0     | 4.4        | V            | Extended Only                                                                                                      |
| D010          | Supply Current<br>(Note 2,5)                                      | IDD           | -          | 2.7     | 5.0        | mA           | XT, RC osc configuration<br>Fosc = 4 MHz, VDD = 5.5V (Note 4)                                                      |
| D013          |                                                                   |               | -          | 10      | 20         | mA           | HS osc configuration<br>Fosc = 20 MHz, VDD = 5.5V                                                                  |
| D015          | Brown-out Reset Current<br>(Note 6)                               | ΔIBOR         | -          | 350     | 425        | μA           | BOR enabled VDD = 5.0V                                                                                             |
| D020          | Power-down Current                                                | IPD           | -          | 10.5    | 42         | μΑ           | VDD = 4.0V, WDT enabled, $-40^{\circ}$ C to $+85^{\circ}$ C                                                        |
| D021          | (Note 3,5)                                                        |               | -          | 1.5     | 16         | μA           | $VDD = 4.0V$ , WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$                                                       |
| D021A         |                                                                   |               |            | 1.5     | 19         | μΑ<br>μΑ     | $VD = 4.0V$ , $VD T$ disabled, $-40^{\circ}C$ to $+85^{\circ}C$                                                    |
| D023          | Brown-out Reset Current<br>(Note 6)                               | $\Delta$ IBOR | -          | 350     | 425        | μA           | BOR enabled $VDD = 5.0V$                                                                                           |

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  $\overline{MCLR}$  = VDD; WDT enabled/disabled as specified.

The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

# PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77





# TABLE 17-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

| Param<br>No. | Sym  | Characteristic        | Min                   | Тур†                  | Max         | Units | Conditions |                                   |  |
|--------------|------|-----------------------|-----------------------|-----------------------|-------------|-------|------------|-----------------------------------|--|
| 50*          | TccL | CCP1 input low time   | No Prescaler          |                       | 0.5Tcy + 20 | _     |            | ns                                |  |
|              |      |                       | With Prescaler PIC160 |                       | 10          | -     | —          | ns                                |  |
|              |      |                       |                       | PIC16 <b>LC</b> 72    | 20          | -     | _          | ns                                |  |
| 51*          | TccH | CCP1 input high time  | No Prescaler          |                       | 0.5Tcy + 20 |       |            | ns                                |  |
|              |      |                       | With Prescaler        | PIC16 <b>C</b> 72     | 10          | -     |            | ns                                |  |
|              |      |                       |                       | PIC16 <b>LC</b> 72    | 20          | -     |            | ns                                |  |
| 52*          | TccP | CCP1 input period     |                       | <u>3Tcy + 40</u><br>N | _           | _     | ns         | N = prescale<br>value (1,4 or 16) |  |
| 53*          | TccR | CCP1 output rise time |                       | PIC16 <b>C</b> 72     | —           | 10    | 25         | ns                                |  |
|              |      |                       |                       | PIC16 <b>LC</b> 72    | _           | 25    | 45         | ns                                |  |
| 54*          | TccF | CCP1 output fall time | •                     |                       | _           | 10    | 25         | ns                                |  |
|              |      |                       |                       | PIC16 <b>LC</b> 72    |             | 25    | 45         | ns                                |  |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

# PIC16C7X

# Applicable Devices 72 73 73A 74 74A 76 77





# TABLE 17-8: I<sup>2</sup>C BUS START/STOP BITS REQUIREMENTS

| Parameter<br>No. | Sym     | Characteristic  |              | Min  | Тур | Max | Units | Conditions                        |
|------------------|---------|-----------------|--------------|------|-----|-----|-------|-----------------------------------|
| 90               | TSU:STA | START condition | 100 kHz mode | 4700 |     | _   | ns    | Only relevant for repeated START  |
|                  |         | Setup time      | 400 kHz mode | 600  | —   | —   |       | condition                         |
| 91               | THD:STA | START condition | 100 kHz mode | 4000 | —   | —   | ne    | After this period the first clock |
|                  |         | Hold time       | 400 kHz mode | 600  | —   | —   | 113   | pulse is generated                |
| 92               | TSU:STO | STOP condition  | 100 kHz mode | 4700 | —   | —   | ne    |                                   |
|                  |         | Setup time      | 400 kHz mode | 600  | —   | —   |       |                                   |
| 93               | THD:STO | STOP condition  | 100 kHz mode | 4000 | —   | —   | ne    |                                   |
|                  |         | Hold time       | 400 kHz mode | 600  | —   | —   | 113   |                                   |

