

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c74a-20e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2.3 INTCON REGISTER

Applicable Devices

72 73 73A 74 74A 76 77

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

FIGURE 4-9: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x				
GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	R = Readable bit			
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 			
bit 7:		obal Interi es all un-r les all inte	nasked in								
bit 6:	PEIE : Peripheral Interrupt Enable bit 1 = Enables all un-masked peripheral interrupts 0 = Disables all peripheral interrupts										
bit 5:	TOIE : TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt										
bit 4:	INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt										
bit 3:	1 = Enabl	Port Char es the RB les the RE	port char	ge interru	pt						
bit 2:	1 = TMR0	R0 Overflo) register h) register c	has overflo	wed (mus	t be cleare	d in softwa	are)				
bit 1:			ternal inte	errupt occu	urred (must	be cleare	d in softwa	re)			
bit 0:		st one of t	he RB7:R	B4 pins cł			e cleared in	software)			
Note 1:	For the PIC16C73 and PIC16C74, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may be unintentionally re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 14.5 for a detailed description.										
global		GIE (INTCO						corresponding enable bit or the rupt flag bits are clear prior to			

4.2.2.4 PIE1 REGISTER

Applicable Devices

72 73 73A 74 74A 76 77

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

This register contains the individual enable bits for the peripheral interrupts.

FIGURE 4-10: PIE1 REGISTER PIC16C72 (ADDRESS 8Ch)

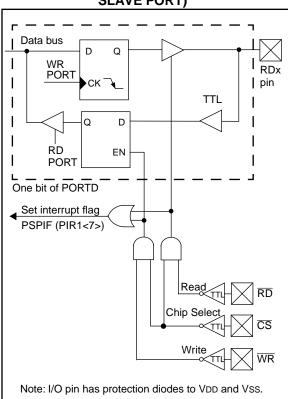
U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
	ADIE	—	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit					
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset 					
bit 7:	Unimpler	Unimplemented: Read as '0'											
bit 6:	1 = Enabl	ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt											
bit 5-4:	Unimpler	Unimplemented: Read as '0'											
bit 3:	1 = Enabl	SSPIE : Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt											
bit 2:	1 = Enabl	CCP1IE : CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt											
bit 1:	TMR2IE : TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt												
bit 0:	TMR1IE : TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt												

5.7 Parallel Slave Port Applicable Devices 72 73 73 74 74 76 77

PORTD operates as an 8-bit wide Parallel Slave Port, or microprocessor port when control bit PSPMODE (TRISE<4>) is set. In slave mode it is asynchronously readable and writable by the external world through \overline{RD} control input pin RE0/ \overline{RD} /AN5 and \overline{WR} control input pin RE1/ \overline{WR} /AN6.

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD/AN5 to be the RD input, RE1/ WR/AN6 to be the WR input and RE2/CS/AN7 to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set) and the A/D port configuration bits PCFG2:PCFG0 (ADCON1<2:0>) must be set, which will configure pins RE2:RE0 as digital I/O.

There are actually two 8-bit latches, one for data-out (from the PIC16/17) and one for data input. The user writes 8-bit data to PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored, since the microprocessor is controlling the direction of data flow.


A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. When either the \overline{CS} or \overline{WR} lines become high (level triggered), then the Input Buffer Full status flag bit IBF (TRISE<7>) is set on the Q4 clock cycle, following the next Q2 cycle, to signal the write is complete (Figure 5-12). The interrupt flag bit PSPIF (PIR1<7>) is also set on the same Q4 clock cycle. IBF can only be cleared by reading the PORTD input latch. The input Buffer Overflow status flag bit IBOV (TRISE<5>) is set if a second write to the Parallel Slave Port is attempted when the previous byte has not been read out of the buffer.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The Output Buffer Full status flag bit OBF (TRISE<6>) is cleared immediately (Figure 5-13) indicating that the PORTD latch is waiting to be read by the external bus. When either the \overline{CS} or \overline{RD} pin becomes high (level triggered), the interrupt flag bit PSPIF is set on the Q4 clock cycle, following the next Q2 cycle, indicating that the read is complete. OBF remains low until data is written to PORTD by the user firmware.

When not in Parallel Slave Port mode, the IBF and OBF bits are held clear. However, if flag bit IBOV was previously set, it must be cleared in firmware.

