

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c74a-20-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	13	14	30	1	ST/CMOS ⁽⁴⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	14	15	31	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	2	18	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19	I/O	TTL	RA0 can also be analog input0
RA1/AN1	3	4	20	I/O	TTL	RA1 can also be analog input1
RA2/AN2	4	5	21	I/O	TTL	RA2 can also be analog input2
RA3/AN3/VREF	5	6	22	I/O	TTL	RA3 can also be analog input3 or analog reference voltage
RA4/T0CKI	6	7	23	I/O	ST	RA4 can also be the clock input to the Timer0 timer/ counter. Output is open drain type.
RA5/SS/AN4	7	8	24	I/O	TTL	RA5 can also be analog input4 or the slave select for the synchronous serial port.
						PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	33	36	8	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	34	37	9	I/O	TTL	
RB2	35	38	10	I/O	TTL	
RB3	36	39	11	I/O	TTL	
RB4	37	41	14	I/O	TTL	Interrupt on change pin.
RB5	38	42	15	I/O	TTL	Interrupt on change pin.
RB6	39	43	16	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	40	44	17	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
Legend: I = input	Ο = οι	utput		I/O = in	put/output	P = power

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

4.2.2.3 INTCON REGISTER

Applicable Devices

72 73 73A 74 74A 76 77

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

FIGURE 4-9: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x			
GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	R = Readable bit		
bit7							bitO	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 		
bit 7:	GIE: ⁽¹⁾ GI 1 = Enabl 0 = Disab	lobal Inter es all un-r les all inte	rupt Enabl nasked in rrupts	e bit terrupts						
bit 6:	PEIE : Per 1 = Enabl 0 = Disab	ipheral Int es all un-r les all per	errupt Ena nasked pe ipheral int	able bit eripheral in errupts	terrupts					
bit 5:	TOIE : TMF 1 = Enabl 0 = Disab	R0 Overflo es the TM les the TM	ow Interrup R0 interru 1R0 interru	ot Enable b pt upt	bit					
bit 4:	INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt									
bit 3:	RBIE : RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt									
bit 2:	T0IF : TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow									
bit 1:	INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur									
bit 0:	RBIF : RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state									
Note 1:	For the Pl may be ui Refer to S	IC16C73 anintention Section 14	and PIC16 ally re-ena .5 for a de	C74, if an bled by the etailed des	interrupt o eRETFIE i cription.	ccurs while nstruction	e the GIE bi in the user	it is being cleared, the GIE bit 's Interrupt Service Routine.		
Interro global enabl	upt flag bits (I enable bit, ing an interr	get set whe GIE (INTC) upt.	n an interru ON<7>). Us	upt conditior ser software	n occurs rega should ensi	ardless of th ure the appr	e state of its opriate inter	corresponding enable bit or the rupt flag bits are clear prior to		

5.7 Parallel Slave Port Applicable Devices 72 73 73 74 74 76 77

PORTD operates as an 8-bit wide Parallel Slave Port, or microprocessor port when control bit PSPMODE (TRISE<4>) is set. In slave mode it is asynchronously readable and writable by the external world through \overline{RD} control input pin RE0/ \overline{RD} /AN5 and \overline{WR} control input pin RE1/ \overline{WR} /AN6.

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD/AN5 to be the RD input, RE1/ WR/AN6 to be the WR input and RE2/CS/AN7 to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set) and the A/D port configuration bits PCFG2:PCFG0 (ADCON1<2:0>) must be set, which will configure pins RE2:RE0 as digital I/O.

There are actually two 8-bit latches, one for data-out (from the PIC16/17) and one for data input. The user writes 8-bit data to PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored, since the microprocessor is controlling the direction of data flow.

A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. When either the \overline{CS} or \overline{WR} lines become high (level triggered), then the Input Buffer Full status flag bit IBF (TRISE<7>) is set on the Q4 clock cycle, following the next Q2 cycle, to signal the write is complete (Figure 5-12). The interrupt flag bit PSPIF (PIR1<7>) is also set on the same Q4 clock cycle. IBF can only be cleared by reading the PORTD input latch. The input Buffer Overflow status flag bit IBOV (TRISE<5>) is set if a second write to the Parallel Slave Port is attempted when the previous byte has not been read out of the buffer.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The Output Buffer Full status flag bit OBF (TRISE<6>) is cleared immediately (Figure 5-13) indicating that the PORTD latch is waiting to be read by the external bus. When either the \overline{CS} or \overline{RD} pin becomes high (level triggered), the interrupt flag bit PSPIF is set on the Q4 clock cycle, following the next Q2 cycle, indicating that the read is complete. OBF remains low until data is written to PORTD by the user firmware.