 Applicable Devices
 72
 73
 73A
 74
 76
 77

#### FIGURE 18-13: A/D CONVERSION TIMING



#### TABLE 18-14: A/D CONVERSION REQUIREMENTS

| Param<br>No. | Sym  | Characteristic                                       |                       | Min    | Тур†     | Мах | Units | Conditions                                                                                                                                                                                                                  |
|--------------|------|------------------------------------------------------|-----------------------|--------|----------|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 130          | TAD  | A/D clock period                                     | PIC16 <b>C</b> 73/74  | 1.6    | _        |     | μs    | Tosc based, VREF ≥ 3.0V                                                                                                                                                                                                     |
|              |      |                                                      | PIC16 <b>LC</b> 73/74 | 2.0    | _        | _   | μs    | Tosc based, VREF full range                                                                                                                                                                                                 |
|              |      |                                                      | PIC16 <b>C</b> 73/74  | 2.0    | 4.0      | 6.0 | μs    | A/D RC Mode                                                                                                                                                                                                                 |
|              |      |                                                      | PIC16LC73/74          | 3.0    | 6.0      | 9.0 | μs    | A/D RC Mode                                                                                                                                                                                                                 |
| 131          | TCNV | Conversion time (not including S/H time)<br>(Note 1) |                       | —      | 9.5      | _   | TAD   |                                                                                                                                                                                                                             |
| 132          | TACQ | Acquisition time                                     |                       | Note 2 | 20       | _   | μs    |                                                                                                                                                                                                                             |
|              |      |                                                      |                       | 5*     | _        | _   | μs    | The minimum time is the amplifier<br>settling time. This may be used if<br>the "new" input voltage has not<br>changed by more than 1 LSb (i.e.,<br>20 mV @ 5.12V) from the last<br>sampled voltage (as stated on<br>CHOLD). |
| 134          | TGO  | Q4 to A/D clock start                                |                       |        | Tosc/2 § |     | _     | If the A/D clock source is selected<br>as RC, a time of TCY is added<br>before the A/D clock starts. This<br>allows the SLEEP instruction to be<br>executed.                                                                |
| 135          | Tswc | Switching from convert                               | ightarrow sample time | 1.5 §  | —        |     | TAD   |                                                                                                                                                                                                                             |
| *            | Thee |                                                      |                       |        |          |     |       | •                                                                                                                                                                                                                           |

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 13.1 for min conditions.