An interrupt is generated and latched into flag bit PSPIF when a read or write operation is completed. PSPIF must be cleared by the user in firmware and the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

FIGURE 5-11: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

8.5 <u>Resetting Timer1 using a CCP Trigger</u> Output

Applicable Devices

The CCP2 module is not implemented on the PIC16C72 device.

If the CCP1 or CCP2 module is configured in compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The special event triggers from the CCP1
	and CCP2 modules will not set interrupt
	flag bit TMR1IF (PIR1<0>).

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for Timer1.

8.6 Resetting of Timer1 Register Pair (TMR1H, TMR1L) Applicable Devices 72|73|73A|74|74A|76|77

TMR1H and TMR1L registers are not reset to 00h on a POR or any other reset except by the CCP1 and CCP2 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other resets, the register is unaffected.

8.7 <u>Timer1 Prescaler</u> Applicable Devices

72 73 73A 74 74A 76 77

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Eh	TMR1L	Holding reg	Holding register for the Least Significant Byte of the 16-bit TMR1 register								uuuu uuuu
0Fh	TMR1H	Holding reg	Holding register for the Most Significant Byte of the 16-bit TMR1 register								uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

TABLE 8-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

2: The PIC16C72 does not have a Parallel Slave Port or a USART, these bits are unimplemented, read as '0'.

FIGURE 9-2: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

U-0	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	
<u> </u>	TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 R = Readable bit	
bit7	bit0 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset	
bit 7:	Unimplemented: Read as '0'	
bit 6-3:	TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits 0000 = 1:1 Postscale 0001 = 1:2 Postscale • • 1111 = 1:16 Postscale	
bit 2:	TMR2ON: Timer2 On bit 1 = Timer2 is on 0 = Timer2 is off	
bit 1-0:	T2CKPS1:T2CKPS0 : Timer2 Clock Prescale Select bits 00 = Prescaler is 1 01 = Prescaler is 4 1x = Prescaler is 16	

TABLE 9-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Peri	Timer2 Period Register							1111 1111	1111 1111

 Legend:
 x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module.

 Note
 1:
 Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

 2:
 The PIC16C72 does not have a Parallel Slave Port or a USART, these bits are unimplemented, read as '0'.

FIGURE 10-1: CCP1CON REGISTER (ADDRESS 17h)/CCP2CON REGISTER (ADDRESS 1Dh)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	—	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0	R = Readable bit				
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset				
bit 7-6:	Unimplemented: Read as '0'											
bit 5-4:	CCPxX:CCPxY : PWM Least Significant bits Capture Mode: Unused Compare Mode: Unused PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.											
bit 3-0:	0000 0100 0101 0110 0111 1000 1001 1010 1011	= Capture = Capture = Capture = Capture = Capture = Compai = Compai = Compai	A/Compare e mode, ev e mode, ev e mode, ev e mode, ev re mode, ev re mode, ev re mode, g re mode, t re mode, t re mode, t re mode, t	very falling e very rising e very 4th risin very 16th ris set output o clear output generate sof rigger speci	resets CCP: edge dge ng edge ning edge n match (CC on match (C tware intern	CPxIF bit is CCPxIF bit i upt on matc CPxIF bit is	is set) h (CCPxIF bi set; CCP1 re	it is set, CCPx pin is unaffected) sets TMR1; CCP2 resets TMR1				

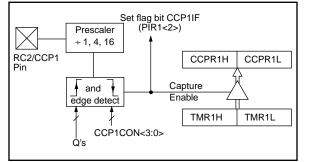
10.1 <u>Capture Mode</u>

Applicable Devices

72 73 73A 74 74A 76 77

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as:

- · Every falling edge
- · Every rising edge
- Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

10.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 is configured as an out-
	put, a write to the port can cause a capture
	condition.

FIGURE 10-2: CAPTURE MODE OPERATION BLOCK DIAGRAM

10.1.2 TIMER1 MODE SELECTION

Timer1 must be running in timer mode or synchronized counter mode for the CCP module to use the capture feature. In asynchronous counter mode, the capture operation may not work.

10.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in operating mode.

NOTES:

13.1 A/D Acquisition Requirements

Applicable Devices 72 73 73 74 74 76 77

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 13-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), Figure 13-4. The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed) this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 13-1 may be used. This equation calculates the acquisition time to within 1/2 LSb error is used (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified accuracy.