When not in Parallel Slave Port mode, the IBF and OBF bits are held clear. However, if flag bit IBOV was previously set, it must be cleared in firmware.

An interrupt is generated and latched into flag bit PSPIF when a read or write operation is completed. PSPIF must be cleared by the user in firmware and the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

FIGURE 5-11: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

FIGURE 5-12: PARALLEL SLAVE PORT WRITE WAVEFORMS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	Port dat	a latch	when w	ritten: Port pi	ns when	read		xxxx xxxx	uuuu uuuu	
09h	PORTE	—	—	—	—	—	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Data Direction Bits		0000 -111	0000 -111	
0Ch	PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
9Fh	ADCON1	_	—	—	—	—	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Parallel Slave Port.

8.1 <u>Timer1 Operation in Timer Mode</u>

Applicable Devices

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is FOSC/4. The synchronize control bit T1SYNC (T1CON<2>) has no effect since the internal clock is always in sync.

8.2 <u>Timer1 Operation in Synchronized</u> Counter Mode Applicable Devices 72 73 73A 74 74A 76 77

Counter mode is selected by setting bit TMR1CS. In this mode the timer increments on every rising edge of clock input on pin RC1/T1OSI/CCP2 when bit T1OSCEN is set or pin RC0/T1OSO/T1CKI when bit T1OSCEN is cleared.

If T1SYNC is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple-counter.

In this configuration, during SLEEP mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut off. The prescaler however will continue to increment.

8.2.1 EXTERNAL CLOCK INPUT TIMING FOR SYNCHRONIZED COUNTER MODE

When an external clock input is used for Timer1 in synchronized counter mode, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of TMR1 after synchronization.

When the prescaler is 1:1, the external clock input is the same as the prescaler output. The synchronization of T1CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T1CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the appropriate electrical specifications, parameters 45, 46, and 47.

When a prescaler other than 1:1 is used, the external clock input is divided by the asynchronous ripplecounter type prescaler so that the prescaler output is symmetrical. In order for the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for T1CKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on T1CKI high and low time is that they do not violate the minimum pulse width requirements of 10 ns). Refer to the appropriate electrical specifica-tions, parameters 40, 42, 45, 46, and 47.

FIGURE 8-2: TIMER1 BLOCK DIAGRAM

10.3 PWM Mode

Applicable Devices

In Pulse Width Modulation (PWM) mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note: Clearing the CCP1CON register will force the CCP1 PWM output latch to the default low level. This is not the PORTC I/O data latch.

Figure 10-4 shows a simplified block diagram of the CCP module in PWM mode.

For a step by step procedure on how to set up the CCP module for PWM operation, see Section 10.3.3.

FIGURE 10-4: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 10-5) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 10-5: PWM OUTPUT

10.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM period = [(PR2) + 1] • 4 • TOSC • (TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 9.1) is
	not used in the determination of the PWM
	frequency. The postscaler could be used to
	have a servo update rate at a different fre-
	quency than the PWM output.

10.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)} \quad \text{bits}$$

Note: If the PWM duty cycle value is longer than the PWM period the CCP1 pin will not be cleared.

11.2 SPI Mode for PIC16C72/73/73A/74/74A

This section contains register definitions and operational characteristics of the SPI module for the PIC16C72, PIC16C73, PIC16C73A, PIC16C74, PIC16C74A.