| Applic        | able Devices 72 73 73A 74                                                                                                                                                                                                               | 74A 76                   | 6 77                                                                              |                      |                                         |                                  |                                                                                                                          |  |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------|----------------------|-----------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 19.3          | 9.3 DC Characteristics: PIC16C73A/74A-04 (Commercial, Industrial, Extended)<br>PIC16C73A/74A-10 (Commercial, Industrial, Extended)<br>PIC16C73A/74A-20 (Commercial, Industrial, Extended)<br>PIC16LC73A/74A-04 (Commercial, Industrial) |                          |                                                                                   |                      |                                         |                                  |                                                                                                                          |  |  |  |  |
| DC CHA        | ARACTERISTICS                                                                                                                                                                                                                           | <b>Standa</b><br>Operati | ird Opera                                                                         | <b>ting</b><br>ratur | <b>Conditio</b><br>re -40<br>-40<br>0°0 | ons (ur<br>)°C ≤<br>)°C ≤<br>C ≤ | hless otherwise stated)<br>≤ TA ≤ +125°C for extended,<br>≤ TA ≤ +85°C for industrial and<br>≤ TA ≤ +70°C for commercial |  |  |  |  |
|               |                                                                                                                                                                                                                                         | Operati<br>Section       | Operating voltage VDD range as described in DC spec Section 19.1 and Section 19.2 |                      |                                         |                                  |                                                                                                                          |  |  |  |  |
| Param         | Characteristic                                                                                                                                                                                                                          | Sym                      | Min                                                                               | Тур                  | Max                                     | Units                            | Conditions                                                                                                               |  |  |  |  |
| No.           |                                                                                                                                                                                                                                         |                          |                                                                                   | 1                    |                                         |                                  |                                                                                                                          |  |  |  |  |
|               | Input Low Voltage                                                                                                                                                                                                                       |                          |                                                                                   |                      |                                         |                                  |                                                                                                                          |  |  |  |  |
|               | I/O ports                                                                                                                                                                                                                               | VIL                      |                                                                                   |                      |                                         |                                  |                                                                                                                          |  |  |  |  |
| D030          | with TTL buffer                                                                                                                                                                                                                         |                          | Vss                                                                               | -                    | 0.15Vdd                                 | V                                | For entire VDD range                                                                                                     |  |  |  |  |
| D030A         |                                                                                                                                                                                                                                         |                          | Vss                                                                               | -                    | 0.8V                                    |                                  | $4.5V \le VDD \le 5.5V$                                                                                                  |  |  |  |  |
| D031          | with Schmitt Trigger buffer                                                                                                                                                                                                             |                          | Vss                                                                               | -                    | 0.2Vdd                                  | V                                |                                                                                                                          |  |  |  |  |
| D032          | MCLR, OSC1 (in RC mode)                                                                                                                                                                                                                 |                          | Vss                                                                               | -                    | 0.2Vdd                                  | V                                |                                                                                                                          |  |  |  |  |
| D033          | OSC1 (in XT, HS and LP)                                                                                                                                                                                                                 |                          | Vss                                                                               | -                    | 0.3Vdd                                  | V                                | Note1                                                                                                                    |  |  |  |  |
|               | Input High Voltage                                                                                                                                                                                                                      |                          |                                                                                   |                      |                                         |                                  |                                                                                                                          |  |  |  |  |
| D040          | I/O ports                                                                                                                                                                                                                               | VIH                      |                                                                                   | -                    | 1/22                                    |                                  |                                                                                                                          |  |  |  |  |