EQUATION 13-1: A/D MINIMUM CHARGING TIME

 $VHOLD = (VREF - (VREF/512)) \bullet (1 - e^{(-TCAP/CHOLD(RIC + RSS + RS))})$

Given: VHOLD = (VREF/512), for 1/2 LSb resolution

The above equation reduces to:

 $TCAP = -(51.2 \text{ pF})(1 \text{ k}\Omega + \text{Rss} + \text{Rs}) \ln(1/511)$

Example 13-1 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following system assumptions.

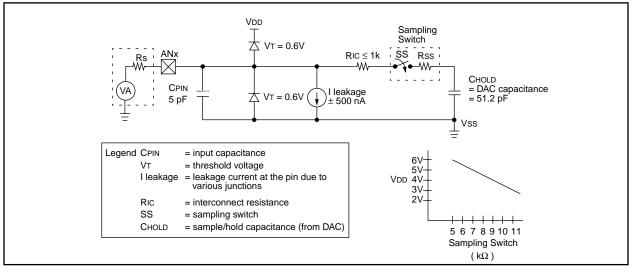
CHOLD = 51.2 pF

Rs = 10 kΩ

1/2 LSb error

FIGURE 13-4: ANALOG INPUT MODEL

 $VDD = 5V \rightarrow Rss = 7 \text{ k}\Omega$


Temp (application system max.) = 50°C

VHOLD = 0 @ t = 0

- Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.
- Note 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **Note 3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.
- **Note 4:** After a conversion has completed, a 2.0TAD delay must complete before acquisition can begin again. During this time the holding capacitor is not connected to the selected A/D input channel.

EXAMPLE 13-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

- TACQ = Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
- TACQ = $5 \mu s + TCAP + [(Temp 25^{\circ}C)(0.05 \mu s/^{\circ}C)]$
- TCAP = -CHOLD (Ric + Rss + Rs) ln(1/511)-51.2 pF (1 k Ω + 7 k Ω + 10 k Ω) ln(0.0020) -51.2 pF (18 k Ω) ln(0.0020) -0.921 µs (-6.2364) 5.747 µs
- TACQ = 5 μs + 5.747 μs + [(50°C 25°C)(0.05 μs/°C)] 10.747 μs + 1.25 μs 11.997 μs

FIGURE 14-2: CONFIGURATION WORD FOR PIC16C72/73A/74A/76/77

	P0 CP1	CP0	CP1	CP0	_	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1		Register: Address	CONFIG 2007h
bit13												bit0	Address	200711
bit 13-8	CP1:CP0				; (2)									
5-4:	11 = Cod	•												
	10 = Upp													
	01 = Upp 00 = All m					/ code pr	otected	1						
bit 7:	Unimpler	,		•										
bit 6:	BODEN:				hle hit	(1)								
511 0.	1 = BOR (
	0 = BOR (disable	d											
bit 3:	PWRTE:	Power-u	up Time	er Enab	le bit (1)								
	1 = PWR1													
	0 = PWRT	enabl	ed											
bit 2:	WDTE: W			Enabl	e bit									
	1 = WDT		-											
	0 = WDT		-											
bit 1-0:	FOSC1:F			tor Sele	ection	bits								
	11 = RC (10 = HS (
	10 = HSC 01 = XTC													
	01 = 100													
Note 1:	-					•				,	-	ess of the	value of bit F	PWRTE.
~	Ensure th					,								
2:	All of the	CP1:CF	20 pairs	s have t	to be g	jiven the	same \	alue to	o enable	the coo	de prote	ction sch	eme listed.	

14.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 14.8 for details on SLEEP mode.

14.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 7.0)

14.5.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 5.2)

Note:	For the PIC16C73/74, if a change on the						
	I/O pin should occur when the read opera-						
	tion is being executed (start of the Q2						
	cycle), then the RBIF interrupt flag may not						
	get set.						

14.6 <u>Context Saving During Interrupts</u> Applicable Devices

72 73 73A 74 74A 76 77

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 14-1 stores and restores the STATUS, W, and PCLATH registers. The register, W_TEMP, must be defined in each bank and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Stores the PCLATH register.
- d) Executes the ISR code.
- e) Restores the STATUS register (and bank select bit).
- f) Restores the W and PCLATH registers.