FIGURE 11-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
		D/Ā	Р	S	R/W	UA	BF	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7-6:	Unimpl	emented	: Read as	'0'				
bit 5:	D/A : Da 1 = India 0 = India	ta/Addres cates that cates that	ss bit (l ² C the last b the last b	mode only) yte receive yte receive	d or transmit d or transmit	ted was da ted was ad	ta dress	
bit 4:	P : Stop 1 = India 0 = Stop	bit (I ² C m cates that b bit was i	ode only. a stop bit	This bit is c has been o ed last	leared when detected last	the SSP m (this bit is	odule is disa '0' on RESE	abled, SSPEN is cleared) T)
bit 3:	S : Start 1 = India 0 = Star	bit (I ² C m cates that t bit was	node only. a start bit not detect	This bit is c has been ed last	leared when detected lasi	the SSP n t (this bit is	nodule is disa '0' on RESE	abled, SSPEN is cleared) T)
bit 2:	R/W : Re This bit match to 1 = Rea 0 = Writ	ead/Write holds the o the next d e	bit informa R/W bit i start bit, s	ation (I ² C n nformation stop bit, or	node only) following the ACK bit.	e last addre	ess match. T	his bit is valid from the address
bit 1:	UA : Upo 1 = Indio 0 = Add	date Addr cates that ress does	ess (10-bi the user i not need	t I ² C mode needs to up to be upda	only) odate the add ated	dress in the	SSPADD re	gister
bit 0:	BF: Buf	fer Full St	atus bit					
	<u>Receive</u> 1 = Rec 0 = Rec	e (SPI and eive comp eive not c	I I ² C mode plete, SSF complete, \$	es) PBUF is full SSPBUF is	empty			
	<u>Transmi</u> 1 = Tran 0 = Tran	t (I ² C mo smit in pr smit com	de only) ogress, St plete, SSF	SPBUF is f PBUF is em	ull ipty			

Г

FIGURE 11-8: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)(PIC16C76/77)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit		
bit7		· ·					bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset		
bit 7:	WCOL: We 1 = The SS (must be c 0 = No col	rite Collisic SPBUF reg leared in s lision	on Detect l jister is wi oftware)	bit itten while	it is still tr	ansmitting	the previou	is word		
bit 6:	SSPOV: R	eceive Ove	erflow Indi	cator bit						
	$\frac{\text{In SPI mod}}{1 = A \text{ new}}$ the data in if only tran new recep 0 = No over	de byte is rece SSPSR is smitting da tion (and to erflow	eived while lost. Over ata, to avo ransmissio	e the SSPE flow can o bid setting bn) is initia	BUF regist nly occur overflow. I ted by wri	er is still ho in slave mo n master r ting to the	olding the pr ode. The use mode the ov SSPBUF re	evious data. In case of overflow, er must read the SSPBUF, even verflow bit is not set since each egister.		
	$\frac{\ln l^2 C \mod}{1 = A \text{ byte}}$ in transmit 0 = No over	<u>le</u> is received mode. SS erflow	while the POV mus	SSPBUF i t be cleare	register is d in softwa	still holding are in eithe	g the previou er mode.	us byte. SSPOV is a "don't care"		
bit 5:	SSPEN: S	ynchronou	s Serial P	ort Enable	bit					
	$\frac{\text{In SPI mod}}{1 = \text{Enable}}$ $0 = \text{Disable}$	<u>de</u> es serial po es serial po	ort and cor	nfigures So nfigures th	CK, SDO, lese pins a	and SDI as as I/O port	s serial port pins	pins		
	In l^2C mode 1 = Enables the serial port and configures the SDA and SCL pins as serial port pins 0 = Disables serial port and configures these pins as I/O port pins In both modes, when enabled, these pins must be properly configured as input or output									
bit 4:	CKP : Cloc In SPI mod 1 = Idle sta 0 = Idle sta In I^2 C mod SCK relea 1 = Enable 0 = Holds	k Polarity \$ de ate for cloc ate for cloc de se control e clock clock low (Select bit k is a high k is a low clock stre	n level level tch) (Used	to ensure	data setu	p time)			
bit 3-0:	$\begin{array}{l} \textbf{SSPM3:S3} \\ 0000 = SF \\ 0001 = SF \\ 0010 = SF \\ 0100 = SF \\ 0100 = SF \\ 0101 = SF \\ 0110 = I^2 \\ 0111 = I^2 \\ 1011 = I^2 \\ 1110 = I^2 \\ 1111 = I^2 \\ \end{array}$	SPM0: Syn PI master n PI master n PI master n PI master n PI slave mc CI slave mc CI slave mo CI slave mo CI slave mo CI slave mo CI slave mo CI slave mo	chronous node, cloc node, cloc node, cloc ode, clock ode, clock de, 7-bit a de, 10-bit controlled de, 7-bit a de, 10-bit	Serial Por k = Fosc/ ² k = Fosc/ ² k = Fosc/ ⁶ k = TMR2 = SCK pin = SCK pin ddress address t master m ddress wit address w	t Mode Se 4 16 64 0. <u>SS</u> pin c 1. <u>SS</u> pin c 1. <u>SS</u> pin c 1. th start an vith start a	elect bits ontrol enat ontrol disa e idle) d stop bit i nd stop bit	bled. bled. SS ca nterrupts er interrupts e	n be used as I/O pin nabled enabled		

13.5 A/D Operation During Sleep

Applicable Devices
72 73 73A 74 74A 76 77

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

13.6 <u>A/D Accuracy/Error</u> Applicable Devices 72 73 73A 74 74A 76 77

The absolute accuracy specified for the A/D converter includes the sum of all contributions for quantization error, integral error, differential error, full scale error, offset error, and monotonicity. It is defined as the maximum deviation from an actual transition versus an ideal transition for any code. The absolute error of the A/D converter is specified at < \pm 1 LSb for VDD = VREF (over the device's specified operating range). However, the accuracy of the A/D converter will degrade as VDD diverges from VREF.