| D040<br>D040A |                                                                                                                                                                                                                                         |                          | 2.0<br>0.25VDD<br>+ 0.8V                                                          | -                    | VDD<br>VDD                              | V                                | For entire VDD snge                                                                                                      |  |  |  |  |
| D041          | with Schmitt Trigger buffer                                                                                                                                                                                                             |                          | 0.8VDD                                                                            | -                    | VDD                                     | v                                | For entire VDD range                                                                                                     |  |  |  |  |
| D042          | MCLR                                                                                                                                                                                                                                    |                          | 0.8VDD                                                                            | -                    | VDD                                     | V                                |                                                                                                                          |  |  |  |  |
| D042A         | OSC1 (XT, HS and LP)                                                                                                                                                                                                                    |                          | 0.7Vdd                                                                            | -                    | VDD                                     | V                                | Note1                                                                                                                    |  |  |  |  |
| D043          | OSC1 (in RC mode)                                                                                                                                                                                                                       |                          | 0.9Vdd                                                                            | -                    | Vdd                                     | V                                |                                                                                                                          |  |  |  |  |
| D070          | PORTB weak pull-up current                                                                                                                                                                                                              | <b>I</b> PURB            | 50                                                                                | 250                  | 400                                     | μA                               | VDD = 5V, VPIN = VSS                                                                                                     |  |  |  |  |
|               | Input Leakage Current<br>(Notes 2, 3)                                                                                                                                                                                                   |                          |                                                                                   |                      |                                         |                                  |                                                                                                                          |  |  |  |  |
| D060          | I/O ports                                                                                                                                                                                                                               | lı∟                      | -                                                                                 | -                    | ±1                                      | μA                               | $Vss \le VPIN \le VDD$ , Pin at hi-impedance                                                                             |  |  |  |  |
| D061          | MCLR, RA4/T0CKI                                                                                                                                                                                                                         |                          | -                                                                                 | -                    | ±5                                      | μA                               | $Vss \le VPIN \le VDD$                                                                                                   |  |  |  |  |
| D063          | OSC1                                                                                                                                                                                                                                    |                          | -                                                                                 | -                    | ±5                                      | μA                               | Vss $\leq$ VPIN $\leq$ VDD, XT, HS and LP osc configuration                                                              |  |  |  |  |
|               | Output Low Voltage                                                                                                                                                                                                                      |                          |                                                                                   |                      |                                         |                                  |                                                                                                                          |  |  |  |  |
| D080          | I/O ports                                                                                                                                                                                                                               | Vol                      | -                                                                                 | -                    | 0.6                                     | V                                | IOL = 8.5 mA, VDD = 4.5V,<br>-40°C to +85°C                                                                              |  |  |  |  |
| D080A         |                                                                                                                                                                                                                                         |                          | -                                                                                 | -                    | 0.6                                     | V                                | IOL = 7.0 mA, VDD = 4.5V,<br>-40°C to +125°C                                                                             |  |  |  |  |
| D083          | OSC2/CLKOUT (RC osc config)                                                                                                                                                                                                             |                          | -                                                                                 | -                    | 0.6                                     | V                                | IOL = 1.6 mA, VDD = 4.5V,<br>-40°C to +85°C                                                                              |  |  |  |  |
| D083A         |                                                                                                                                                                                                                                         |                          | -                                                                                 | -                    | 0.6                                     | V                                | IOL = 1.2 mA, VDD = 4.5V,<br>-40°C to +125°C                                                                             |  |  |  |  |
| *             |                                                                                                                                                                                                                                         |                          |                                                                                   |                      |                                         |                                  |                                                                                                                          |  |  |  |  |