EXAMPLE 14-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

MOVWF SWAPF CLRF	W_TEMP STATUS,W STATUS	;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W ;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
MOVF	PCLATH, W	;Only required if using pages 1, 2 and/or 3
MOVWF	PCLATH_TEMP	;Save PCLATH into W
CLRF	PCLATH	;Page zero, regardless of current page
BCF	STATUS, IRP	;Return to Bank 0
MOVF	FSR, W	;Copy FSR to W
MOVWF	FSR_TEMP	;Copy FSR from W to FSR_TEMP
:		
:(ISR)		
:		
MOVF	PCLATH_TEMP, W	;Restore PCLATH
MOVWF	PCLATH	;Move W into PCLATH
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

14.7 Watchdog Timer (WDT) **Applicable Devices** 72 73 73A 74 74A 76 77

The Watchdog Timer is as a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The WDT can be permanently disabled by clearing configuration bit WDTE (Section 14.1).

14.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a

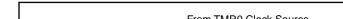
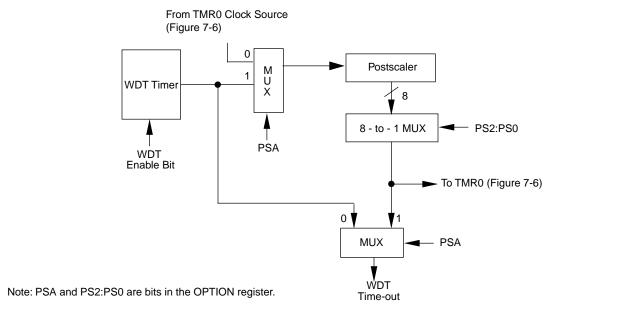


FIGURE 14-18: WATCHDOG TIMER BLOCK DIAGRAM

prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.


The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

14.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., and max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 14-19: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h,181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Figure 14-1, and Figure 14-2 for operation of these bits.

PIC16C7X

SLEEP

[label]	SLEEP						
None							
$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$							
TO, PD							
00	0000	0110	0011				
cleared. Time-out status bit, TO is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See							
1							
1							
Q1	Q2	Q3	Q4				
Decode	No- Operation	No- Operation	Go to Sleep				
SLEEP							
	None $00h \rightarrow V$ $0 \rightarrow WD$ $1 \rightarrow TO, D$ TO, PD TO, PD 00 The power cleared. T set. Watcl caler are The proce mode with Section 1 1 1 Q1 Decode	None 00h → WDT, 0 → WDT presca 1 → TO, 0 → PD TO, PD 00 0000 The power-down sta cleared. Time-out sta set. Watchdog Time- caler are cleared. The processor is pur- mode with the oscill Section 14.8 for model 1 1 Q1 Q2 Decode No- Operation	None 00h → WDT, 0 → WDT prescaler, 1 → TO, 0 → PD TO, PD 00 0000 0100 0110 The power-down status bit, PI cleared. Time-out status bit, T set. Watchdog Timer and its p caler are cleared. The processor is put into SLE mode with the oscillator stopp Section 14.8 for more details. 1 Q1 Q2 Q3 Decode No- No- Operation Operation				

SUBLW	Subtract	W from	Literal				
Syntax:	[label]	SUBLV	/ k				
Operands:	$0 \le k \le 25$	55					
Operation:	k - (W) →	→ (W)					
Status Affected:	C, DC, Z						
Encoding:	11	110x	kkkk	kkkk			
Description:	The W register is subtracted (2's comple- ment method) from the eight bit literal 'k'. The result is placed in the W register.						
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read literal 'k'	Process data	Write to W			
Example 1:	SUBLW	0x02					
	Before In	struction					
		W = C = Z =	1 ? ?				
	After Inst	- ruction	·				
		W =	1				
		C = Z =	1; result is 0	spositive			
Example 2:	Before In	struction					
		W =	2				
		C = Z =	? ?				
	After Inst	ruction					
		W =	0				
		C = 7 =	1; result i 1	s zero			
Example 3:	Before In	-	I				
0.	20.010 11	W =	3				
		C = Z =	? ?				
	After Inst	ruction					
		W =	0xFF				
		C = Z =	0; result is 0	s negative			

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

16.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

16.12 <u>C Compiler (MPLAB-C)</u>

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of micro-controllers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display (PICMASTER emulator software versions 1.13 and later).

