

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c74a-04i-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16C7X is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers with integrated analog-to-digital (A/D) converters, in the PIC16CXX mid-range family.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches which require two cycles. A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The **PIC16C72** has 128 bytes of RAM and 22 I/O pins. In addition several peripheral features are available including: three timer/counters, one Capture/Compare/ PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. Also a 5-channel high-speed 8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The PIC16C73/73A devices have 192 bytes of RAM, while the PIC16C76 has 368 byes of RAM. Each device has 22 I/O pins. In addition, several peripheral features are available including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Syn-Asynchronous Receiver chronous Transmitter (USART) is also known as the Serial Communications Interface or SCI. Also a 5-channel high-speed 8-bit A/ D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The **PIC16C74/74A** devices have 192 bytes of RAM, while the **PIC16C77** has 368 bytes of RAM. Each device has 33 I/O pins. In addition several peripheral features are available including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also known as the Serial Communications Interface or SCI. An 8-bit Parallel Slave Port is provided. Also an 8-channel high-speed

8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The PIC16C7X family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) feature provides a power saving mode. The user can wake up the chip from SLEEP through several external and internal interrupts and resets.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

A UV erasable CERDIP packaged version is ideal for code development while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume.

The PIC16C7X family fits perfectly in applications ranging from security and remote sensors to appliance control and automotive. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C7X very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, serial communication, capture and compare, PWM functions and coprocessor applications).

1.1 Family and Upward Compatibility

Users familiar with the PIC16C5X microcontroller family will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for the PIC16C5X can be easily ported to the PIC16CXX family of devices (Appendix B).

1.2 Development Support

PIC16C7X devices are supported by the complete line of Microchip Development tools.

Please refer to Section 16.0 for more details about Microchip's development tools.

IABLE	4-Z .		3// 3A// 4	114A SP	ECIAL FU	INC HOIN	REGISI	ER SUN		(Cont.a)		
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (2)	
Bank 1		•		L						-		
80h ⁽⁴⁾	INDF	Addressing	Addressing this location uses contents of FSR to address data memory (not a physical register)									
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111	
82h ⁽⁴⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte	•	•			0000 0000	0000 0000	
83h ⁽⁴⁾	STATUS	IRP(7)	RP1 ⁽⁷⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu	
84h ⁽⁴⁾	FSR	Indirect data	a memory ad	ldress pointe	er					XXXX XXXX	uuuu uuuu	
85h	TRISA	—	—	PORTA Dat	ta Direction Re	gister				11 1111	11 1111	
86h	TRISB	PORTB Dat	a Direction F	Register						1111 1111	1111 1111	
87h	TRISC	PORTC Dat	ta Direction F	Register						1111 1111	1111 1111	
88h (5)	TRISD	PORTD Dat	ta Direction F	Register						1111 1111	1111 1111	
89h (5)	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Da	ta Direction E	Bits	0000 -111	0000 -111	
8Ah ^(1,4)	PCLATH	—	—	—	Write Buffer fo	or the upper	5 bits of the	Program Cou	unter	0 0000	0 0000	
8Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u	
8Ch	PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000	
8Dh	PIE2	—	—	—	—	—	-	—	CCP2IE	0	0	
8Eh	PCON	—	—	—	-	—	_	POR	BOR(6)	dd	uu	
8Fh	—	Unimpleme	nted							—	—	
90h	—	Unimpleme	nted							-	—	
91h	_	Unimpleme	nted							_	—	
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111	
93h	SSPADD	Synchronou	is Serial Port	(I ² C mode)	Address Regis	ter				0000 0000	0000 0000	
94h	SSPSTAT	—	—	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000	
95h	—	Unimpleme	nted	•						-	_	
96h	—	Unimpleme	nted							-	—	
97h	—	Unimpleme	nted							-	-	
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010	
99h	SPBRG	Baud Rate	Generator Re	egister						0000 0000	0000 0000	
9Ah	_	Unimpleme	Unimplemented								_	
9Bh	—	Unimpleme	Unimplemented — —								-	
9Ch	_	Unimpleme	Unimplemented — —									
9Dh	—	Unimpleme	Jnimplemented — —									
9Eh	—	Unimpleme	nted							-	_	
9Fh	ADCON1	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	000	

TABLE 4-2: PIC16C73/73A/74/74A SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

- 4: These registers can be addressed from either bank.
- 5: PORTD and PORTE are not physically implemented on the PIC16C73/73A, read as '0'.
- 6: Brown-out Reset is not implemented on the PIC16C73 or the PIC16C74, read as '0'.

7: The IRP and RP1 bits are reserved on the PIC16C73/73A/74/74A, always maintain these bits clear.