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

### Applicable Devices 72 73 73A 74 74A 76 77

#### 19.5 <u>Timing Diagrams and Specifications</u>



#### FIGURE 19-2: EXTERNAL CLOCK TIMING

#### TABLE 19-2: EXTERNAL CLOCK TIMING REQUIREMENTS

| Parameter<br>No. | Sym   | Characteristic                   | Min | Тур† | Мах    | Units | Conditions         |
|------------------|-------|----------------------------------|-----|------|--------|-------|--------------------|
|                  | Fosc  | External CLKIN Frequency         | DC  | _    | 4      | MHz   | XT and RC osc mode |
|                  |       | (Note 1)                         | DC  | —    | 4      | MHz   | HS osc mode (-04)  |
|                  |       |                                  | DC  | _    | 10     | MHz   | HS osc mode (-10)  |
|                  |       |                                  | DC  | —    | 20     | MHz   | HS osc mode (-20)  |
|                  |       |                                  | DC  | —    | 200    | kHz   | LP osc mode        |
|                  |       | Oscillator Frequency             | DC  | —    | 4      | MHz   | RC osc mode        |
|                  |       | (Note 1)                         | 0.1 | —    | 4      | MHz   | XT osc mode        |
|                  |       |                                  | 4   | —    | 20     | MHz   | HS osc mode        |
|                  |       |                                  | 5   | —    | 200    | kHz   | LP osc mode        |
| 1                | Tosc  | External CLKIN Period            | 250 | —    | —      | ns    | XT and RC osc mode |
|                  |       | (Note 1)                         | 250 | —    | —      | ns    | HS osc mode (-04)  |
|                  |       |                                  | 100 | —    | -      | ns    | HS osc mode (-10)  |
|                  |       |                                  | 50  | —    | -      | ns    | HS osc mode (-20)  |
|                  |       |                                  | 5   | —    | —      | μs    | LP osc mode        |
|                  |       | Oscillator Period                | 250 | —    | —      | ns    | RC osc mode        |
|                  |       | (Note 1)                         | 250 | —    | 10,000 | ns    | XT osc mode        |
|                  |       |                                  | 250 | —    | 250    | ns    | HS osc mode (-04)  |
|                  |       |                                  | 100 | —    | 250    | ns    | HS osc mode (-10)  |
|                  |       |                                  | 50  | —    | 250    | ns    | HS osc mode (-20)  |
|                  |       |                                  | 5   |      | _      | μs    | LP osc mode        |
| 2                | Тсү   | Instruction Cycle Time (Note 1)  | 200 | Тсү  | DC     | ns    | TCY = 4/FOSC       |
| 3                | TosL, | External Clock in (OSC1) High or | 100 | —    | -      | ns    | XT oscillator      |
|                  | TosH  | Low Time                         | 2.5 | _    | —      | μs    | LP oscillator      |
|                  |       |                                  | 15  | —    | —      | ns    | HS oscillator      |
| 4                | TosR, | External Clock in (OSC1) Rise or | _   | —    | 25     | ns    | XT oscillator      |
|                  | TosF  | Fall Time                        | _   | —    | 50     | ns    | LP oscillator      |
|                  |       |                                  | _   | —    | 15     | ns    | HS oscillator      |