For a given range of analog inputs, the output digital code will be the same. This is due to the quantization of the analog input to a digital code. Quantization error is typically \pm 1/2 LSb and is inherent in the analog to digital conversion process. The only way to reduce quantization error is to increase the resolution of the A/D converter.

Offset error measures the first actual transition of a code versus the first ideal transition of a code. Offset error shifts the entire transfer function. Offset error can be calibrated out of a system or introduced into a system through the interaction of the total leakage current and source impedance at the analog input.

Gain error measures the maximum deviation of the last actual transition and the last ideal transition adjusted for offset error. This error appears as a change in slope of the transfer function. The difference in gain error to full scale error is that full scale does not take offset error into account. Gain error can be calibrated out in software.

Linearity error refers to the uniformity of the code changes. Linearity errors cannot be calibrated out of the system. Integral non-linearity error measures the actual code transition versus the ideal code transition adjusted by the gain error for each code.

Differential non-linearity measures the maximum actual code width versus the ideal code width. This measure is unadjusted.

The maximum pin leakage current is \pm 1 μ A.

In systems where the device frequency is low, use of the A/D RC clock is preferred. At moderate to high frequencies, TAD should be derived from the device oscillator. TAD must not violate the minimum and should be $\leq 8 \ \mu s$ for preferred operation. This is because TAD, when derived from Tosc, is kept away from on-chip phase clock transitions. This reduces, to a large extent, the effects of digital switching noise. This is not possible with the RC derived clock. The loss of accuracy due to digital switching noise can be significant if many I/O pins are active.

In systems where the device will enter SLEEP mode after the start of the A/D conversion, the RC clock source selection is required. In this mode, the digital noise from the modules in SLEEP are stopped. This method gives high accuracy.

13.7 Effects of a RESET

 Applicable Devices

 72
 73
 73A
 74
 74A
 76
 77

A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted.

The value that is in the ADRES register is not modified for a Power-on Reset. The ADRES register will contain unknown data after a Power-on Reset.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets	
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u	
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000	
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000	
0Dh	PIR2	—	—	_	—	—	—	—	CCP2IF	0	0	
8Dh	PIE2	—	—	_	—	—	—	—	CCP2IE	0	0	
1Eh	ADRES	A/D Resu	ult Registe	er		xxxx xxxx	uuuu uuuu					
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0	
9Fh	ADCON1	—	—	_	—	—	PCFG2	PCFG1	PCFG0	000	000	
05h	PORTA	—	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000	
85h	TRISA	_	_	PORTA Data Direction Register						11 1111	11 1111	
09h	PORTE	_	_		_	_	RE2	RE1	RE0	xxx	uuu	
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Dat	a Direction	n Bits	0000 -111	0000 -111	

	TABLE 13-3:	SUMMARY OF A/D REGISTERS	, PIC16C73/73A/74/74A/76/77
--	-------------	--------------------------	-----------------------------

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC6C73/73A/76, always maintain these bits clear.

NOTES:

PIC16C7X

BCF	Bit Clear	r f			BTFSC	E	Bit Test,	Skip if Cl	ear		
Syntax:	[<i>label</i>] B0	CF f,b			Syntax:	[[<i>label</i>] BTFSC f,b				
Operands:	$0 \le f \le 12$ $0 \le b \le 7$	27			Operands:	() ≤ f ≤ 12) ≤ b ≤ 7	7			
Operation:	$0 \rightarrow (f < b)$	>)			Operation:	5	skip if (f<	b>) = 0			
Status Affected:	None				Status Affecte	ed: N	None				
Encoding:	01	00bb	bfff	ffff	Encoding:	Γ	01	10bb	bfff	ffff	
Description:	Bit 'b' in re	egister 'f' is	s cleared.		Description:	l	f bit 'b' in i	register 'f' is	'1' then th	ne next	
Words:	1					ii It	nstruction f bit 'b', in	is executed register 'f'.	d. is '0' then '	the next	
Cycles:	1					i	instruction is discarded, and a NOP is executed instead, making this a 2Tcy instruction.				
Q Cycle Activity:	Q1	Q2	Q3	Q4		e					
	Decode	Read register 'f'	Process data	Write register 'f'	Words: Cycles:		l 1(2)				
Example	BCF	FLAG_	REG, 7		Q Cycle Activ	vity:	Q1	Q2	Q3	Q4	
	Before In	struction					Decode	Read register 'f'	Process data	No- Operation	
	After Inst	FLAG_RE	=G = 0xC7		lf Sk	kip: ((2nd Cycle)				
		FLAG_RE	EG = 0x47				Q1	Q2	Q3	Q4	
							No- Operation	No- Operation	No- Operation	No- Operation	
					Example		HERE FALSE TRUE	BTFSC GOTO •	FLAG,1 PROCESS_	_CODE	

BSF	Bit Set f								
Syntax:	[<i>label</i>] BSF f,b								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$								
Operation:	$1 \rightarrow (f < b >)$								
Status Affected:	None								
Encoding:	01	01bb	bfff	ffff					
Description:	Bit 'b' in register 'f' is set.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write register 'f'					
Example	BSF	FLAG_F	REG, 7						
Before Instruction FLAG_REG = 0x0A									
	After Instruction FLAG_REG = 0x8A								

Before Instruction PC = address HERE

•

•	0	_	aaarooo					
After Instr	uct	ion						
if	FL	AG<′	l > = 0,					
F	°C =	=	address	TRUE				
if FLAG<1>=1,								
F	°C =	=	address	FALSE				

Applicable Devices 72 73 73A 74 74A 76 77

17.1 DC Characteristics: PIC16C72-04 (Commercial, Industrial, Extended) PIC16C72-10 (Commercial, Industrial, Extended) PIC16C72-20 (Commercial, Industrial, Extended)

			Standard Operating Conditions (unless otherwise stated)					
DC CHA	RACTERISTICS		Operat	10° C \leq IA \leq +125 °C for extended, 10° C \leq TA \leq +85 °C for industrial and				
						0°	$C \leq TA \leq +70^{\circ}C$ for commercial	
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions	
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration	
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V		
D003	VDD start voltage to ensure internal Power- on Reset Signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details	
D004*	VDD rise rate to ensure internal Power-on Reset Signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details	
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled	
			3.7	4.0	4.4	V	Extended Only	
D010	Supply Current (Note 2,5)	IDD	-	2.7	5.0	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)	
D013			-	10	20	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V	
D015	Brown-out Reset Current (Note 6)	ΔIBOR	-	350	425	μA	BOR enabled VDD = 5.0V	
D020	Power-down Current	IPD	-	10.5	42	μΑ	VDD = 4.0V, WDT enabled, -40° C to $+85^{\circ}$ C	
D021	(Note 3,5)		-	1.5	16	μA	$VDD = 4.0V$, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$	
D021A				1.5	19	μΑ μΑ	$VD = 4.0V$, $VD T$ disabled, $-40^{\circ}C$ to $+85^{\circ}C$	
D023	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled $VDD = 5.0V$	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.

The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77

TABLE 17-8: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz mode	4700		_	ns	Only relevant for repeated START
		Setup time	400 kHz mode	600	—	—		condition
91	THD:STA	START condition	100 kHz mode	4000	—	—	ne	After this period the first clock pulse is generated
		Hold time	400 kHz mode	600	—	—	113	
92	TSU:STO	STOP condition	100 kHz mode	4700	—	—	ne	
		Setup time	400 kHz mode	600	—	—		
93	THD:STO	STOP condition	100 kHz mode	4000	—	—	ne	
		Hold time	400 kHz mode	600	—	—	113	

Applicable Devices 72 73 73A 74 74A 76 77

18.2 DC Characteristics: PIC16LC73/74-04 (Commercial, Industrial)

DC CHA	RACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85 $^{\circ}$ C for industrial and0°C $<$ TA \leq +70 $^{\circ}$ C for commercial					
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions	
D001	Supply Voltage	Vdd	3.0	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)	
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V		
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details	
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details	
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)	
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled	
D020	Power-down Current	IPD	-	7.5	30	μA	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$	
D021	(Note 3,5)		-	0.9	13.5	μA	VDD = $3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$	
D021A			-	0.9	18	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