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input
RA1/AN1	bit1	TTL	Input/output or analog input
RA2/AN2	bit2	TTL	Input/output or analog input
RA3/AN3/VREF	bit3	TTL	Input/output or analog input or VREF
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0
			Output is open drain type
RA5/SS/AN4	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input

Legend: TTL = TTL input, ST = Schmitt Trigger input

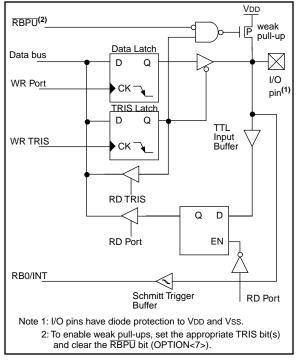
TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	—	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	—	—	PORTA Dat	PORTA Data Direction Register					11 1111	11 1111
9Fh	ADCON1	—		—	_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

5.2 PORTB and TRISB Registers

Applicable Devices
72 73 73A 74 74A 76 77


PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance input mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

EXAMPLE 5-2: INITIALIZING PORTB

BCF	STATUS,	RP0	;	
CLRF	PORTB		;	Initialize PORTB by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISB		;	Set RB<3:0> as inputs
			;	RB<5:4> as outputs
			;	RB<7:6> as inputs

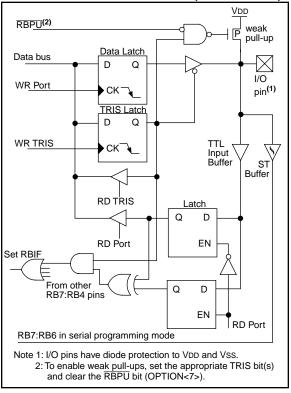
Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\text{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 5-3: BLOCK DIAGRAM OF RB3:RB0 PINS

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a keypad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, *"Implementing Wake-Up on Key Stroke"* (AN552).

Note:	For the PIC16C73/74, if a change on the
	I/O pin should occur when the read opera-
	tion is being executed (start of the Q2
	cycle), then interrupt flag bit RBIF may not
	get set.

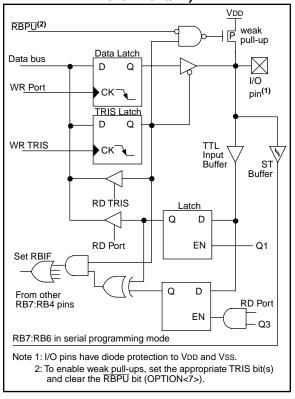

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

TABLE 5-3: PORTB FUNCTIONS

FIGURE 5-5: BLOCK DIAGRAM OF RB7:RB4 PINS (PIC16C72/ 73A/74A/76/77)

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

11.2.1 OPERATION OF SSP MODULE IN SPI MODE

	-	cabl				
72	73	73A	74	74A	76	77

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

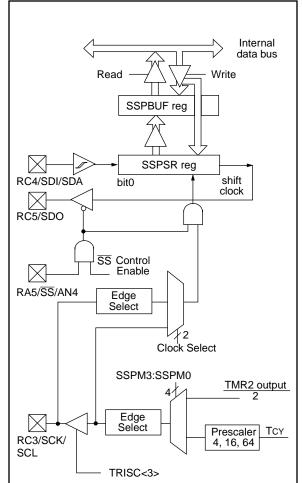
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Serial Clock (SCK)

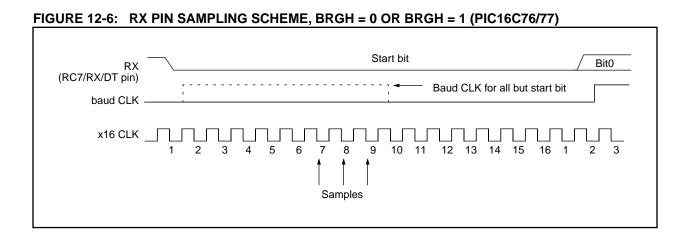
Additionally a fourth pin may be used when in a slave mode of operation:

Slave Select (SS)

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>). These control bits allow the following to be specified:

- Master Mode (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Output/Input data on the Rising/ Falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select Mode (Slave mode only)


The SSP consists of a transmit/receive Shift Register (SSPSR) and a Buffer register (SSPBUF). The SSPSR shifts the data in and out of the device. MSb first. The SSPBUF holds the data that was written to the SSPSR, until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the Buffer Full bit, BF (SSPSTAT<0>) and flag bit SSPIF are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit, WCOL (SSPCON<7>) will be set. User software must clear bit WCOL so that it can be determined if the following write(s) to the SSPBUF completed successfully. When the application software is expecting to receive valid data, the SSPBUF register should be read before the next byte of data to transfer is written to the SSPBUF register. The Buffer Full bit BF (SSPSTAT<0>) indicates when the SSPBUF register has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the SSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF register must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 11-1 shows the loading of the SSPBUF (SSPSR) register for data transmission. The shaded instruction is only required if the received data is meaningful.