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

### Applicable Devices 72 73 73A 74 74A 76 77

#### 20.1 DC Characteristics: PIC16C76/77-04 (Commercial, Industrial, Extended) PIC16C76/77-10 (Commercial, Industrial, Extended) PIC16C76/77-20 (Commercial, Industrial, Extended)

|       | Standard Operating Conditions (unless otherwise stated)          |               |                                                                               |      |     |       |                                                                |  |  |  |
|-------|------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------|------|-----|-------|----------------------------------------------------------------|--|--|--|
|       |                                                                  |               | Operating temperature $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended, |      |     |       |                                                                |  |  |  |
|       |                                                                  |               |                                                                               |      |     | -4    | $0^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and      |  |  |  |
|       |                                                                  |               |                                                                               |      |     | 0°    | $C \leq TA \leq +70^{\circ}C$ for commercial                   |  |  |  |
| Param | Characteristic                                                   | Sym           | Min                                                                           | Typ† | Max | Units | Conditions                                                     |  |  |  |
| No.   |                                                                  |               |                                                                               |      |     |       |                                                                |  |  |  |
| D001  | Supply Voltage                                                   | Vdd           | 4.0                                                                           | -    | 6.0 | V     | XT, RC and LP osc configuration                                |  |  |  |
| D001A |                                                                  |               | 4.5                                                                           | -    | 5.5 | V     | HS osc configuration                                           |  |  |  |
| D002* | RAM Data Retention<br>Voltage (Note 1)                           | Vdr           | -                                                                             | 1.5  | -   | V     |                                                                |  |  |  |
| D003  | VDD start voltage to<br>ensure internal Power-on<br>Reset signal | VPOR          | -                                                                             | Vss  | -   | V     | See section on Power-on Reset for details                      |  |  |  |
| D004* | VDD rise rate to ensure<br>internal Power-on Reset<br>signal     | Svdd          | 0.05                                                                          | -    | -   | V/ms  | See section on Power-on Reset for details                      |  |  |  |
| D005  | Brown-out Reset Voltage                                          | Bvdd          | 3.7                                                                           | 4.0  | 4.3 | V     | BODEN bit in configuration word enabled                        |  |  |  |
|       |                                                                  |               | 3.7                                                                           | 4.0  | 4.4 | V     | Extended Range Only                                            |  |  |  |
| D010  | Supply Current (Note 2,5)                                        | IDD           | -                                                                             | 2.7  | 5   | mA    | XT, RC osc configuration<br>Fosc = 4 MHz, VDD = 5.5V (Note 4)  |  |  |  |
| D013  |                                                                  |               | -                                                                             | 10   | 20  | mA    | HS osc configuration<br>Fosc = 20 MHz, VDD = 5.5V              |  |  |  |
| D015* | Brown-out Reset Current<br>(Note 6)                              | $\Delta$ IBOR | -                                                                             | 350  | 425 | μA    | BOR enabled VDD = 5.0V                                         |  |  |  |
| D020  | Power-down Current                                               | IPD           | -                                                                             | 10.5 | 42  | μA    | VDD = $4.0V$ , WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$   |  |  |  |
| D021  | (Note 3,5)                                                       |               | -                                                                             | 1.5  | 16  | μA    | VDD = $4.0V$ , WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$   |  |  |  |
| D021A |                                                                  |               | -                                                                             | 1.5  | 19  | μA    | VDD = $4.0V$ , WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$  |  |  |  |
| D021B |                                                                  |               | -                                                                             | 2.5  | 19  | μA    | VDD = $4.0V$ , WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$ |  |  |  |
| D023* | Brown-out Reset Current (Note 6)                                 | $\Delta$ IBOR | -                                                                             | 350  | 425 | μA    | BOR enabled VDD = 5.0V                                         |  |  |  |