16.13 <u>Fuzzy Logic Development System</u> (fuzzyTECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

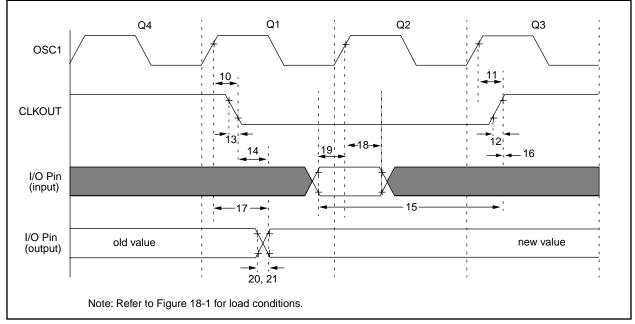
16.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC16/17 device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

16.15 <u>SEEVAL[®] Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

16.16 <u>TrueGauge[®] Intelligent Battery</u> <u>Management</u>


The TrueGauge development tool supports system development with the MTA11200B TrueGauge Intelligent Battery Management IC. System design verification can be accomplished before hardware prototypes are built. User interface is graphically-oriented and measured data can be saved in a file for exporting to Microsoft Excel.

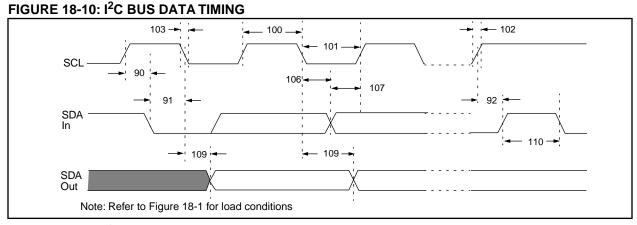
16.17 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 18-3: CLKOUT AND I/O TIMING

TABLE 18-3: CLKOUT AND I/O TIMING REQUIREMENTS
--


Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 [↑] to CLKOUT↓	DSC1↑ to CLKOUT↓		75	200	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		—	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out vali	d	_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT ↑		0.25Tcy + 25	_	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑		0	_	-	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		-	50	150	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to	PIC16 C 73/74	100	-		ns	
		Port input invalid (I/O in hold time)	PIC16 LC 73/74	200	_	_	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	0			ns	
20*	TioR	Port output rise time	PIC16 C 73/74	—	10	25	ns	
			PIC16 LC 73/74	—	_	60	ns	
21*	TioF	Port output fall time	PIC16 C 73/74	_	10	25	ns	
			PIC16 LC 73/74	—	_	60	ns	
22††*	Tinp	INT pin high or low time		Тсү	_	_	ns	
23††*	Trbp	RB7:RB4 change INT high	n or low time	Тсү	—	_	ns	

* These parameters are characterized but not tested.

†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

TABLE 18-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Мах	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0	_	μs	Device must operate at a mini mum of 1.5 MHz
			400 kHz mode	0.6	—	μs	Device must operate at a mini mum of 10 MHz
			SSP Module 1.5TcY		_		
101	TLOW	Clock low time	100 kHz mode	4.7	_	μs	Device must operate at a mini mum of 1.5 MHz
			400 kHz mode	1.3	_	μs	Device must operate at a mini mum of 10 MHz
			SSP Module	1.5TCY	—		
102	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
103	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
90	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3		μs	before a new transmission car start
	Cb	Bus capacitive loading		-	400	pF	

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

TABLE 18-13: A/D CONVERTER CHARACTERISTICS:

PIC16C73/74-04 (Commercial, Industrial) PIC16C73/74-10 (Commercial, Industrial) PIC16C73/74-20 (Commercial, Industrial) PIC16LC73/74-04 (Commercial, Industrial)

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution		_	_	8-bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A02	Eabs	Total Absolute error	_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$	
A03	EIL	Integral linearity error	Integral linearity error			<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A04	Edl	Differential linearity error		_	—	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A05	EFS	Full scale error		_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A06	EOFF	Offset error		_	—	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A10	—	Monotonicity		—	guaranteed	—	_	$VSS \leq VAIN \leq VREF$
A20	VREF	Reference voltage		3.0V	—	Vdd + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3	—	Vref + 0.3	V	
A30	ZAIN	Recommended impedar analog voltage source	ice of	_	—	10.0	kΩ	
A40	IAD	A/D conversion current	PIC16 C 73/74	_	180	—	μΑ	Average current consump-
		(VDD)	PIC16 LC 73/74	—	90	_	μΑ	tion when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)		10	_	1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 13.1.
		so paramotore are obarac		_	_	10	μA	During A/D Conversion cycle