EXAMPLE 11-1: LOADING THE SSPBUF (SSPSR) REGISTER

		•		
	BSF	STATUS,	RP0	;Specify Bank 1
LOOP	BTFSS	SSPSTAT	, BF	;Has data been
				received
				;(transmit
				;complete)?
	GOTO	LOOP		;No
	BCF	STATUS,	RP0	;Specify Bank 0
	MOVF	SSPBUF,	W	;W reg = contents
				;of SSPBUF
	MOVWF	RXDATA		;Save in user RAM
	MOVF	TXDATA,	W	;W reg = contents
				; of TXDATA
	MOVWF	SSPBUF		;New data to xmit

The block diagram of the SSP module, when in SPI mode (Figure 11-3), shows that the SSPSR register is not directly readable or writable, and can only be accessed from addressing the SSPBUF register. Additionally, the SSP status register (SSPSTAT) indicates the various status conditions.

FIGURE 11-3: SSP BLOCK DIAGRAM (SPI MODE)

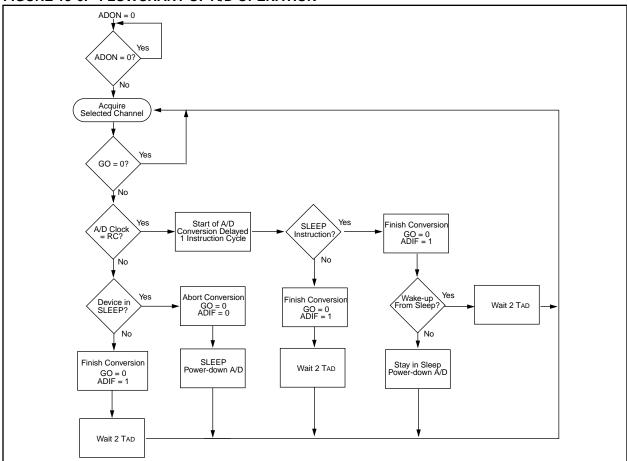
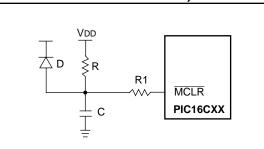



TABLE 13-2: REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C72

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	-	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE	-	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
1Eh	ADRES	A/D Res	sult Regist	ter						xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	—	—	_	_	_	PCFG2	PCFG1	PCFG0	000	000
05h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_		PORTA	Data D	irection F		11 1111	11 1111		

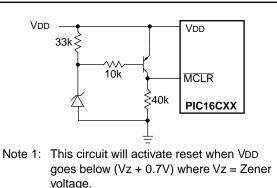

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

FIGURE 14-13: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

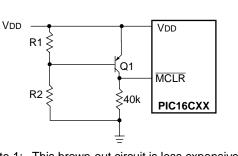

- Note 1: External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - R < 40 kΩ is recommended to make sure that voltage drop across R does not violate the device's electrical specification.
 - 3: $R1 = 100\Omega$ to 1 k Ω will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR}/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

FIGURE 14-14: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

- 2: Internal brown-out detection on the PIC16C72/73A/74A/76/77 should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistor.

FIGURE 14-15: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

Note 1: This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

- 2: Internal brown-out detection on the PIC16C72/73A/74A/76/77 should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistor.

15.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 15-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 15-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 15-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
∈	In the set of
italics	User defined term (font is courier)

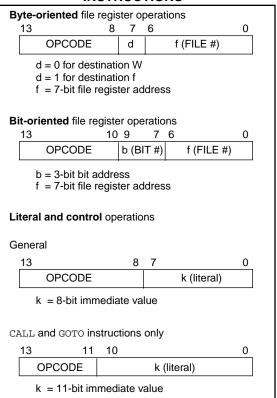
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 15-2 lists the instructions recognized by the MPASM assembler.

Figure 15-1 shows the general formats that the instructions can have.


Note: To maintain upward compatibility with future PIC16CXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

Applicable Devices 72 73 73A 74 74A 76 77

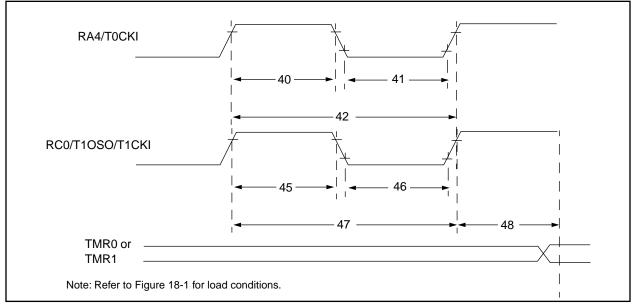
17.2 DC Characteristics: PIC16LC72-04 (Commercial, Industrial)

DC CHA	ARACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +70°C for commercial							
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions			
D001	Supply Voltage	Vdd	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)			
D002*	RAM Data Retention Volt- age (Note 1)	Vdr	-	1.5	-	V				
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details			
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled			
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)			
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled			
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V			
D020 D021 D021A	Power-down Current (Note 3,5)	IPD	- - -	7.5 0.9 0.9	30 5 5	μΑ μΑ μΑ	$VDD = 3.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 3.0V, WDT disabled, 0^{\circ}C to +70^{\circ}C$ $VDD = 3.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$			
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.