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR}$  = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

# LIST OF FIGURES

| Figure 3-1:                               | PIC16C72 Block Diagram 10                                                                                           |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Figure 3-2                                | PIC16C73/73A/76 Block Diagram 11                                                                                    |
| Figure 3-3                                | PIC16C74/74A/77 Block Diagram 12                                                                                    |
| Figure 3-4                                | Clock/Instruction Cycle 17                                                                                          |
| Figure 4-1                                | PIC16C72 Program Memory Map                                                                                         |
| riguio + 1.                               | and Stack 19                                                                                                        |
| Figure 4-2                                | PIC16C73/73A/74/74A Program                                                                                         |
| rigure + 2.                               | Memory Man and Stack 10                                                                                             |
| Figure 4-3                                | PIC16C76/77 Program Memory                                                                                          |
| rigure + 0.                               | Man and Stack 20                                                                                                    |
| Figure 4-4                                | PIC16C72 Register File Man 21                                                                                       |
| Figure 4-5:                               | PIC16C73/73A/74/74A Register                                                                                        |
| rigure + 0.                               | File Man 21                                                                                                         |
| Figure 4-6                                | PIC16C76/77 Register File Map 22                                                                                    |
| Figure 4-7:                               | Status Register (Address 03b                                                                                        |
| rigure + 7.                               | 83h 103h 183h) 30                                                                                                   |
| Figure 4-8                                | OPTION Register (Address 81h                                                                                        |
| rigure + 0.                               | 181h) 31                                                                                                            |
| Figure 4-9                                | INTCON Register                                                                                                     |
| riguro + 0.                               | (Address 0Bh 8Bh 10bh 18bh) 32                                                                                      |
| Figure 4-10                               | PIE1 Register PIC16C72                                                                                              |
| riguie 4 io.                              | (Address 8Ch) 33                                                                                                    |
| Figure 4-11                               | PIE1 Register PIC16C73/73A/                                                                                         |
| rigulo i i i.                             | 74/74A/76/77 (Address 8Ch) 34                                                                                       |
| Figure 4-12                               | PIR1 Register PIC16C72                                                                                              |
| rigulo i iz.                              | (Address 0Ch)                                                                                                       |
| Figure 4-13                               | PIR1 Register PIC16C73/73A/                                                                                         |
| rigure + ro.                              | 74/74A/76/77 (Address 0Ch) 36                                                                                       |
| Figure 4-14                               | PIF2 Register (Address 8Dh) 37                                                                                      |
| Figure 4-15                               | PIR2 Register (Address ODh) 38                                                                                      |
| Figure 4-16:                              | PCON Register (Address 8Eh) 39                                                                                      |
| Figure 4-17                               | Loading of PC. In Different                                                                                         |
| riguio + 17.                              | Situations 40                                                                                                       |
| Figure 4-18                               | Direct/Indirect Addressing 41                                                                                       |
| Figure 5-1:                               | Block Diagram of RA3:RA0                                                                                            |
| . iguie e ii                              | and RA5 Pins 43                                                                                                     |
| Figure 5-2:                               | Block Diagram of RA4/T0CKI Pin 43                                                                                   |
| Figure 5-3:                               | Block Diagram of RB3:RB0 Pins 45                                                                                    |
| Figure 5-4:                               | Block Diagram of RB7:RB4 Pins                                                                                       |
| . iguie e ii                              | (PIC16C73/74)                                                                                                       |
| Figure 5-5:                               | Block Diagram of                                                                                                    |
| 0                                         | RB7:RB4 Pins (PIC16C72/73A/                                                                                         |
|                                           | 74A/76/77)46                                                                                                        |
| Figure 5-6:                               | PORTC Block Diagram                                                                                                 |
| Ū.                                        | (Peripheral Output Override)                                                                                        |
| Figure 5-7:                               | PORTD Block Diagram                                                                                                 |
| -                                         | (in I/O Port Mode)50                                                                                                |
| Figure 5-8:                               | PORTE Block Diagram                                                                                                 |
| C                                         | (in I/O Port Mode)51                                                                                                |
| Figure 5-9:                               | TRISE Register (Address 89h)51                                                                                      |
| Figure 5-10:                              | Successive I/O Operation53                                                                                          |
| Figure 5-11:                              | PORTD and PORTE Block Diagram                                                                                       |
|                                           | (Parallel Slave Port)54                                                                                             |
| Figure 5-12:                              | Parallel Slave Port Write Waveforms 55                                                                              |
| Figure 5-13:                              | Parallel Slave Port Read Waveforms 55                                                                               |
| Figure 7-1:                               | Timer0 Block Diagram59                                                                                              |
| Figure 7-2:                               | Timer0 Timing: Internal Clock/No                                                                                    |
|                                           | Prescale                                                                                                            |
| Figure 7-3:                               |                                                                                                                     |
| 0                                         | Timer0 Timing: Internal                                                                                             |
| 0                                         | Timer0 Timing: Internal<br>Clock/Prescale 1:260                                                                     |
| Figure 7-4:                               | Timer0 Timing: Internal<br>Clock/Prescale 1:260<br>Timer0 Interrupt Timing60                                        |
| Figure 7-4:<br>Figure 7-5:                | Timer0 Timing: Internal<br>Clock/Prescale 1:260<br>Timer0 Interrupt Timing60<br>Timer0 Timing with External Clock61 |
| Figure 7-4:<br>Figure 7-5:<br>Figure 7-6: | Timer0 Timing: Internal<br>Clock/Prescale 1:2                                                                       |