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

20.1 DC Characteristics: PIC16C76/77-04 (Commercial, Industrial, Extended) PIC16C76/77-10 (Commercial, Industrial, Extended) PIC16C76/77-20 (Commercial, Industrial, Extended)

			Standa	ard Op	eratin	g Cond	litions (unless otherwise stated)
	ARACTERISTICS		Operati				$0^{\circ}C \leq TA \leq +125^{\circ}C$ for extended,
	ARACTERISTICS		-	-		-4	$0^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and
						0°	C \leq TA \leq +70°C for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5		6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled
			3.7	4.0	4.4	V	Extended Range Only
D010	Supply Current (Note 2,5)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	10	20	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V
D020	Power-down Current	IPD	-	10.5	42	μA	VDD = $4.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$
D021	(Note 3,5)		-	1.5	16	μA	VDD = 4.0V, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$
D021A			-	1.5	19	μΑ	VDD = $4.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$
D021B			-	2.5	19	μA	VDD = $4.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μΑ	BOR enabled VDD = 5.0V

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 \overline{MCLR} = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

TABLE 20-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	—	—	ns	
71*	TscH	SCK input high time (slave mode)	Tcy + 20	_	—	ns	
72*	TscL	SCK input low time (slave mode)	Tcy + 20	_	—	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	100	—	—	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100	—	—	ns	
75*	TdoR	SDO data output rise time	—	10	25	ns	
76*	TdoF	SDO data output fall time	—	10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impedance	10	—	50	ns	
78*	TscR	SCK output rise time (master mode)	—	10	25	ns	
79*	TscF	SCK output fall time (master mode)	—	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	—	—	50	ns	
81*	TdoV2scH, TdoV2scL	SDO data output setup to SCK edge	Тсү	—	—	ns	
82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge	—	—	50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5Tcy + 40	—	_	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

E.3 PIC16C15X Family of Devices

		PIC16C154	PIC16CR154	PIC16C156	PIC16CR156	PIC16C158	PIC16CR158
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	EPROM Program Memory (x12 words)	512		1K		2К	
Memory	ROM Program Memory (x12 words)	-	512	—	1K	—	2К
	RAM Data Memory (bytes)	25	25	25	25	73	73
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0
	I/O Pins	12	12	12	12	12	12
	Voltage Range (Volts)	3.0-5.5	2.5-5.5	3.0-5.5	2.5-5.5	3.0-5.5	2.5-5.5
Features	Number of Instructions	33	33	33	33	33	33
realures	Packages	18-pin DIP, SOIC; 20-pin SSOP					

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

E.4 PIC16C5X Family of Devices

		PIC16C52	PIC16C54	PIC16C54A	PIC16CR54A	PIC16C55	PIC16C56
Clock	Maximum Frequency of Operation (MHz)	4	20	20	20	20	20
	EPROM Program Memory (x12 words)	384	512	512	—	512	1K
Memory	ROM Program Memory (x12 words)	-	—	—	512	—	—
	RAM Data Memory (bytes)	25	25	25	25	24	25
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0
	I/O Pins	12	12	12	12	20	12
	Voltage Range (Volts)	2.5-6.25	2.5-6.25	2.0-6.25	2.0-6.25	2.5-6.25	2.5-6.25
Features	Number of Instructions	33	33	33	33	33	33
	Packages	18-pin DIP, SOIC	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin DIP, SOIC, SSOP	18-pin DIP, SOIC; 20-pin SSOP

		PIC16C57	PIC16CR57B	PIC16C58A	PIC16CR58A
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20
	EPROM Program Memory (x12 words)	2K	-	2К	—
Memory	ROM Program Memory (x12 words)	-	2К	—	2K
	RAM Data Memory (bytes)	72	72	73	73
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0
	I/O Pins	20	20	12	12
	Voltage Range (Volts)	2.5-6.25	2.5-6.25	2.0-6.25	2.5-6.25
Features	Number of Instructions	33	33	33	33
	Packages	28-pin DIP, SOIC, SSOP	28-pin DIP, SOIC, SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer (except PIC16C52), selectable code protect and high I/O current capability.