Applicable Devices 72 73 73A 74 74A 76 77

19.1 DC Characteristics: PIC16C73A/74A-04 (Commercial, Industrial, Extended) PIC16C73A/74A-10 (Commercial, Industrial, Extended) PIC16C73A/74A-20 (Commercial, Industrial, Extended)

DC CH	ARACTERISTICS		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended,						
$-40 \text{ C} \le 14 \le +85 \text{ C}$ for industria 0°C $\le TA \le +70°$ C for commer									
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions		
D001 D001A	Supply Voltage	Vdd	4.0 4.5		6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration		
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V			
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details		
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled		
			3.7	4.0	4.4	V	Extended Range Only		
D010	Supply Current (Note 2,5)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)		
D013			-	10	20	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V		
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V		
D020	Power-down Current	IPD	-	10.5	42	μΑ	$VDD = 4.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$		
D021	(Note 3,5)		-	1.5	16	μΑ	VDD = $4.0V$, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$		
D021A				2.5	19	μΑ	VDD = 4.0V, WDT disabled, -40°C to +125°C		
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μΑ	BOR enabled VDD = 5.0V		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

 Applicable Devices
 72
 73
 73A
 74
 76
 77

20.5 <u>Timing Diagrams and Specifications</u>

FIGURE 20-2: EXTERNAL CLOCK TIMING

TABLE 20-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
NO.							
	Fosc	External CLKIN Frequency	DC	—	4	MHz	XT and RC osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	10	MHz	HS osc mode (-10)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	—	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			100	—	—	ns	HS osc mode (-10)
			50	—	—	ns	HS osc mode (-20)
			5	—	_	μs	LP osc mode
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			100	—	250	ns	HS osc mode (-10)
							HS osc mode (-20)
			50	—	250	ns	
			5	—	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1) High or	100	—	-	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			15			ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	_	_	25	ns	XT oscillator
	TosF	Fall Time	_	—	50	ns	LP oscillator
			_	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

22.3 28-Lead Plastic Dual In-line (300 mil) (SP)

Package Group: Plastic Dual In-Line (PLA)									
		Millimeters		Inches					
Symbol	Min	Max	Notes	Min	Max	Notes			
α	0°	10°		0°	10°				
Α	3.632	4.572		0.143	0.180				
A1	0.381	_		0.015	_				
A2	3.175	3.556		0.125	0.140				
В	0.406	0.559		0.016	0.022				
B1	1.016	1.651	Typical	0.040	0.065	Typical			
B2	0.762	1.016	4 places	0.030	0.040	4 places			
B3	0.203	0.508	4 places	0.008	0.020	4 places			
С	0.203	0.331	Typical	0.008	0.013	Typical			
D	34.163	35.179		1.385	1.395				
D1	33.020	33.020	Reference	1.300	1.300	Reference			
E	7.874	8.382		0.310	0.330				
E1	7.112	7.493		0.280	0.295				
e1	2.540	2.540	Typical	0.100	0.100	Typical			
eA	7.874	7.874	Reference	0.310	0.310	Reference			
eB	8.128	9.652		0.320	0.380				
L	3.175	3.683		0.125	0.145				
N	28	-		28	-				
S	0.584	1.220		0.023	0.048				

PIC16C7X

22.4 40-Lead Plastic Dual In-line (600 mil) (P)

Package Group: Plastic Dual In-Line (PLA)									
		Millimeters		Inches					
Symbol	Min	Мах	Notes	Min	Max	Notes			
α	0°	10°		0°	10°				
A	-	5.080		-	0.200				
A1	0.381	_		0.015	_				
A2	3.175	4.064		0.125	0.160				
В	0.355	0.559		0.014	0.022				
B1	1.270	1.778	Typical	0.050	0.070	Typical			
С	0.203	0.381	Typical	0.008	0.015	Typical			
D	51.181	52.197		2.015	2.055				
D1	48.260	48.260	Reference	1.900	1.900	Reference			
E	15.240	15.875		0.600	0.625				
E1	13.462	13.970		0.530	0.550				
e1	2.489	2.591	Typical	0.098	0.102	Typical			
eA	15.240	15.240	Reference	0.600	0.600	Reference			
eB	15.240	17.272		0.600	0.680				
L	2.921	3.683		0.115	0.145				
N	40	40		40	40				
S	1.270	_		0.050	_				
S1	0.508	_		0.020	_				

NOTES: