

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	$4V \sim 6V$
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c74a-20-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (2)
Bank 0											
00h ⁽⁴⁾	INDF	Addressing	this location	uses conten	ts of FSR to a	ddress data r	nemory (not	a physical re	egister)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽⁴⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h (4)	STATUS	IRP ⁽⁷⁾	RP1 ⁽⁷⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h (4)	FSR	Indirect data	a memory ad	dress pointe	er				•	XXXX XXXX	uuuu uuuu
05h	PORTA	_	_	PORTA Dat	a Latch when	written: POR	TA pins wher	read		0x 0000	0u 0000
06h	PORTB	PORTB Dat	a Latch whe	n written: PC	ORTB pins whe	n read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Dat	ta Latch whe	n written: PC	DRTC pins whe	en read				XXXX XXXX	uuuu uuuu
08h ⁽⁵⁾	PORTD	PORTD Dat	a Latch whe	n written: PC	ORTD pins whe	en read				xxxx xxxx	uuuu uuuu
09h (5)	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu
0Ah (1,4)	PCLATH	_	_	_	Write Buffer fo	or the upper t	5 bits of the I	Program Cou	unter	0 0000	0 0000
0Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	—	—	-	-	-	—	—	CCP2IF	0	0
0Eh	TMR1L	Holding reg	ister for the L	east Signific	ant Byte of the	e 16-bit TMR1	l register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the N	lost Significa	ant Byte of the	16-bit TMR1	register			XXXX XXXX	uuuu uuuu
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	is Serial Port	Receive Bu	ffer/Transmit R	egister				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	Register1 (L	_SB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	Register1 (N	MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Trar	nsmit Data R	egister						0000 0000	0000 0000
1Ah	RCREG	USART Red	ceive Data R	egister						0000 0000	0000 0000
1Bh	CCPR2L	Capture/Co	mpare/PWM	Register2 (L	_SB)					xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/Co	mpare/PWM	Register2 (N	MSB)					xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh	ADRES	A/D Result	Register							XXXX XXXX	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0

 TABLE 4-2:
 PIC16C73/73A/74/74A SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

4: These registers can be addressed from either bank.

5: PORTD and PORTE are not physically implemented on the PIC16C73/73A, read as '0'.

6: Brown-out Reset is not implemented on the PIC16C73 or the PIC16C74, read as '0'.

7: The IRP and RP1 bits are reserved on the PIC16C73/73A/74/74A, always maintain these bits clear.

4.2.2.4 PIE1 REGISTER

Applicable Devices

72 73 73A 74 74A 76 77

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

This register contains the individual enable bits for the peripheral interrupts.

FIGURE 4-10: PIE1 REGISTER PIC16C72 (ADDRESS 8Ch)

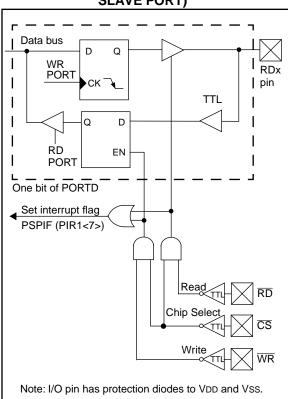
U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
	ADIE	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit			
bit7							bitO	 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset 			
bit 7:	Unimpler	nented: R	lead as '0'								
bit 6:		es the A/D	er Interrup D interrupt D interrupt		it						
bit 5-4:	Unimpler	nented: R	ead as '0'								
bit 3:	SSPIE : Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt										
bit 2:	CCP1IE : 0 1 = Enabl 0 = Disab	es the CC	P1 interru	pt							
bit 1:	TMR2IE : TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt										
bit 0:	1 = Enabl	es the TM	erflow Inte R1 overflo IR1 overflo	w interrup	ot						

5.7 Parallel Slave Port Applicable Devices 72 73 73 74 74 76 77

PORTD operates as an 8-bit wide Parallel Slave Port, or microprocessor port when control bit PSPMODE (TRISE<4>) is set. In slave mode it is asynchronously readable and writable by the external world through \overline{RD} control input pin RE0/ \overline{RD} /AN5 and \overline{WR} control input pin RE1/ \overline{WR} /AN6.

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD/AN5 to be the RD input, RE1/ WR/AN6 to be the WR input and RE2/CS/AN7 to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set) and the A/D port configuration bits PCFG2:PCFG0 (ADCON1<2:0>) must be set, which will configure pins RE2:RE0 as digital I/O.

There are actually two 8-bit latches, one for data-out (from the PIC16/17) and one for data input. The user writes 8-bit data to PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored, since the microprocessor is controlling the direction of data flow.


A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. When either the \overline{CS} or \overline{WR} lines become high (level triggered), then the Input Buffer Full status flag bit IBF (TRISE<7>) is set on the Q4 clock cycle, following the next Q2 cycle, to signal the write is complete (Figure 5-12). The interrupt flag bit PSPIF (PIR1<7>) is also set on the same Q4 clock cycle. IBF can only be cleared by reading the PORTD input latch. The input Buffer Overflow status flag bit IBOV (TRISE<5>) is set if a second write to the Parallel Slave Port is attempted when the previous byte has not been read out of the buffer.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The Output Buffer Full status flag bit OBF (TRISE<6>) is cleared immediately (Figure 5-13) indicating that the PORTD latch is waiting to be read by the external bus. When either the \overline{CS} or \overline{RD} pin becomes high (level triggered), the interrupt flag bit PSPIF is set on the Q4 clock cycle, following the next Q2 cycle, indicating that the read is complete. OBF remains low until data is written to PORTD by the user firmware.

When not in Parallel Slave Port mode, the IBF and OBF bits are held clear. However, if flag bit IBOV was previously set, it must be cleared in firmware.

An interrupt is generated and latched into flag bit PSPIF when a read or write operation is completed. PSPIF must be cleared by the user in firmware and the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

FIGURE 5-11: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

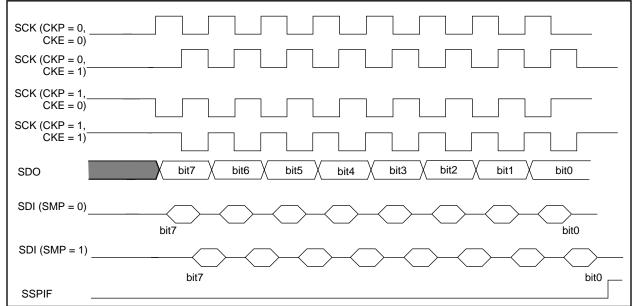
7.3 <u>Prescaler</u> Applicable Devices 72|73|73A|74|74A|76|77

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

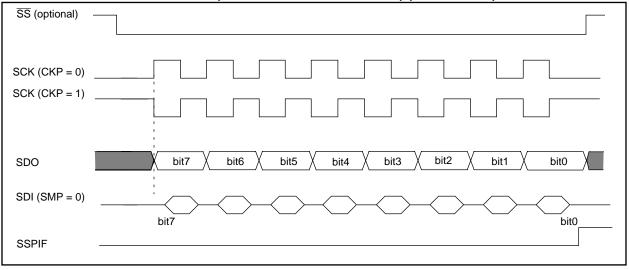
When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.


FIGURE 7-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

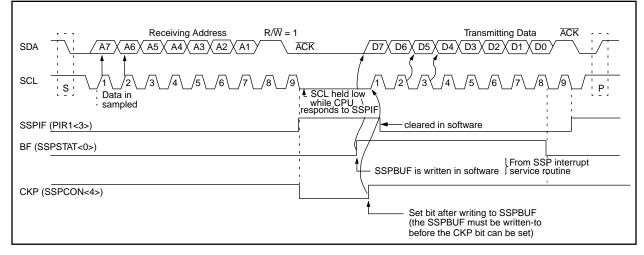
The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set for the synchronous slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. If the \overline{SS} pin is taken low without resetting SPI mode, the transmission will continue from the point at which it was taken high. External pull-up/ pull-down resistors may be desirable, depending on the application.

Note:	When the SPI is in Slave Mode with \overline{SS} pin control enabled, (SSPCON<3:0> = 0100) the SPI module will reset if the \overline{SS} pin is set to VDD.
Note:	If the SPI is used in Slave Mode with


CKE = '1', then the SS pin control must be enabled. To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as

be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 11-11: SPI MODE TIMING, MASTER MODE (PIC16C76/77)


FIGURE 11-12: SPI MODE TIMING (SLAVE MODE WITH CKE = 0) (PIC16C76/77)

11.5.1.3 TRANSMISSION

When the $R\overline{W}$ bit of the incoming address byte is set and an address match occurs, the $R\overline{W}$ bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The \overline{ACK} pulse will be sent on the ninth bit, and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSP-BUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 11-26). An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

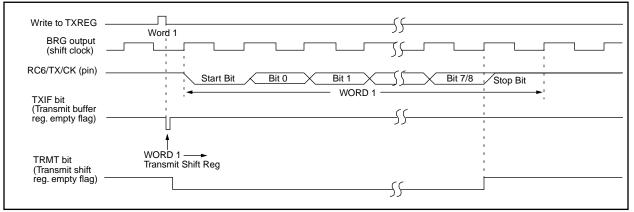
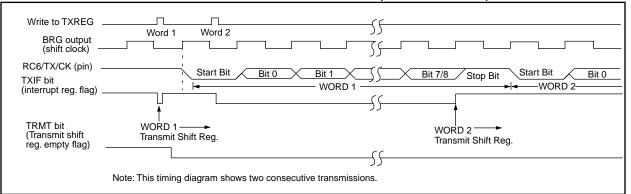


FIGURE 11-26: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)


Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 12.1)
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.
- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).

FIGURE 12-8: ASYNCHRONOUS MASTER TRANSMISSION

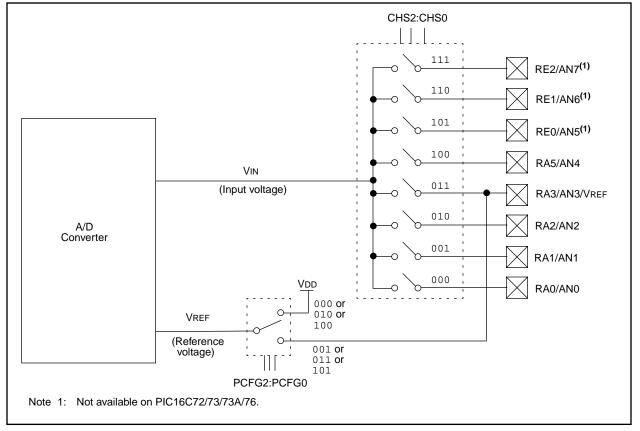
FIGURE 12-9: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Trar	nsmit Re	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	RG Baud Rate Generator Register								0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.


The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagrams of the A/D module are shown in Figure 13-3.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 13.1. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit

FIGURE 13-3: A/D BLOCK DIAGRAM

- 3. Wait the required acquisition time.
- 4. Start conversion:Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:Polling for the GO/DONE bit to be cleared
 - OR
 - Waiting for the A/D interrupt
- Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