PIC16C7X

Table 18-2:	external Clock Timing
	Requirements
Table 18-3:	CLKOUT and I/O Timing Requirements190
Table 18-4:	Reset, Watchdog Timer, Oscillator
	Start-up Timer and Power-up Timer
	Requirements 191
Table 18-5:	Timer0 and Timer1 External Clock
	Requirements
Table 18-6:	Capture/Compare/PWM
	Requirements (CCP1 and CCP2)
Table 18-7:	Parallel Slave Port Requirements
	(PIC16C74) 194
Table 18-8:	SPI Mode Requirements 195
Table 18-9:	I ² C Bus Start/Stop Bits
	Requirements196
Table 18-10:	I ² C Bus Data Requirements197
Table 18-11:	USART Synchronous Transmission
	Requirements198
Table 18-12:	usart Synchronous Receive
	Requirements
Table 18-13:	A/D Converter Characteristics:
	PIC16C73/74-04
	(Commercial, Industrial)
	PIC16C73/74-10
	(Commercial, Industrial)
	PIC16C73/74-20
	(Commercial, Industrial)
	PIC16LC73/74-04
Table 18-14:	(Commercial, Industrial)199 A/D Conversion Requirements
Table 19-14.	Cross Reference of Device Specs
	for Oscillator Configurations and
	Frequencies of Operation
	(Commercial Devices)
Table 19-2:	External Clock Timing
10010 10 2.	Requirements
Table 19-3:	CLKOUT and I/O Timing
	Requirements208
Table 19-4:	Reset, Watchdog Timer, Oscillator
	Start-up Timer, Power-up Timer,
	and brown-out reset Requirements
Table 19-5:	Timer0 and Timer1 External Clock
	Requirements210
Table 19-6:	Capture/Compare/PWM
	Requirements (CCP1 and CCP2)
Table 19-7:	Parallel Slave Port Requirements
	(PIC16C74A)212
Table 19-8:	SPI Mode Requirements
Table 19-9:	I ² C Bus Start/Stop Bits Requirements 214
Table 19-10:	I ² C Bus Data Requirements215
Table 19-11:	USART Synchronous Transmission
	Requirements
Table 19-12:	USART Synchronous Receive
	Requirements
Table 19-13:	A/D Converter Characteristics:
	PIC16C73A/74A-04
	(Commercial, Industrial, Extended)
	PIC16C73A/74A-10
	(Commercial, Industrial, Extended) PIC16C73A/74A-20
	(Commercial, Industrial, Extended)
	PIC16LC73A/74A-04
	(Commercial, Industrial)
Table 19-14:	A/D Conversion Requirements
	210

Table 20-1:	Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation
T 00 0	(Commercial Devices) 220
Table 20-2:	External Clock Timing Requirements
Table 20-3:	CLKOUT and I/O Timing
	Requirements
Table 20-4:	Reset, Watchdog Timer,
	Oscillator Start-up Timer, Power-up Timer, and brown-out reset
	Requirements
Table 20-5:	Timer0 and Timer1 External Clock
	Requirements 229
Table 20-6:	Capture/Compare/PWM
	Requirements (CCP1 and CCP2)
Table 20-7:	Parallel Slave Port Requirements
	(PIC16C77)
Table 20-8:	SPI Mode requirements 234
Table 20-9:	I ² C Bus Start/Stop Bits Requirements 235
Table 20-10:	I ² C Bus Data Requirements
Table 20-11:	USART Synchronous Transmission
T 11 00 40	Requirements
Table 20-12:	USART Synchronous Receive
T-1-1-00.40	Requirements
Table 20-13:	A/D Converter Characteristics:
	(Commercial, Industrial, Extended)
	PIC16C76/77-10
	(Commercial, Industrial, Extended)
	PIC16C76/77-20
	(Commercial, Industrial, Extended)
	PIC16LC76/77-04
	(Commercial, Industrial) 238
Table 20-14:	A/D Conversion Requirements 239
Table 21-1:	RC Oscillator Frequencies 247
Table 21-2:	Capacitor Selection for Crystal
	Oscillators
Table E-1:	Pin Compatible Devices