| Figure 8-1:         | T1CON: Timer1 Control Register<br>(Address 10h)65 | 5        |
|---------------------|---------------------------------------------------|----------|
| Figure 8-2:         | Timer1 Block Diagram                              | 3        |
| Figure 9-1:         | Timer2 Block Diagram 69                           | à        |
| Figure 9-2          | T2CON: Timer2 Control Register                    |          |
| rigule 5 2.         | (Address 12b) 70                                  | h        |
| Figure 10-1         | CCP1CON Register (Address 17b)/                   | ,        |
| Figure 10-1.        | CCP2CON Register (Address 1711)/                  | •        |
| <b>F</b> '          | CCP2CON Register (Address TDI)                    | -        |
| Figure 10-2:        | Capture Mode Operation                            |          |
|                     | Block Diagram                                     | <u>'</u> |
| Figure 10-3:        | Compare Mode Operation                            |          |
|                     | Block Diagram73                                   | 3        |
| Figure 10-4:        | Simplified PWM Block Diagram 74                   | ł        |
| Figure 10-5:        | PWM Output74                                      | ŧ        |
| Figure 11-1:        | SSPSTAT: Sync Serial Port Status                  |          |
|                     | Register (Address 94h)78                          | 3        |
| Figure 11-2:        | SSPCON: Sync Serial Port Control                  |          |
| -                   | Register (Address 14h)79                          | )        |
| Figure 11-3:        | SSP Block Diagram (SPI Mode) 80                   | )        |
| Figure 11-4:        | SPI Master/Slave Connection 81                    | 1        |
| Figure 11-5         | SPI Mode Timing Master Mode                       |          |
| rigulo il ol        | or Slave Mode w/o SS Control 82                   | ,        |
| Figure 11-6         | SPI Mode Timing Slave Mode with                   | -        |
| rigule 11-0.        | SE Control                                        | ,        |
| Figure 11 7         | SS COILIOI 02                                     | -        |
| Figure 11-7:        | SSPSTAT: Sync Senar Port Status                   |          |
|                     | Register (Address 94n)(PIC16C76/77) 83            | 5        |
| Figure 11-8:        | SSPCON: Sync Serial Port Control                  |          |
|                     | Register (Address 14h)(PIC16C76/77) 84            | ł        |
| Figure 11-9:        | SSP Block Diagram (SPI Mode)                      |          |
|                     | (PIC16C76/77)                                     | 5        |
| Figure 11-10:       | SPI Master/Slave Connection                       |          |
|                     | PIC16C76/77) 86                                   | 3        |
| Figure 11-11:       | SPI Mode Timing, Master Mode                      |          |
| 0                   | (PIC16C76/77)                                     | 7        |
| Figure 11-12:       | SPI Mode Timing (Slave Mode                       |          |
|                     | With $CKF = 0$ (PIC16C76/77) 87                   | 7        |
| Figure 11-13        | SPI Mode Timing (Slave Mode                       |          |
| rigule il lo.       | With $CKE = 1$ (PIC16C76/77)                      | 2        |
| Figure 11-14        | Start and Stop Conditions                         | ,<br>2   |
| Figure 11 15:       | 7 bit Address Format                              | י<br>ר   |
| Figure 11-15.       | 1 <sup>2</sup> C 10 bit Address Format            | ,<br>,   |
|                     | 1 C 10-bit Address Format                         | ,        |
| Figure 11-17:       | Slave-receiver Acknowledge                        | )        |
| Figure 11-18:       | Data Transfer Wait State                          | )        |
| Figure 11-19:       | Master-transmitter Sequence 91                    | ]        |
| Figure 11-20:       | Master-receiver Sequence 91                       |          |
| Figure 11-21:       | Combined Format 91                                |          |
| Figure 11-22:       | Multi-master Arbitration                          |          |
|                     | (Two Masters)92                                   | 2        |
| Figure 11-23:       | Clock Synchronization 92                          | 2        |
| Figure 11-24:       | SSP Block Diagram                                 |          |
| 0                   | (I <sup>2</sup> C Mode)                           | 3        |
| Figure 11-25        | 1 <sup>2</sup> C Waveforms for Reception          |          |
| 1 iguro 11 20.      | (7-bit Address)                                   | 5        |
| Figuro 11 26        | $I^2$ C Wayoforms for Transmission                | ,<br>,   |
| Figure 11-20.       | (7 bit Addroso)                                   |          |
| <b>Einung 44 07</b> | (7-bit Address)                                   | )        |
| Figure 11-27:       | Operation of the I <sup>-</sup> C Module in       |          |
|                     | IDLE_MODE, RCV_MODE or                            |          |
|                     | XMIT_MODE 98                                      | 3        |
| Figure 12-1:        | TXSTA: Transmit Status and                        |          |
|                     | Control Register (Address 98h) 99                 | )        |
| Figure 12-2:        | RCSTA: Receive Status and                         |          |
|                     | Control Register (Address 18h) 100                | )        |
| Figure 12-3:        | RX Pin Sampling Scheme. BRGH = 0                  |          |
| -                   | (PIC16C73/73A/74/74A) 104                         | ŧ        |
| Figure 12-4:        | RX Pin Sampling Scheme. BRGH = 1                  |          |
| 5                   | (PIC16C73/73A/74/74A)                             | 1        |
|                     | , , , , , , , , , , , , , , , , , , , ,           |          |