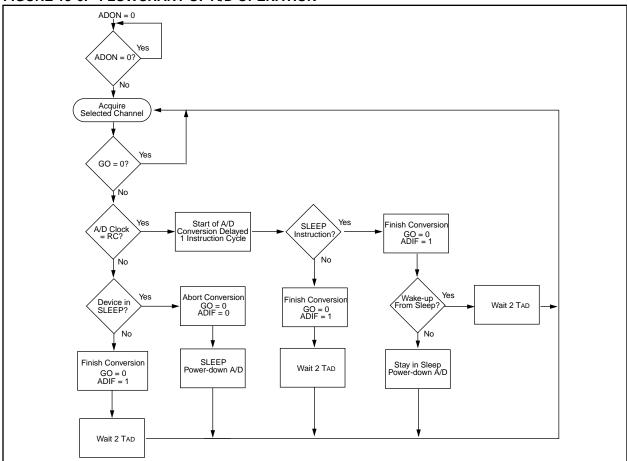


TABLE 13-2: REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C72

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	-	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE	-	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
1Eh	ADRES	A/D Res	sult Regist	ter						xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	—	—	_	_	_	PCFG2	PCFG1	PCFG0	000	000
05h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_		PORTA	PORTA Data Direction Register						11 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

FIGURE 14-2: CONFIGURATION WORD FOR PIC16C72/73A/74A/76/77

	P0 CP1	CP0	CP1	CP0	_	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1		Register: Address	CONFIG 2007h
bit13												bit0	Address	200711
bit 13-8	CP1:CP0				; (2)									
5-4:	11 = Cod	•												
	10 = Upp													
	01 = Upp 00 = All m					/ code pr	otected	1						
bit 7:	Unimpler	,												
bit 6:	BODEN:				hle hit	(1)								
511 0.	1 = BOR (
	0 = BOR (disable	d											
bit 3:	PWRTE:	Power-u	up Time	er Enab	le bit (1)								
	1 = PWR1													
	0 = PWRT	enabl	ed											
bit 2:	WDTE: W			Enabl	e bit									
	1 = WDT		-											
	0 = WDT		-											
bit 1-0:	FOSC1:F			tor Sele	ection	bits								
	11 = RC (10 = HS (
	10 = HSC 01 = XTC													
	01 = 100													
Note 1:	-					•				,	-	ess of the	value of bit F	PWRTE.
~	Ensure th					,								
2:	All of the	CP1:CF	20 pairs	s have t	to be g	jiven the	same \	alue to	o enable	the coo	de prote	ction sch	eme listed.	

BTFSS	Bit Test	f, Skip if S	Set		CALL		Call Sub	routine		
Syntax:	[<i>label</i>] B1	TFSS f,b			Syntax:		[label]	CALL 4	κ	
Operands:	$0 \le f \le 12$				Operands:		$0 \le k \le 2$	047		
	0 ≤ b < 7				Operation:		(PC)+ 1-	→ TOS,		
Operation:	skip if (f<	skip if (f) = 1				$\label{eq:kappa} \begin{array}{l} k \rightarrow \text{PC}{<}10{:}0{>}, \\ (\text{PCLATH}{<}4{:}3{>}) \rightarrow \text{PC}{<}12{:}11{>} \end{array}$				
Status Affected:	None				.			1<4:3>) -	\rightarrow PC<12	:11>
Encoding:	01	11bb	bfff	ffff	Status Affe	ected:	None		1	
Description:		register 'f' i		he next	Encoding:		10	0kkk	kkkk	kkkk
	If bit 'b' is discarded instead, m	'1', then the and a NOF	e next instr	ed	Descriptior	n:	(PC+1) is eleven bit into PC bit	pushed or immediate ts <10:0>.	st, return ac nto the stac e address is The upper	k. The s loaded bits of
Words:	1						is a two cy		rom PCLAT ction.	H. CALL
Cycles:	1(2)				Words:		1			
Q Cycle Activity:	Q1	Q2	Q3	Q4	Cycles:		2			
	Decode	Read register 'f'	Process data	No- Operation	Q Cycle Ad	ctivity:	Q1	Q2	Q3	Q4
If Skip:	(2nd Cyc	le)			15	st Cycle	Decode	Read literal 'k',	Process data	Write to PC
·	Q1	Q2	Q3	Q4				Push PC to Stack		
	No- Operation	No- Operation	No- Operation	No- Operation	2n	d Cycle	No- Operation	No- Operation	No- Operation	No- Operation
Example	HERE FALSE	BTFSC GOTO	FLAG,1 PROCESS_	_CODE	Example		HERE Before Ir	CALL	THERE	
	TRUE	•					Delote II		₁ \ddress н≘	RE
		•					After Inst	truction		
	Before In								Address TH Address HE	
	After Inst	ruction if FLAG<1: PC = if FLAG<1:	address F	ALSE				103 = 7		RE+1

PIC16C7X

IORWF	Inclusive	e OR W v	with f					
Syntax:	[label]	IORWF	f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	27						
Operation:	(W) .OR. (f) \rightarrow (destination)							
Status Affected:	Z							
Encoding:	00	0100	dfff	ffff				
Description:	Inclusive C ter 'f'. If 'd' W register back in reg	is 0 the re . If 'd' is 1	sult is place	ced in the				
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process data	Write to destination				
Example	IORWF		RESULT,	0				
	Before In							
		RESULT W	= 0x13 = 0x91	-				
	After Inst			3				

MOVLW	Move Literal to W									
Syntax:	[<i>label</i>] MOVLW k									
Operands:	$0 \le k \le 255$									
Operation:	$k \rightarrow (W)$									
Status Affected:	None									
Encoding:	11 00xx kkkk kkkk									
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.									
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1 Q2 Q3 Q4									
	Decode Read literal 'k' Process Write to W									
Example	MOVLW $0x5A$ After Instruction W = 0x5A									

MOVF	Move f								
Syntax:	[label]	MOVF	f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$								
Operation:	(f) \rightarrow (destination)								
Status Affected:	Z								
Encoding:	00	1000	dfff	ffff					
Description:	The contents of register f is moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write to destination					
Example	MOVF	,	0						
			ie in FSR i	register					

MOVWF	Move W	to f							
Syntax:	[label]	MOVW	= f						
Operands:	$0 \le f \le 12$	27							
Operation:	$(W) \to (f)$	$(W) \rightarrow (f)$							
Status Affected:	None								
Encoding:	00	0000	lfff	ffff					
Description:	Move data 'f'.	from W r	egister to	register					
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write register 'f'					
Example	MOVWF	OPTIC	DN_REG						
	Before In			-					
		OPTION W	= 0xF = 0x4	-					
	After Inst	ruction							
		OPTION							
		W	= 0x4	F					

NOP	No Operation									
Syntax:	[label]	NOP								
Operands:	None									
Operation:	No opera	ation								
Status Affected:	None									
Encoding:	00	0000	0xx0	0000						
Description:	No operat	ion.								
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	No- Operation	No- Operation	No- Operation						
Example	NOP									

RETFIE Return from Interrupt								
Syntax:	[label] RETFIE							
Operands:	None							
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$							
Status Affected:	None							
Encoding:	00	0000	0000	1001				
	•	· ·) is load					
	PC. Interru Global Inte	upts are er errupt Ena <7>). This i	ble bit, GIE	setting				
Words:	PC. Interru Global Inte (INTCON<	upts are er errupt Ena <7>). This i	habled by s ble bit, GIE	setting				
Words: Cycles:	PC. Interru Global Inte (INTCON- instruction	upts are er errupt Ena <7>). This i	habled by s ble bit, GIE	setting				
	PC. Interru Global Inte (INTCON- instruction	upts are er errupt Ena <7>). This i	habled by s ble bit, GIE	setting				
Cycles:	PC. Interru Global Inte (INTCON- instruction 1 2	upts are er errupt Ena <7>). This i	nabled by s ble bit, GIE is a two cy	setting cle Q4				
Cycles: Q Cycle Activity:	PC. Interru Global Inte (INTCON- instruction 1 2 Q1	upts are er errupt Ena <7>). This i Q2 No-	abled by s ble bit, GIE s a two cy Q3 Set the	setting <u>=</u> cle				

After Interrupt PC = TOS GIE = 1

OPTION	Load Op	tion Reg	gister					
Syntax:	[label] OPTION							
Operands:	None							
Operation:	$(W) \rightarrow OPTION$							
Status Affected:	None							
Encoding:	00	0000	0110	0010				
Description: Words:	The contelloaded in the instruction patibility we since OPT register, the it.	he OPTIC is suppo ith PIC16 ΓΙΟΝ is a	DN register rted for coo C5X produ readable/v	r. This de com- ucts. vritable				
Cycles:	1							
Example								
		re PIC16	rd compa CXX produ uction.	-				

PIC16C7X

XORLW	Exclusive OR Literal with W										
Syntax:	[label]	XORL	V k								
Operands:	$0 \le k \le 2$	$0 \le k \le 255$									
Operation:	(W) .XO	$R.k \rightarrow (N)$	N)								
Status Affected:	Z										
Encoding:	11	1010	kkkk	kkkk							
Description:	XOR'ed v	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W regis- ter									
Words:	1										
Cycles:	1										
Q Cycle Activity:	Q1	Q2	Q3	Q4							
	Decode	Read literal 'k'	Process data	Write to W							
Example:	XORLW	0xAF									
	Before I	nstructio	n								
		W =	0xB5								
	After Ins	truction									
		W =	0x1A								

XORWF	Exclusiv	e OR W	with f	
Syntax:	[label]	XORWF	f,d	
Operands:	$0 \le f \le 12$ $d \in [0,1]$	27		
Operation:	(W) .XOF	$R.\left(f\right)\to(o$	destinatio	on)
Status Affected:	Z			
Encoding:	00	0110	dfff	ffff
Description:	Exclusive register wi result is st 1 the resu	th registe ored in the	r 'f'. If 'd' is e W regist	0 the er. If 'd' is
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination
Example	XORWF		1	
	Before In	struction		
		REG W	••••	AF B5
	After Inst	ruction		
		REG W	0/1	1A B5

<u> 8</u> 8 5																
HCS200 HCS300 HCS301										7	7					7
24CXX 25CXX 93CXX							7			7		7				
PIC17C75X	Available 3Q97		7	7					7	7						
PIC17C4X	7		7	7	7	7			7	7			7			
PIC16C9XX	2		7	7	7				7	7					7	
PIC16C8X	2	7	7	7	7	7		7	7	7			7			
PIC16C7XX	7	7	7	7	7	7		7	7	7				7		
PIC16C6X	7	7	7	7	7	7		7	7	7				7		
PIC16CXXX	7	7	7	7	7	7			7	7			7			
PIC16C5X	7	7	7	2	7	7		7	7	7			7			
PIC14000	7		7	7	7				7	7						
PIC12C5XX	2	7	7	2	7				7	7						
	PICMASTER®/ PICMASTER-CE In-Circuit Emulator	CEPIC Low-Cost In-Circuit Emulator	MPLAB™ Integrated Development Environment	MPLAB™ C Compiler	Lo fuzzyTECH®-MP Explorer/Edition Fuzzy Logic Dev. Tool	MP-DriveWay™ Applications Code Generator	Total Endurance™ Software Model	PICSTART® Lite Ultra Low-Cost Dev. Kit	0. PICSTART® Plus Low-Cost Universal Dev. Kit	PRO MATE® II Universal Programmer	KEELOQ [®] Programmer	SEEVAL [®] Designers Kit	PICDEM-1	PICDEM-2	BICDEM-3	KEELOQ [®] Evaluation Kit

TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP

Applicable Devices 72 73 73A 74 74A 76 77

19.1 DC Characteristics: PIC16C73A/74A-04 (Commercial, Industrial, Extended) PIC16C73A/74A-10 (Commercial, Industrial, Extended) PIC16C73A/74A-20 (Commercial, Industrial, Extended)

DC CHA	ARACTERISTICS		Standa Operati			ure -4 -4	litions (unless otherwise stated) $0^{\circ}C \leq TA \leq +125^{\circ}C$ for extended, $0^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $C \leq TA \leq +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled
			3.7	4.0	4.4	V	Extended Range Only
D010	Supply Current (Note 2,5)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	10	20	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D015*	Brown-out Reset Current (Note 6)	Δ Ibor	-	350	425	μA	BOR enabled VDD = 5.0V
D020 D021 D021A D021B	Power-down Current (Note 3,5)	IPD	- - - -	10.5 1.5 1.5 2.5	42 16 19 19	μΑ μΑ μΑ μΑ	$\label{eq:VDD} \begin{array}{l} VDD = 4.0V, WDT \text{ enabled}, -40^\circC \text{ to } +85^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -0^\circC \text{ to } +70^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -40^\circC \text{ to } +85^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -40^\circC \text{ to } +125^\circC \end{array}$
D023*	Brown-out Reset Current (Note 6)	Δ Ibor	-	350	425	μA	BOR enabled VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

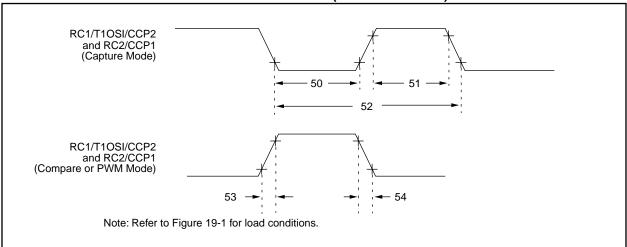
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.


4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 72 73 73A 74 74A 76 77

CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2) **TABLE 19-6**:

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	—	_	ns	
		input low time		PIC16 C 73A/74A	10	—	_	ns	
			With Prescaler	PIC16 LC 73A/74A	20	—	_	ns	
51*	TccH	CCP1 and CCP2	No Prescaler		0.5TCY + 20	—	_	ns	
		input high time		PIC16 C 73A/74A	10	_	_	ns	
			With Prescaler	PIC16 LC 73A/74A	20	—	-	ns	
52*	TccP	CCP1 and CCP2 i	nput period		<u>3Tcy + 40</u> N	_	_	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 and CCP2 of	output rise time	PIC16 C 73A/74A	_	10	25	ns	
				PIC16 LC 73A/74A	_	25	45	ns	
54*	TccF	CCP1 and CCP2 of	output fall time	PIC16 C 73A/74A	—	10	25	ns	
				PIC16 LC 73A/74A	_	25	45	ns	

These parameters are characterized but not tested. t

Data in "Typ" column is at 5V, 25°C unless otherwise stated.

These parameters are for design guidance only and are not tested.

*

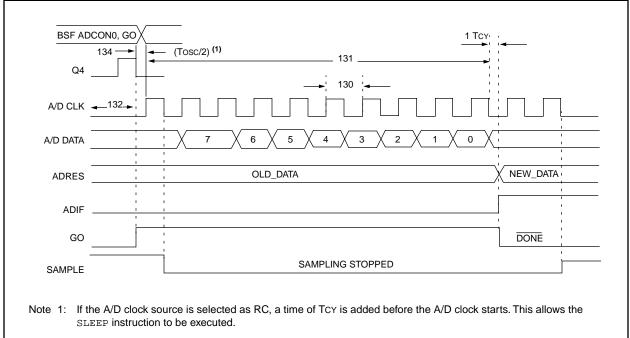
Applicable Devices 72 73 73A 74 74A 76 77

TABLE 19-13: A/D CONVERTER CHARACTERISTICS:

PIC16C73A/74A-04 (Commercial, Industrial, Extended) PIC16C73A/74A-10 (Commercial, Industrial, Extended) PIC16C73A/74A-20 (Commercial, Industrial, Extended) PIC16LC73A/74A-04 (Commercial, Industrial)

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution	_		8-bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$	
A02	EABS	Total Absolute error		_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A03	EIL	Integral linearity error		_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A04	Edl	Differential linearity erro		_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A05	Efs	Full scale error		_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A06	EOFF	Offset error	Offset error		_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A10	—	Monotonicity		—	guaranteed	—	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage		3.0V	—	Vdd + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3	—	Vref + 0.3	V	
A30	ZAIN	Recommended impedar analog voltage source	ice of	_	_	10.0	kΩ	
A40	IAD	A/D conversion current	PIC16 C 73A/74A	_	180	—	μΑ	Average current consump-
		(VDD)	PIC16 LC 73A/74A	-	90	—	μA	tion when A/D is on. (Note 1)
A50	IREF	VREF input current (Note	2)	10	_	1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 13.1.
				_	_	10	μA	During A/D Conversion cycle

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

 Applicable Devices
 72
 73
 73A
 74
 74A
 76
 77

FIGURE 19-14: A/D CONVERSION TIMING

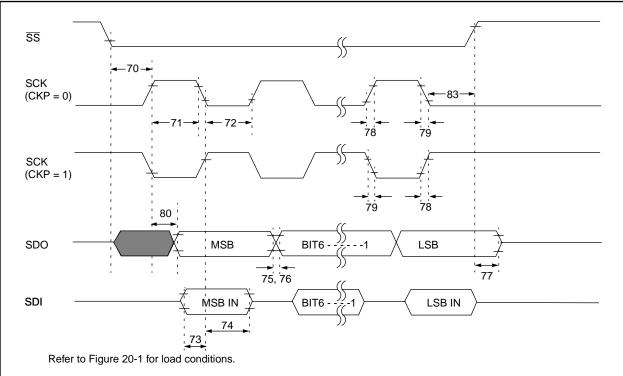
TABLE 19-14: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
130	TAD	A/D clock period	PIC16 C 73A/74A	1.6	—	_	μs	Tosc based, VREF ≥ 3.0V
			PIC16 LC 73A/74A	2.0	—	_	μs	Tosc based, VREF full range
			PIC16 C 73A/74A	2.0	4.0	6.0	μs	A/D RC Mode
			PIC16LC73A/74A	3.0	6.0	9.0	μs	A/D RC Mode
131	TCNV	Conversion time (no (Note 1)	ot including S/H time)	_	9.5		TAD	
132	TACQ	Acquisition time		Note 2	20	_	μs	
				5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock sta	rt	_	Tosc/2 §	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from con-	vert \rightarrow sample time	1.5 §	—	_	TAD	

These parameters are characterized but not tested.

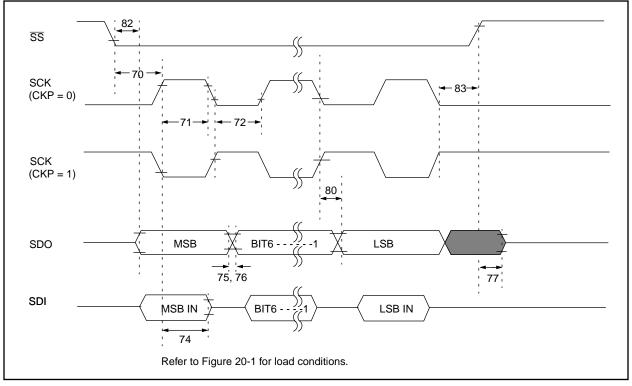
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.


Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 13.1 for min conditions.

*


PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 20-11: SPI SLAVE MODE TIMING (CKE = 0)

FIGURE 20-12: SPI SLAVE MODE TIMING (CKE = 1)