 The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are:

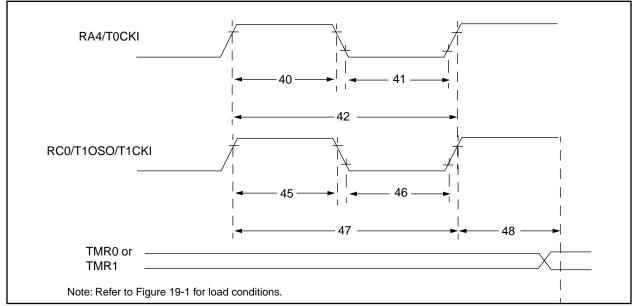
 $OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD <math>\overline{MCLR} = VDD; WDT$ enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 72 73 73A 74 76 77

FIGURE 18-5: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 18-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS


Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5Tcy + 20	-	—	ns	Must also meet
				With Prescaler	10	_	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	-	—	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	—	—	ns	
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	-	_	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, F	Prescaler = 1	0.5TCY + 20	-	—	ns	Must also meet
			Synchronous,	PIC16 C 7X	15	-	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 7X	25	-	—	ns	
			Asynchronous	PIC16 C 7X	30	—	—	ns	
				PIC16 LC 7X	50	—	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, F		0.5Tcy + 20	—	—	ns	Must also meet
			Synchronous,	PIC16 C 7X	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 7X	25	-	-	ns	
			Asynchronous	PIC16 C 7X	30	—	—	ns	
				PIC16 LC 7X	50	—	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 7X	<u>Greater of:</u> 30 OR <u>TCY + 40</u> N	-	_	ns	N = prescale value (1, 2, 4, 8)
				PIC16 LC 7X	<u>Greater of:</u> 50 OR <u>TCY + 40</u> N				N = prescale value (1, 2, 4, 8)
			Asynchronous	PIC16 C 7X	60	—	—	ns	
				PIC16 LC 7X	100	—	—	ns	
	Ft1	Timer1 oscillator inp (oscillator enabled b	y setting bit T1C	SCEN)	DC	-	200	kHz	
48	TCKEZtmr	1 Delay from external	clock edge to tir	ner increment	2Tosc	—	7Tosc	-	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 19-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 19-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
40*	Tt0H	· · · · · · · · · · · · · · · · · · ·		No Prescaler	0.5Tcy + 20	—	—	ns	Must also meet
				With Prescaler	10	_	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	T0CKI Low Pulse Width		0.5TCY + 20	-	—	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	_	—	ns	
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	-	_	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, P	Prescaler = 1	0.5Tcy + 20	- 1	—	ns	Must also meet
			Synchronous,	PIC16 C 7X	15	-	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 7X	25	-	—	ns	
			Asynchronous	PIC16 C 7X	30	—	—	ns	
				PIC16 LC 7X	50	—	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, P		0.5Tcy + 20	-	—	ns	Must also meet
			Synchronous,	PIC16 C 7X	15		—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 7X	25	-	-	ns	
			Asynchronous	PIC16 C 7X	30	—	—	ns]
				PIC16 LC 7X	50	—	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 7X	<u>Greater of:</u> 30 OR <u>TCY + 40</u> N	-	_	ns	N = prescale value (1, 2, 4, 8)
				PIC16 LC 7X	<u>Greater of:</u> 50 OR <u>TCY + 40</u> N				N = prescale value (1, 2, 4, 8)
			Asynchronous	PIC16 C 7X	60	-	—	ns	
				PIC16 LC 7X	100	-	—	ns	
	Ft1	Timer1 oscillator inp (oscillator enabled b			DC	-	200	kHz	
48	TCKEZtmr1	Delay from external	clock edge to tin	ner increment	2Tosc	—	7Tosc	—	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 72 73 73A 74 74A 76 77

20.2 DC Characteristics: PIC16LC76/77-04 (Commercial, Industrial)

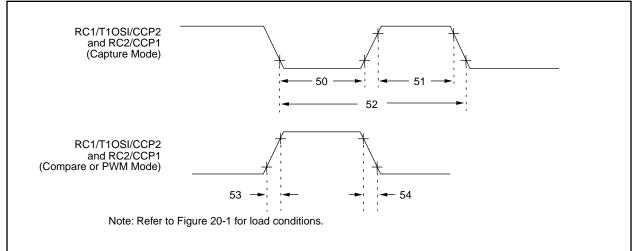
DC CHA	RACTERISTICS			ard Ope ing tem	•	-	itions (unless otherwise stated) $0^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial and C $\leq TA \leq +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	Vpor	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V
D020 D021 D021A	Power-down Current (Note 3,5)	IPD	- - -	7.5 0.9 0.9	30 5 5	μΑ μΑ μΑ	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$ VDD = $3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$ VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μΑ	BOR enabled VDD = 5.0V

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.


The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.

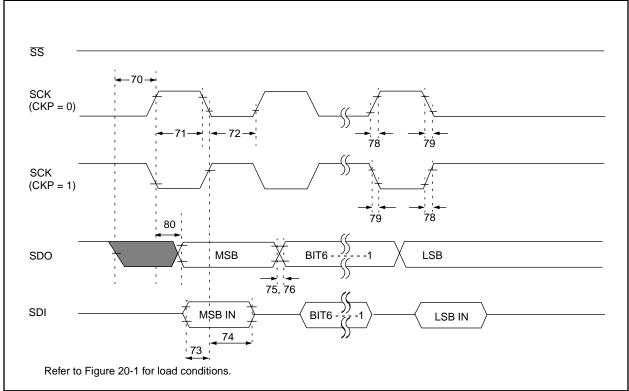
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSs.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 72 73 73A 74 74A 76 77

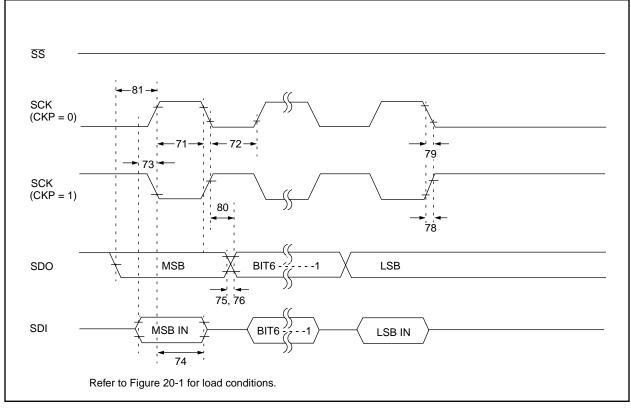
FIGURE 20-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 20-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	—		ns	
		input low time		PIC16 C 76/77	10	_	_	ns	
			With Prescaler	PIC16 LC 76/77	20	—	-	ns	
51*	TccH	CCP1 and CCP2	No Prescaler		0.5TCY + 20			ns	
		input high time		PIC16 C 76/77	10	—		ns	
			With Prescaler	PIC16 LC 76/77	20	—	—	ns	
52*	TccP	CCP1 and CCP2 input period			<u>3Tcy + 40</u> N	_	_	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 and CCP2 of	output rise time	PIC16 C 76/77	-	10	25	ns	
				PIC16 LC 76/77	_	25	45	ns	
54*	TccF	CCP1 and CCP2 output fall time		PIC16 C 76/77	_	10	25	ns	
				PIC16 LC 76/77	_	25	45	ns	


* These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


t

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 20-9: SPI MASTER MODE TIMING (CKE = 0)

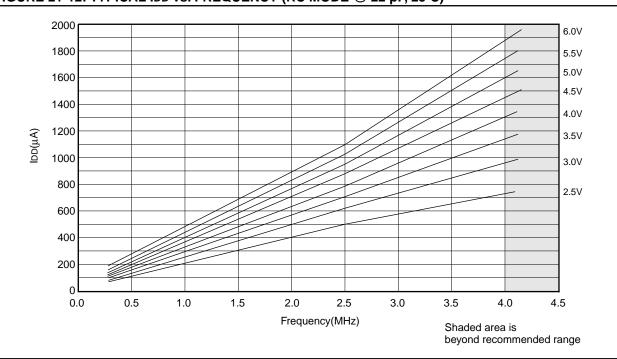
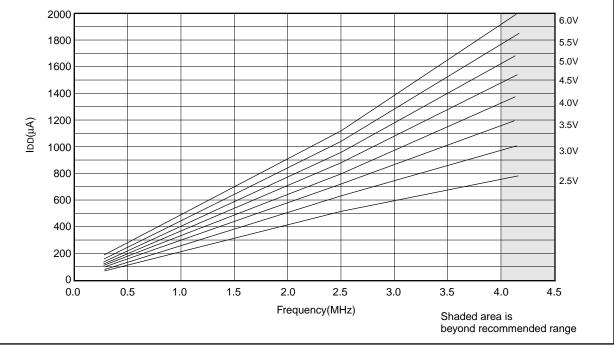


FIGURE 20-10: SPI MASTER MODE TIMING (CKE = 1)



PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77 FIGURE 21-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)

PICSTART Low-Cost Development System	
PIE1 Register	
PIE2 Register	29, 37
Pin Compatible Devices	271
Pin Functions	
MCLR/VPP	. 13, 14, 15
OSC1/CLKIN	
OSC2/CLKOUT	. 13, 14, 15
RA0/AN0	. 13. 14. 15
RA1/AN1	
RA2/AN2	
RA3/AN3/VREF	
RA4/T0CKI	
RA5/AN4/SS	
RB0/INT	
RB1	
RB2	, ,
RB3	
RB3	
RB5	
RB6	, ,
кво RB7	
RC0/T1OSO/T1CKI	
RC1/T1OSI	
RC1/T1OSI/CCP2	
RC2/CCP1	
RC3/SCK/SCL	
RC4/SDI/SDA	
RC5/SDO	
RC6	
RC6/TX/CK14,	16, 99–114
RC7	
RC7 RC7/RX/DT14,	
	16, 99–114
RC7/RX/DT14,	16, 99–114 16
RC7/RX/DT14, RD0/PSP0	16, 99–114 16 16
RC7/RX/DT14, RD0/PSP0 RD1/PSP1	16, 99–114 16 16 16
RC7/RX/DT14, RD0/PSP0 RD1/PSP1 RD2/PSP2	16, 99–114 16 16 16 16
RC7/RX/DT	16, 99–114 16 16 16 16 16
RC7/RX/DT	16, 99–114 16 16 16 16 16 16 16
RC7/RX/DT	16, 99–114 16 16 16 16 16 16 16 16
RC7/RX/DT 14, RD0/PSP0	16, 99–114
RC7/RX/DT 14, RD0/PSP0	16, 99–114

POR		134	135
Oscillator Start-up Timer (OST)			
Power Control Register (PCON)		123	125
Power-on Reset (POR)	120		136
Power-up Timer (PWRT)			
,			
Power-Up-Timer (PWRT) Time-out Sequence			
Time-out Sequence on Power-up			
POR bit			
Port RB Interrupt			
PORTA			
PORTA Register			
PORTB			
PORTB Register			
PORTC			<i>'</i>
PORTC Register			'
PORTD			
PORTD Register		25, 2	7, 50
PORTE			
PORTE Register		25, 2	7, 51
Power-down Mode (SLEEP)			. 145
PR2			29
PR2 Register		26.2	8 69
		20, Z	0, 00
Prescaler, Switching Between Timer0 and WD			
Prescaler, Switching Between Timer0 and WD	Т		63
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer	Т		63 . 163
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches	Т		63 . 163
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory	T 		63 . 163 9
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging	T 		63 . 163 9
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps	T 		63 . 163 9 40
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72	T 		63 . 163 9 40 19
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73	T		63 . 163 9 40 19 19
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73A	T		63 . 163 9 40 19 19 19
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73A PIC16C74	T		63 . 163 9 40 19 19 19 19
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73A PIC16C74 PIC16C74A	T		63 . 163 9 40 19 19 19 19 19
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73 A PIC16C74 PIC16C74 A Program Verification	T 		63 . 163 9 40 19 19 19 19 19 146
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73 A PIC16C74 PIC16C74 A Program Verification PS0 bit	T		63 . 163 9 40 19 19 19 19 19 19 13
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73 A PIC16C74 A PIC16C74A Program Verification PS0 bit PS1 bit	T		63 . 163 9 40 19 19 19 19 19 19 31 31
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73 A PIC16C74 A PIC16C74A Program Verification PS0 bit PS1 bit PS2 bit	T		63 . 163 9 40 19 19 19 19 19 31 31 31
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73 A PIC16C74 A Program Verification PS0 bit PS1 bit PSA bit	T		63 . 163 9 40 19 19 19 19 19 31 31 31 31
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73A PIC16C74A Program Verification PS0 bit PS1 bit PS2 bit PSPIE bit	T		63 . 163 9 40 19 19 19 19 19 19 31 31 31 34
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73 A PIC16C74 A PIC16C74A Program Verification PS0 bit PS1 bit PS2 bit PSA bit PSPIE bit PSPIF bit	T		63 . 163 9 9 19 19 19 19 . 146 31 31 31 34 36
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73A PIC16C74A Program Verification PS0 bit PS1 bit PS2 bit PSPIE bit PSPIF bit PSPMODE bit	T	50, 5	63 . 163 9 40 19 19 19 19 19 19 146 31 31 31 34 36 36 34 36
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73 A PIC16C74 A PIC16C74A Program Verification PS0 bit PS1 bit PS2 bit PSA bit PSPIE bit PSPIF bit	T	50, 5	63 . 163 9 40 19 19 19 19 19 19 146 31 31 31 34 36 36 34 36
Prescaler, Switching Between Timer0 and WD PRO MATE Universal Programmer Program Branches Program Memory Paging Program Memory Maps PIC16C72 PIC16C73 PIC16C73A PIC16C74A Program Verification PS0 bit PS1 bit PS2 bit PSPIE bit PSPIF bit PSPMODE bit	T	50, 5	63 . 163 9 40 19 19 19 19 19 19 146 31 31 31 34 36 36 34 36

R/W	78, 83
R/\overline{W} bit	90, 94, 95, 96
RBIF bit	45, 143
RBPU bit	
RC Oscillator	132, 135
RCIE bit	
RCIF bit	
RCREG	29
RCSTA Register	
RCV_MODE	
RD pin	
Read/Write bit Information, R/W	
Read-Modify-Write	53
Receive Overflow Detect bit, SSPOV	
Receive Overflow Indicator bit, SSPOV	
Register File	

U

UA78, 83 Universal Synchronous Asynchronous Receiver Transmitter (USART)99 Update Address bit, UA78, 83 USART
Asynchronous Mode106
Asynchronous Receiver 108
Asynchronous Reception109
Asynchronous Transmission
Asynchronous Transmitter
Baud Rate Generator (BRG) 101
Receive Block Diagram108
Sampling104
Synchronous Master Mode110
Synchronous Master Reception
Synchronous Master Transmission
Synchronous Slave Mode114
Synchronous Slave Reception114
Synchronous Slave Transmit114
Transmit Block Diagram106
UV Erasable Devices7

W

W Register	
ALU	9
Wake-up from SLEEP	145
Watchdog Timer (WDT)1	29, 133, 136, 144
WCOL	
WDT	
Block Diagram	144
Period	144
Programming Considerations	
Timeout	
Word	129
WR pin	54
Write Collision Detect bit, WCOL	

Х

XMIT_MODE	
7	

Z bit)
Zero	bit)

LIST OF EXAMPLES

Evernale 2.1	Instruction Dinaling Flow
Example 3-1:	Instruction Pipeline Flow17
Example 4-1:	Call of a Subroutine in Page 1
	from Page 041
Example 4-2:	Indirect Addressing41
Example 5-1:	Initializing PORTA43
Example 5-2:	Initializing PORTB45
Example 5-3:	Initializing PORTC48
Example 5-4:	Read-Modify-Write Instructions
	on an I/O Port53
Example 7-1:	Changing Prescaler (Timer0→WDT)63
Example 7-2:	Changing Prescaler (WDT→Timer0)63
Example 8-1:	Reading a 16-bit Free-Running Timer67
Example 10-1:	Changing Between Capture
	Prescalers73
Example 10-2:	PWM Period and Duty Cycle
	Calculation75
Example 11-1:	Loading the SSPBUF (SSPSR)
•	Register
Example 11-2:	Loading the SSPBUF (SSPSR)
	Register (PIC16C76/77)85
Example 12-1:	Calculating Baud Rate Error101
Equation 13-1:	A/D Minimum Charging Time120
Example 13-1:	Calculating the Minimum Required
	Acquisition Time120
Example 13-2:	A/D Conversion122
Example 13-3:	4-bit vs. 8-bit Conversion Times
Example 14-1:	Saving STATUS, W, and PCLATH
	Registers in RAM143

LIST OF FIGURES

Figure 3-1:	PIC16C72 Block Diagram10
Figure 3-2:	PIC16C73/73A/76 Block Diagram 11
Figure 3-3:	PIC16C74/74A/77 Block Diagram
Figure 3-4:	Clock/Instruction Cycle17
Figure 4-1:	PIC16C72 Program Memory Map
	and Stack
Figure 4-2:	PIC16C73/73A/74/74A Program
rigure 4 2.	Memory Map and Stack
Figure 4.2	PIC16C76/77 Program Memory
Figure 4-3:	Map and Stack
Figure 4-4:	PIC16C72 Register File Map
Figure 4-5:	PIC16C73/73A/74/74A Register
-	File Map
Figure 4-6:	PIC16C76/77 Register File Map22
Figure 4-7:	Status Register (Address 03h,
	83h, 103h, 183h)30
Figure 4-8:	OPTION Register (Address 81h,
	181h)31
Figure 4-9:	INTCON Register
	(Address 0Bh, 8Bh, 10bh, 18bh)
Figure 4-10:	PIE1 Register PIC16C72
-	(Address 8Ch)
Figure 4-11:	PIE1 Register PIC16C73/73A/
0	74/74A/76/77 (Address 8Ch)
Figure 4-12:	PIR1 Register PIC16C72
-	(Address 0Ch)
Figure 4-13:	PIR1 Register PIC16C73/73A/
-	74/74A/76/77 (Address 0Ch)
Figure 4-14:	PIE2 Register (Address 8Dh)
Figure 4-15:	PIR2 Register (Address 0Dh)
Figure 4-16:	PCON Register (Address 8Eh)
Figure 4-17:	Loading of PC In Different
0	Situations
Figure 4-18:	Direct/Indirect Addressing41
Figure 5-1:	Block Diagram of RA3:RA0
5	and RA5 Pins43
Figure 5-2:	Block Diagram of RA4/T0CKI Pin43
Figure 5-3:	Block Diagram of RB3:RB0 Pins45
Figure 5-4:	Block Diagram of RB7:RB4 Pins
5	(PIC16C73/74)46
Figure 5-5:	Block Diagram of
0	RB7:RB4 Pins (PIC16C72/73A/
	74A/76/77)
Figure 5-6:	PORTC Block Diagram
-	(Peripheral Output Override)
Figure 5-7:	PORTD Block Diagram
-	(in I/O Port Mode)50
Figure 5-8:	PORTE Block Diagram
0	(in I/O Port Mode)51
Figure 5-9:	TRISE Register (Address 89h)51
Figure 5-10:	Successive I/O Operation53
Figure 5-11:	PORTD and PORTE Block Diagram
-	(Parallel Slave Port)54
Figure 5-12:	Parallel Slave Port Write Waveforms 55
Figure 5-13:	Parallel Slave Port Read Waveforms 55
Figure 7-1:	Timer0 Block Diagram59
Figure 7-2:	Timer0 Timing: Internal Clock/No
<u> </u>	Prescale
Figure 7-3:	Timer0 Timing: Internal
0	Clock/Prescale 1:2 60
Figure 7-4:	Timer0 Interrupt Timing60
Figure 7-5:	Timer0 Timing with External Clock61
Figure 7-6:	Block Diagram of the Timer0/WDT
3	Prescaler

Figure 8-1:	T1CON: Timer1 Control Register
	(Address 10h) 65
Figure 8-2:	Timer1 Block Diagram 66
Figure 9-1:	Timer2 Block Diagram 69
Figure 9-2:	T2CON: Timer2 Control Register
	(Address 12h) 70
Figure 10-1:	CCP1CON Register (Address 17h)/
	CCP2CON Register (Address 1Dh)
Figure 10-2:	Capture Mode Operation
	Block Diagram
Figure 10-3:	Compare Mode Operation
	Block Diagram
Figure 10-4:	Simplified PWM Block Diagram
Figure 10-5:	PWM Output74
Figure 11-1:	SSPSTAT: Sync Serial Port Status
F : 44.0	Register (Address 94h)
Figure 11-2:	SSPCON: Sync Serial Port Control
E '	Register (Address 14h)
Figure 11-3:	SSP Block Diagram (SPI Mode)
Figure 11-4:	SPI Master/Slave Connection
Figure 11-5:	SPI Mode Timing, Master Mode
E '	or Slave Mode w/o SS Control
Figure 11-6:	SPI Mode Timing, Slave Mode with
Eigener 44 7	SS Control
Figure 11-7:	SSPSTAT: Sync Serial Port Status
Eigener 11 0:	Register (Address 94h)(PIC16C76/77) 83
Figure 11-8:	SSPCON: Sync Serial Port Control
Figure 11 Or	Register (Address 14h)(PIC16C76/77) 84
Figure 11-9:	SSP Block Diagram (SPI Mode)
Figure 11-10:	(PIC16C76/77)85 SPI Master/Slave Connection
Figure 11-10.	PIC16C76/77)
Figuro 11 11:	SPI Mode Timing, Master Mode
Figure 11-11:	(PIC16C76/77)
Figure 11-12:	SPI Mode Timing (Slave Mode
riguie i i - i z.	With CKE = 0) (PIC16C76/77)
Figure 11-13:	SPI Mode Timing (Slave Mode
riguro i i io.	With CKE = 1) (PIC16C76/77)
Figure 11-14:	Start and Stop Conditions
Figure 11-15:	7-bit Address Format
Figure 11-16:	I ² C 10-bit Address Format
Figure 11-17:	Slave-receiver Acknowledge
Figure 11-18:	Data Transfer Wait State
Figure 11-19:	Master-transmitter Sequence
Figure 11-20:	Master-receiver Sequence
Figure 11-21:	Combined Format
Figure 11-22:	Multi-master Arbitration
0.	(Two Masters)
Figure 11-23:	Clock Synchronization
Figure 11-24:	SSP Block Diagram
0	(I ² C Mode)
Figure 11-25:	I ² C Waveforms for Reception
-	(7-bit Address)
Figure 11-26:	I ² C Waveforms for Transmission
-	(7-bit Address)
Figure 11-27:	Operation of the I ² C Module in
-	IDLE_MODE, RCV_MODE or
	XMIT_MODE
Figure 12-1:	TXSTA: Transmit Status and
	Control Register (Address 98h) 99
Figure 12-2:	RCSTA: Receive Status and
	Control Register (Address 18h) 100
Figure 12-3:	RX Pin Sampling Scheme. BRGH = 0
	(PIC16C73/73A/74/74A)104
Figure 12-4:	RX Pin Sampling Scheme, BRGH = 1
	(PIC16C73/73A/74/74A) 104