

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 20MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                          |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                      |
| Number of I/O              | 33                                                                         |
| Program Memory Size        | 7KB (4K x 14)                                                              |
| Program Memory Type        | OTP                                                                        |
| EEPROM Size                | -                                                                          |
| RAM Size                   | 192 x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 4V ~ 6V                                                                    |
| Data Converters            | A/D 8x8b                                                                   |
| Oscillator Type            | External                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 44-TQFP                                                                    |
| Supplier Device Package    | 44-TQFP (10x10)                                                            |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16c74a-20i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### **Table of Contents**

| 1.0    | General Description                                             | 5    |
|--------|-----------------------------------------------------------------|------|
| 2.0    | PIC16C7X Device Varieties                                       | 7    |
| 3.0    | Architectural Overview                                          | 9    |
| 4.0    | Memory Organization                                             | . 19 |
| 5.0    | I/O Ports                                                       | . 43 |
| 6.0    | Overview of Timer Modules                                       | . 57 |
| 7.0    | Timer0 Module                                                   | . 59 |
| 8.0    | Timer1 Module                                                   | . 65 |
| 9.0    | Timer2 Module                                                   | . 69 |
| 10.0   | Capture/Compare/PWM Module(s)                                   | . 71 |
| 11.0   | Synchronous Serial Port (SSP) Module                            | . 77 |
| 12.0   | Universal Synchronous Asynchronous Receiver Transmitter (USART) | . 99 |
| 13.0   | Analog-to-Digital Converter (A/D) Module                        | 117  |
| 14.0   | Special Features of the CPU                                     | 129  |
| 15.0   | Instruction Set Summary                                         | 147  |
| 16.0   | Development Support                                             | 163  |
| 17.0   | Electrical Characteristics for PIC16C72                         | 167  |
| 18.0   | Electrical Characteristics for PIC16C73/74                      | 183  |
| 19.0   | Electrical Characteristics for PIC16C73A/74A                    | 201  |
| 20.0   | Electrical Characteristics for PIC16C76/77                      | 219  |
| 21.0   | DC and AC Characteristics Graphs and Tables                     | 241  |
| 22.0   | Packaging Information                                           | 251  |
| Appe   | ndix A:                                                         | 263  |
| Appe   | ndix B: Compatibility                                           | 263  |
| Appe   | ndix C: What's New                                              | 264  |
| Appe   | ndix D: What's Changed                                          | 264  |
| Appe   | ndix E: PIC16/17 Microcontrollers                               | 265  |
| Pin C  | Compatibility                                                   | 271  |
| Index  | <                                                               | 273  |
| List o | f Examples                                                      | 279  |
| List o | f Figures                                                       | 280  |
| List o | f Tables                                                        | 283  |
| Read   | ler Response                                                    | 286  |
| PIC1   | 6C7X Product Identification System                              | 287  |

For register and module descriptions in this data sheet, device legends show which devices apply to those sections. As an example, the legend below would mean that the following section applies only to the PIC16C72, PIC16C73A and PIC16C74A devices.

# Applicable Devices 72 73 73A 74 74A 76 77

12|13|13A|14|14A|16|11

### To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

### 2.0 PIC16C7X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C7X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C7X family, there are two device "types" as indicated in the device number:

- 1. **C**, as in PIC16**C**74. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC16LC74. These devices have EPROM type memory and operate over an extended voltage range.

#### 2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PICSTART<sup>®</sup> Plus and PRO MATE<sup>®</sup> II programmers both support programming of the PIC16C7X.

#### 2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

#### 2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

#### 2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTP<sup>SM</sup>) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number.

#### 4.2.2.1 STATUS REGISTER Applicable Devices 72|73|73A|74|74A|76|77

The STATUS register, shown in Figure 4-7, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- **Note 1:** For those devices that do not use bits IRP and RP1 (STATUS<7:6>), maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

| R/W-0       | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R/W-0                                    | <u>R-1</u>                      | <u>R-1</u>                 | R/W-x         | R/W-x           | R/W-x     |                                                                                                           |  |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------|----------------------------|---------------|-----------------|-----------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| IRP<br>bit7 | RP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RP0                                      | TO                              | PD                         | Z             | DC              | C<br>bit0 | R = Readable bit<br>W = Writable bit<br>U = Unimplemented bit,<br>read as '0'<br>- n = Value at POR reset |  |  |  |  |  |
| bit 7:      | <b>IRP</b> : Regis<br>1 = Bank 2<br>0 = Bank 0                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ster Bank 3<br>2, 3 (100h<br>0, 1 (00h - | Select bit (<br>- 1FFh)<br>FFh) | (used for ir               | ndirect addr  | essing)         |           |                                                                                                           |  |  |  |  |  |
| bit 6-5:    | bit 6-5: <b>RP1:RP0</b> : Register Bank Select bits (used for direct addressing)<br>11 = Bank 3 (180h - 1FFh)<br>10 = Bank 2 (100h - 17Fh)<br>01 = Bank 1 (80h - FFh)<br>00 = Bank 0 (00h - 7Fh)<br>Each bank is 128 bytes                                                                                                                                                                                                                                                                              |                                          |                                 |                            |               |                 |           |                                                                                                           |  |  |  |  |  |
| bit 4:      | $\overline{\mathbf{TO}}$ : Time-<br>1 = After p<br>0 = A WD                                                                                                                                                                                                                                                                                                                                                                                                                                             | out bit<br>ower-up, o<br>T time-out      | CLRWDT in                       | struction,                 | or sleep in   | struction       |           |                                                                                                           |  |  |  |  |  |
| bit 3:      | <b>PD</b> : Power<br>1 = After p<br>0 = By exe                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r-down bit<br>ower-up c<br>ecution of t  | or by the C<br>the SLEEF        | LRWDT ins                  | truction<br>n |                 |           |                                                                                                           |  |  |  |  |  |
| bit 2:      | <b>Z</b> : Zero bit<br>1 = The re<br>0 = The re                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sult of an                               | arithmetic<br>arithmetic        | or logic or<br>or logic or | peration is z | ero<br>not zero |           |                                                                                                           |  |  |  |  |  |
| bit 1:      | <b>DC</b> : Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed)<br>1 = A carry-out from the 4th low order bit of the result occurred<br>0 = No carry-out from the 4th low order bit of the result                                                                                                                                                                                                                                                    |                                          |                                 |                            |               |                 |           |                                                                                                           |  |  |  |  |  |
| bit 0:      | <ul> <li>C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)</li> <li>1 = A carry-out from the most significant bit of the result occurred</li> <li>0 = No carry-out from the most significant bit of the result occurred</li> <li>Note: For borrow the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.</li> </ul> |                                          |                                 |                            |               |                 |           |                                                                                                           |  |  |  |  |  |

#### FIGURE 4-7: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

#### FIGURE 4-11: PIE1 REGISTER PIC16C73/73A/74/74A/76/77 (ADDRESS 8Ch)

| R/W-0                | R/W-0                    | R/W-0       | R/W-0       | R/W-0                    | R/W-0        | R/W-0        | R/W-0      |      |                                       |
|----------------------|--------------------------|-------------|-------------|--------------------------|--------------|--------------|------------|------|---------------------------------------|
| PSPIE <sup>(1)</sup> | ADIE                     | RCIE        | TXIE        | SSPIE                    | CCP1IE       | TMR2IE       | TMR1IE     | R    | = Readable bit                        |
| bit7                 |                          |             |             |                          |              |              | bit0       | W    | = Writable bit<br>= Unimplemented bit |
|                      |                          |             |             |                          |              |              |            |      | read as '0'                           |
|                      | (1)                      |             |             |                          |              |              |            | - n  | = Value at POR reset                  |
| bit 7:               | PSPIE <sup>(1)</sup> :   | Parallel S  | lave Port   | Read/Writ                | e Interrupt  | Enable bit   |            |      |                                       |
|                      | 1 = Enabl                | es the PS   | P read/wr   | ite interrup             | ot<br>•••    |              |            |      |                                       |
|                      | 0 = Disab                | les the PS  | P read/wi   |                          | pt           |              |            |      |                                       |
| bit 6:               | ADIE: A/E                | Converte    | er Interrup | t Enable b               | bit          |              |            |      |                                       |
|                      | 1 = Enable 0 = Disable 0 | les the Α/L | ) interrupt | ŀ                        |              |              |            |      |                                       |
| hit E.               |                          |             |             | .nt Enchla               | hit          |              |            |      |                                       |
| DIL D.               | 1 – Enabl                | AKI KECE    |             | ve interru               | ) DIL<br>Dt  |              |            |      |                                       |
|                      | 0 = Disab                | les the US  | SART rece   | ive interru              | ipt          |              |            |      |                                       |
| bit 4:               | TXIE: US                 | ART Trans   | mit Interru | upt Enable               | e bit        |              |            |      |                                       |
|                      | 1 = Enabl                | es the US   | ART trans   | mit interru              | upt          |              |            |      |                                       |
|                      | 0 = Disab                | les the US  | SART trans  | smit interr              | upt          |              |            |      |                                       |
| bit 3:               | SSPIE: S                 | ynchronou   | is Serial F | ort Interru              | pt Enable b  | oit          |            |      |                                       |
|                      | 1 = Enabl                | es the SS   | P interrup  | t                        |              |              |            |      |                                       |
|                      | 0 = Disab                | les the SS  | SP interrup | ot                       |              |              |            |      |                                       |
| bit 2:               | CCP1IE:                  | CCP1 Inte   | rrupt Ena   | ble bit                  |              |              |            |      |                                       |
|                      | 1 = Enabl                | es the CC   | P1 interru  | pt                       |              |              |            |      |                                       |
|                      | 0 = Disab                | les the CC  | P1 Interru  | lpt                      |              |              |            |      |                                       |
| bit 1:               | TMR2IE:                  | TMR2 to F   | PR2 Match   | Interrupt                | Enable bit   |              |            |      |                                       |
|                      | 1 = Enable 0 = Disable 1 | es the TM   |             | 2 match in<br>2 match ir | terrupt      |              |            |      |                                       |
| L:4 0.               |                          |             |             |                          |              |              |            |      |                                       |
| DIT U:               | 1 MR11E:                 | IMR1 OVE    | R1 overflo  | rrupt Enat               |              |              |            |      |                                       |
|                      | 0 = Disab                | les the TM  | IR1 overfl  | ow interru               | Dt           |              |            |      |                                       |
|                      | 2.2.0                    |             |             |                          | 1            |              |            |      |                                       |
| Note 1:              | PIC16C7                  | 3/73A/76 d  | devices do  | not have                 | a Parallel S | Slave Port i | implemente | d, t | his bit location is reserved          |
|                      | on these                 | devices, a  | lways mai   | ntain this l             | bit clear.   |              |            |      |                                       |
|                      |                          |             |             |                          |              |              |            |      |                                       |

#### 5.4 PORTD and TRISD Registers

# Applicable Devices 72 73 73A 74 74A 76 77

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

## FIGURE 5-7: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)



| Name                                | Bit#                                | Buffer Type           | Function                                          |  |  |  |  |  |  |
|-------------------------------------|-------------------------------------|-----------------------|---------------------------------------------------|--|--|--|--|--|--|
| RD0/PSP0                            | bit0                                | ST/TTL <sup>(1)</sup> | Input/output port pin or parallel slave port bit0 |  |  |  |  |  |  |
| RD1/PSP1                            | RD1/PSP1 bit1 ST/TTL <sup>(1)</sup> |                       | Input/output port pin or parallel slave port bit1 |  |  |  |  |  |  |
| RD2/PSP2 bit2 ST/TTL <sup>(1)</sup> |                                     |                       | Input/output port pin or parallel slave port bit2 |  |  |  |  |  |  |
| RD3/PSP3                            | RD3/PSP3 bit3 ST/TTL <sup>(1)</sup> |                       | Input/output port pin or parallel slave port bit3 |  |  |  |  |  |  |
| RD4/PSP4                            | bit4                                | ST/TTL <sup>(1)</sup> | Input/output port pin or parallel slave port bit4 |  |  |  |  |  |  |
| RD5/PSP5                            | bit5                                | ST/TTL <sup>(1)</sup> | Input/output port pin or parallel slave port bit5 |  |  |  |  |  |  |
| RD6/PSP6 bit6 ST/TTL <sup>(1)</sup> |                                     | ST/TTL <sup>(1)</sup> | Input/output port pin or parallel slave port bit6 |  |  |  |  |  |  |
| RD7/PSP7                            | bit7                                | ST/TTL <sup>(1)</sup> | Input/output port pin or parallel slave port bit7 |  |  |  |  |  |  |

#### TABLE 5-7:PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port Mode.

#### TABLE 5-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

| Address | Name  | Bit 7 | Bit 6  | Bit 5    | Bit 4   | Bit 3     | Bit 2     | Bit 1         | Bit 0 | Value on:<br>POR,<br>BOR | Value on all other resets |
|---------|-------|-------|--------|----------|---------|-----------|-----------|---------------|-------|--------------------------|---------------------------|
| 08h     | PORTD | RD7   | RD6    | RD5      | RD4     | RD3       | RD2       | RD1 RD0       |       | xxxx xxxx                | uuuu uuuu                 |
| 88h     | TRISD | PORT  | D Data | Directio |         | 1111 1111 | 1111 1111 |               |       |                          |                           |
| 89h     | TRISE | IBF   | OBF    | IBOV     | PSPMODE | —         | PORTE Dat | a Direction B | its   | 0000 -111                | 0000 -111                 |

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTD.

### 6.0 OVERVIEW OF TIMER MODULES

Applicable Devices 72|73|73A|74|74A|76|77

The PIC16C72, PIC16C73/73A, PIC16C74/74A, PIC16C76/77 each have three timer modules.

Each module can generate an interrupt to indicate that an event has occurred (i.e. timer overflow). Each of these modules is explained in full detail in the following sections. The timer modules are:

- Timer0 Module (Section 7.0)
- Timer1 Module (Section 8.0)
- Timer2 Module (Section 9.0)

#### 6.1 <u>Timer0 Overview</u> Applicable Devices 72|73|73A|74|74A|76|77

The Timer0 module is a simple 8-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock. When the clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

The Timer0 module also has a programmable prescaler option. This prescaler can be assigned to either the Timer0 module or the Watchdog Timer. Bit PSA (OPTION<3>) assigns the prescaler, and bits PS2:PS0 (OPTION<2:0>) determine the prescaler value. Timer0 can increment at the following rates: 1:1 (when prescaler assigned to Watchdog timer), 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, and 1:256 (Timer0 only).

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

#### 6.2 <u>Timer1 Overview</u> Applicable Devices 72 73 73 74 74 76 77

Timer1 is a 16-bit timer/counter. The clock source can be either the internal system clock (Fosc/4), an external clock, or an external crystal. Timer1 can operate as either a timer or a counter. When operating as a counter (external clock source), the counter can either operate synchronized to the device or asynchronously to the device. Asynchronous operation allows Timer1 to operate during sleep, which is useful for applications that require a real-time clock as well as the power savings of SLEEP mode.

Timer1 also has a prescaler option which allows Timer1 to increment at the following rates: 1:1, 1:2, 1:4, and 1:8. Timer1 can be used in conjunction with the Capture/Compare/PWM module. When used with a CCP module, Timer1 is the time-base for 16-bit Capture or the 16-bit Compare and must be synchronized to the device.

#### 6.3 <u>Timer2 Overview</u> Applicable Devices

| Ab | рп | capi | еL | e Devices |    |    |  |  |  |  |  |
|----|----|------|----|-----------|----|----|--|--|--|--|--|
| 72 | 73 | 73A  | 74 | 74A       | 76 | 77 |  |  |  |  |  |

Timer2 is an 8-bit timer with a programmable prescaler and postscaler, as well as an 8-bit period register (PR2). Timer2 can be used with the CCP1 module (in PWM mode) as well as the Baud Rate Generator for the Synchronous Serial Port (SSP). The prescaler option allows Timer2 to increment at the following rates: 1:1, 1:4, 1:16.

The postscaler allows the TMR2 register to match the period register (PR2) a programmable number of times before generating an interrupt. The postscaler can be programmed from 1:1 to 1:16 (inclusive).

#### 6.4 <u>CCP Overview</u>

 Applicable Devices

 72
 73
 73
 74
 74
 76
 77

The CCP module(s) can operate in one of these three modes: 16-bit capture, 16-bit compare, or up to 10-bit Pulse Width Modulation (PWM).

Capture mode captures the 16-bit value of TMR1 into the CCPRxH:CCPRxL register pair. The capture event can be programmed for either the falling edge, rising edge, fourth rising edge, or the sixteenth rising edge of the CCPx pin.

Compare mode compares the TMR1H:TMR1L register pair to the CCPRxH:CCPRxL register pair. When a match occurs an interrupt can be generated, and the output pin CCPx can be forced to given state (High or Low), TMR1 can be reset (CCP1), or TMR1 reset and start A/D conversion (CCP2). This depends on the control bits CCPxM3:CCPxM0.

PWM mode compares the TMR2 register to a 10-bit duty cycle register (CCPRxH:CCPRxL<5:4>) as well as to an 8-bit period register (PR2). When the TMR2 register = Duty Cycle register, the CCPx pin will be forced low. When TMR2 = PR2, TMR2 is cleared to 00h, an interrupt can be generated, and the CCPx pin (if an output) will be forced high.

The  $\overline{SS}$  pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set for the synchronous slave mode to be enabled. When the  $\overline{SS}$  pin is low, transmission and reception are enabled and the SDO pin is driven. When the  $\overline{SS}$  pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. If the  $\overline{SS}$  pin is taken low without resetting SPI mode, the transmission will continue from the point at which it was taken high. External pull-up/ pull-down resistors may be desirable, depending on the application.

| Note: | When the SPI is in Slave Mode with $\overline{SS}$ pin      |
|-------|-------------------------------------------------------------|
|       | the SPI module will reset if the $\overline{SS}$ pin is set |
|       | to VDD.                                                     |
| Note: | If the SPI is used in Slave Mode with                       |

CKE = '1', then the SS pin control must be enabled. To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as

be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.



#### FIGURE 11-11: SPI MODE TIMING, MASTER MODE (PIC16C76/77)

#### FIGURE 11-12: SPI MODE TIMING (SLAVE MODE WITH CKE = 0) (PIC16C76/77)



#### 12.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin. If bit BRGH (TXSTA<2>) is clear (i.e., at the low baud rates), the sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 12-3). If bit BRGH is set (i.e., at the high baud rates), the sampling is done on the 3 clock edges preceding the second rising edge after the first falling edge of a x4 clock (Figure 12-4 and Figure 12-5).

#### FIGURE 12-3: RX PIN SAMPLING SCHEME. BRGH = 0 (PIC16C73/73A/74/74A)



#### FIGURE 12-4: RX PIN SAMPLING SCHEME, BRGH = 1 (PIC16C73/73A/74/74A)









## 13.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

## Applicable Devices

The analog-to-digital (A/D) converter module has five inputs for the PIC16C72/73/73A/76, and eight for the PIC16C74/74A/77.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin. The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Figure 13-1, controls the operation of the A/D module. The ADCON1 register, shown in Figure 13-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

| R/W-0    | R/W-0 R/\                | <u>W-0 R/W-</u>            | 0 R/W-0            | R/W-0            | U-0          | R/W-0         |                                       |  |  |  |  |  |  |
|----------|--------------------------|----------------------------|--------------------|------------------|--------------|---------------|---------------------------------------|--|--|--|--|--|--|
| ADCS1    | ADCS0 CH                 | IS2 CHS                    | 1 CHS0             | GO/DONE          | —            | ADON          | R = Readable bit                      |  |  |  |  |  |  |
| bit7     |                          |                            |                    |                  |              | bit0          | W = Writable bit                      |  |  |  |  |  |  |
|          |                          |                            |                    |                  |              |               | U = Unimplemented bit,<br>read as '0' |  |  |  |  |  |  |
|          |                          |                            |                    |                  |              |               | - n = Value at POR reset              |  |  |  |  |  |  |
| bit 7-6: | ADCS1:ADCS               | 50: A/D Con                | version Cloc       | < Select bits    |              |               |                                       |  |  |  |  |  |  |
|          | 00 = Fosc/2              |                            |                    |                  |              |               |                                       |  |  |  |  |  |  |
|          | 01 = Fosc/8              |                            |                    |                  |              |               |                                       |  |  |  |  |  |  |
|          | 10 = Fosc/32             |                            |                    |                  |              |               |                                       |  |  |  |  |  |  |
|          | $\perp \perp = FRC$ (CIO | ck derived fr              | om an intern       | al RC oscillato  | r)           |               |                                       |  |  |  |  |  |  |
| bit 5-3: | CHS2:CHS0:               | Analog Cha                 | nnel Select b      | oits             |              |               |                                       |  |  |  |  |  |  |
|          | 000 = channe             | ΙΟ, (RAU/AP<br>1 1 (RΔ1/ΔΝ | 10)<br>11)         |                  |              |               |                                       |  |  |  |  |  |  |
|          | 010 = channe             | 1 2, (RA2/AM               | 12)                |                  |              |               |                                       |  |  |  |  |  |  |
|          | 011 = channe             | I 3, (RA3/AN               | J3)                |                  |              |               |                                       |  |  |  |  |  |  |
|          | 100 = channe             | I 4, (RA5/AN               | 14)<br>(1)         |                  |              |               |                                       |  |  |  |  |  |  |
|          | 101 = channe             | 15, (RE0/AN                | 15) <sup>(1)</sup> |                  |              |               |                                       |  |  |  |  |  |  |
|          | 110 = channe             | 10, (RE1/AN<br>17, (RE2/AN | 10)(1)             |                  |              |               |                                       |  |  |  |  |  |  |
| bit 2:   | GO/DONE: A/              | D Conversio                | on Status bit      |                  |              |               |                                       |  |  |  |  |  |  |
|          | If ADON = 1              |                            |                    |                  |              |               |                                       |  |  |  |  |  |  |
|          | 1 = A/D conve            | rsion in pro               | gress (setting     | this bit starts  | the A/D co   | onversion)    |                                       |  |  |  |  |  |  |
|          | 0 = A/D conve            | rsion not in p             | rogress (Thi       | s bit is automat | ically clear | red by hardwa | are when the A/D conversion           |  |  |  |  |  |  |
|          | is complete)             |                            |                    |                  |              |               |                                       |  |  |  |  |  |  |
| bit 1:   | Unimplement              | ted: Read as               | s '0'              |                  |              |               |                                       |  |  |  |  |  |  |
| bit 0:   | ADON: A/D O              | n bit                      |                    |                  |              |               |                                       |  |  |  |  |  |  |
|          | 1 = A/D conve            | rter module                | is operating       |                  |              |               |                                       |  |  |  |  |  |  |
|          | u = A/D conve            | rter module                | is snutoff an      | a consumes n     | o operating  | g current     |                                       |  |  |  |  |  |  |
| Note 1:  | A/D channels             | 5, 6, and 7                | are impleme        | nted on the PIC  | C16C74/74    | 4A/77 only.   |                                       |  |  |  |  |  |  |
|          |                          |                            | · ·                |                  |              |               |                                       |  |  |  |  |  |  |

#### FIGURE 13-1: ADCON0 REGISTER (ADDRESS 1Fh)





TABLE 13-2: REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C72

| Address | Name   | Bit 7   | Bit 6      | Bit 5 | Bit 4  | Bit 3      | Bit 2    | Bit 1  | Bit 0   | Value on:<br>POR,<br>BOR | Value on all other Resets |
|---------|--------|---------|------------|-------|--------|------------|----------|--------|---------|--------------------------|---------------------------|
| 0Bh,8Bh | INTCON | GIE     | PEIE       | TOIE  | INTE   | RBIE       | TOIF     | INTF   | RBIF    | 0000 000x                | 0000 000u                 |
| 0Ch     | PIR1   | —       | ADIF       | —     |        | SSPIF      | CCP1IF   | TMR2IF | TMR1IF  | -0 0000                  | -0 0000                   |
| 8Ch     | PIE1   | —       | ADIE       | _     |        | SSPIE      | CCP1IE   | TMR2IE | TMR1IE  | -0 0000                  | -0 0000                   |
| 1Eh     | ADRES  | A/D Res | sult Regis | ter   |        |            |          |        |         | xxxx xxxx                | uuuu uuuu                 |
| 1Fh     | ADCON0 | ADCS1   | ADCS0      | CHS2  | CHS1   | CHS0       | GO/DONE  | —      | ADON    | 0000 00-0                | 0000 00-0                 |
| 9Fh     | ADCON1 | —       | —          | _     |        | _          | PCFG2    | PCFG1  | PCFG0   | 000                      | 000                       |
| 05h     | PORTA  | _       |            | RA5   | RA4    | RA3        | RA2      | RA1    | RA0     | 0x 0000                  | 0u 0000                   |
| 85h     | TRISA  | _       | _          | PORTA | Data D | irection F | Register |        | 11 1111 | 11 1111                  |                           |

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

#### FIGURE 14-2: CONFIGURATION WORD FOR PIC16C72/73A/74A/76/77

| CP1            | CP0                                                                                                                                                                                                                                                                              | CP1                                                                                                                            | CP0                            | CP1                  | CP0                  | _                     | BODEN                  | CP1               | CP0               | PWRTE                  | WDTE              | FOSC1         | FOSC0     | Register:      | CONFIG |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|----------------------|-----------------------|------------------------|-------------------|-------------------|------------------------|-------------------|---------------|-----------|----------------|--------|
| bit13          |                                                                                                                                                                                                                                                                                  |                                                                                                                                |                                |                      |                      |                       |                        |                   |                   |                        |                   |               | bit0      | Address        | 2007h  |
| bit 13-<br>5-4 | <ul> <li>bit 13-8 CP1:CP0: Code Protection bits <sup>(2)</sup></li> <li>5-4: 11 = Code protection off</li> <li>10 = Upper half of program memory code protected</li> <li>01 = Upper 3/4th of program memory code protected</li> <li>00 = All memory is code protected</li> </ul> |                                                                                                                                |                                |                      |                      |                       |                        |                   |                   |                        |                   |               |           |                |        |
| bit 7:         | U                                                                                                                                                                                                                                                                                | nimplemented: Read as '1'                                                                                                      |                                |                      |                      |                       |                        |                   |                   |                        |                   |               |           |                |        |
| bit 6:         | <b>B</b><br>1<br>0                                                                                                                                                                                                                                                               | ODEN: Brown-out Reset Enable bit <sup>(1)</sup><br>= BOR enabled<br>= BOR disabled                                             |                                |                      |                      |                       |                        |                   |                   |                        |                   |               |           |                |        |
| bit 3:         | <b>P</b><br>1<br>0                                                                                                                                                                                                                                                               | <b>WRTE</b> : F<br>= PWR1<br>= PWR1                                                                                            | Power-u<br>F disabl<br>F enabl | up Time<br>led<br>ed | er Enab              | le bit ( <sup>,</sup> | 1)                     |                   |                   |                        |                   |               |           |                |        |
| bit 2:         | <b>v</b><br>1<br>0                                                                                                                                                                                                                                                               | <b>VDTE</b> : W<br>= WDT<br>= WDT                                                                                              | atchdo<br>enableo<br>disable   | g Timer<br>d<br>d    | . Enable             | e bit                 |                        |                   |                   |                        |                   |               |           |                |        |
| bit 1-0        | D: F<br>1<br>0<br>0                                                                                                                                                                                                                                                              | FOSC1:FOSC0: Oscillator Selection bits<br>11 = RC oscillator<br>10 = HS oscillator<br>01 = XT oscillator<br>00 = LP oscillator |                                |                      |                      |                       |                        |                   |                   |                        |                   |               |           |                |        |
| Note           | 1: E<br>E                                                                                                                                                                                                                                                                        | nabling I<br>nsure th                                                                                                          | Brown-                         | out Res<br>er-up Tii | set auto<br>mer is e | matica<br>enable      | ally enab<br>d anytime | les Pov<br>e Brow | ver-up<br>n-out F | Timer (P<br>Reset is e | WRT) r<br>enabled | egardle<br>I. | ss of the | value of bit F | WRTE.  |
|                | Z. A                                                                                                                                                                                                                                                                             |                                                                                                                                | GF 1.G                         | - u pairs            | snavel               | o be g                | iven the               | Same              | aiue ii           |                        |                   | ie prote      |           | eme iisleu.    |        |

# PIC16C7X

| Inclusive                                                                                                                                                            | e OR W v                                                                                                                                                                                                        | with f                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [ label ]                                                                                                                                                            | IORWF                                                                                                                                                                                                           | f,d                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| $0 \le f \le 12$ $d \in [0,1]$                                                                                                                                       | 27                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| (W) .OR.                                                                                                                                                             | $(f) \rightarrow (de)$                                                                                                                                                                                          | estination                                                                                                                                                                                                                                                                           | )                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Z                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 00                                                                                                                                                                   | 0100                                                                                                                                                                                                            | dfff                                                                                                                                                                                                                                                                                 | ffff                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Inclusive OR the W register with regis-<br>ter 'f'. If 'd' is 0 the result is placed in the<br>W register. If 'd' is 1 the result is placed<br>back in register 'f'. |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 1                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 1                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Q1                                                                                                                                                                   | Q2                                                                                                                                                                                                              | Q3                                                                                                                                                                                                                                                                                   | Q4                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Decode                                                                                                                                                               | Read<br>register<br>'f'                                                                                                                                                                                         | Process<br>data                                                                                                                                                                                                                                                                      | Write to destination                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| IORWF                                                                                                                                                                |                                                                                                                                                                                                                 | RESULT,                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Before In                                                                                                                                                            | struction                                                                                                                                                                                                       | I                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| $\begin{array}{rcl} RESULI &= & 0x13 \\ W &= & 0x91 \end{array}$                                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| After Inst                                                                                                                                                           | ruction                                                                                                                                                                                                         | - 0001                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                      | RESULT                                                                                                                                                                                                          | = 0x13                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                                                                                                      | W                                                                                                                                                                                                               | = 0x93                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                                                                                                      | Inclusive<br>[ label ]<br>$0 \le f \le 12$<br>$d \in [0,1]$<br>(W) .OR.<br>Z<br>00<br>Inclusive O<br>ter 'f'. If 'd'<br>W register<br>back in reg<br>1<br>1<br>Q1<br>Decode<br>IORWF<br>Before In<br>After Inst | Inclusive OR W $[label]$ IORWF $0 \le f \le 127$ $d \in [0,1]$ (W) .OR. $(f) \rightarrow (de Z)$ $00$ 0100Inclusive OR the Wter 'f'. If 'd' is 0 the reW register. If 'd' is 1back in register 'f'.11Q1Q2DecodeReadregister'f'IORWFBefore InstructionRESULTWAfter InstructionRESULTW | Inclusive OR W with f[ label ]IORWFf,d $0 \le f \le 127$ $d \in [0,1]$ (W) .OR. (f) $\rightarrow$ (destination Z $00$ 0100dfffInclusive OR the W register with ter 'f'. If 'd' is 0 the result is place<br>W register. If 'd' is 1 the result back in register 'f'.11Q1Q2Q3DecodeRead<br>register<br>'f'Process<br>dataIORWFRESULT ,Before Instruction<br>RESULT = 0x13<br>W = 0x91After Instruction<br>RESULT = 0x13<br>W = 0x93 |  |  |  |  |  |

| MOVLW             | Move Lit                             | eral to V                   | v                            |                     |  |  |  |  |
|-------------------|--------------------------------------|-----------------------------|------------------------------|---------------------|--|--|--|--|
| Syntax:           | [ label ]                            | MOVLW                       | / k                          |                     |  |  |  |  |
| Operands:         | $0 \le k \le 25$                     | 55                          |                              |                     |  |  |  |  |
| Operation:        | $k \rightarrow (W)$                  |                             |                              |                     |  |  |  |  |
| Status Affected:  | None                                 |                             |                              |                     |  |  |  |  |
| Encoding:         | 11                                   | 00xx                        | kkkk                         | kkkk                |  |  |  |  |
| Description:      | The eight<br>register. Th<br>as 0's. | bit literal '<br>ne don't c | k' is loaded<br>ares will as | d into W<br>ssemble |  |  |  |  |
| Words:            | 1                                    |                             |                              |                     |  |  |  |  |
| Cycles:           | 1                                    |                             |                              |                     |  |  |  |  |
| Q Cycle Activity: | Q1                                   | Q2                          | Q3                           | Q4                  |  |  |  |  |
|                   | Decode                               | Read<br>literal 'k'         | Process<br>data              | Write to<br>W       |  |  |  |  |
| Example           | MOVLW<br>After Inst                  | 0x5A<br>ruction<br>W =      | 0x5A                         |                     |  |  |  |  |

| MOVF              | Move f                                                                                  |                                                                                   |                                                                                            |                                                                        |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|
| Syntax:           | [ label ]                                                                               | MOVF                                                                              | f,d                                                                                        |                                                                        |  |  |  |
| Operands:         | $0 \le f \le 127$<br>$d \in [0,1]$                                                      |                                                                                   |                                                                                            |                                                                        |  |  |  |
| Operation:        | $(f) \rightarrow (des$                                                                  | stination                                                                         | )                                                                                          |                                                                        |  |  |  |
| Status Affected:  | Z                                                                                       |                                                                                   |                                                                                            |                                                                        |  |  |  |
| Encoding:         | 00                                                                                      | 1000                                                                              | dfff                                                                                       | ffff                                                                   |  |  |  |
| Description:      | The contendestination<br>of d. If $d =$<br>d = 1, the<br>itself. $d = 1$<br>ter since s | nts of regi<br>n dependa<br>0, destina<br>destinatio<br>l is useful<br>tatus flag | ister f is mo<br>ant upon th<br>tion is W r<br>n is file reg<br>to test a f<br>Z is affect | oved to a<br>ne status<br>egister. If<br>gister f<br>ile regis-<br>ed. |  |  |  |
| Words:            | 1                                                                                       |                                                                                   |                                                                                            |                                                                        |  |  |  |
| Cycles:           | 1                                                                                       |                                                                                   |                                                                                            |                                                                        |  |  |  |
| Q Cycle Activity: | Q1                                                                                      | Q2                                                                                | Q3                                                                                         | Q4                                                                     |  |  |  |
|                   | Decode                                                                                  | Read<br>register<br>'f'                                                           | Process<br>data                                                                            | Write to destination                                                   |  |  |  |
| Example           | MOVF                                                                                    | FSR,                                                                              | 0                                                                                          |                                                                        |  |  |  |
|                   | After Inst                                                                              | ruction<br>W = valu<br>Z = 1                                                      | ie in FSR i                                                                                | register                                                               |  |  |  |

| MOVWF             | Move W                                          | to f                    |                |                         |  |  |  |  |
|-------------------|-------------------------------------------------|-------------------------|----------------|-------------------------|--|--|--|--|
| Syntax:           | [ label ]                                       | MOVW                    | = f            |                         |  |  |  |  |
| Operands:         | $0 \le f \le 127$                               |                         |                |                         |  |  |  |  |
| Operation:        | $(W) \to (f)$                                   |                         |                |                         |  |  |  |  |
| Status Affected:  | None                                            |                         |                |                         |  |  |  |  |
| Encoding:         | 00                                              | 0000                    | lff            | ffff                    |  |  |  |  |
| Description:      | Move data from W register to register<br>'f'.   |                         |                |                         |  |  |  |  |
| Words:            | 1                                               |                         |                |                         |  |  |  |  |
| Cycles:           | 1                                               |                         |                |                         |  |  |  |  |
| Q Cycle Activity: | Q1                                              | Q2                      | Q3             | Q4                      |  |  |  |  |
|                   | Decode                                          | Read<br>register<br>'f' | Proces<br>data | S Write<br>register 'f' |  |  |  |  |
| Example           | MOVWF                                           | OPTIC                   | N_REG          |                         |  |  |  |  |
|                   | Before Instruction<br>OPTION = 0xFF<br>W = 0x4F |                         |                |                         |  |  |  |  |
|                   | After Inst                                      | ruction<br>OPTION       | = 0x           | (4F                     |  |  |  |  |

### Applicable Devices 72 73 73A 74 74A 76 77

#### 17.1 DC Characteristics: PIC16C72-04 (Commercial, Industrial, Extended) PIC16C72-10 (Commercial, Industrial, Extended) PIC16C72-20 (Commercial, Industrial, Extended)

|                    |                                                                   |               |            | ard Ope | erating    | g Cond       | litions (unless otherwise stated)                                                                                  |
|--------------------|-------------------------------------------------------------------|---------------|------------|---------|------------|--------------|--------------------------------------------------------------------------------------------------------------------|
| DC CHARACTERISTICS |                                                                   |               | Operat     | ing tem | peratu     | re -4۔<br>1- | $10^{\circ}$ C $\leq$ IA $\leq$ +125 °C for extended,<br>$10^{\circ}$ C $\leq$ TA $\leq$ +85 °C for industrial and |
|                    |                                                                   |               |            |         |            | 0°           | $C \leq TA \leq +70^{\circ}C$ for commercial                                                                       |
| Param<br>No.       | Characteristic                                                    | Sym           | Min        | Тур†    | Мах        | Units        | Conditions                                                                                                         |
| D001<br>D001A      | Supply Voltage                                                    | Vdd           | 4.0<br>4.5 | -       | 6.0<br>5.5 | V<br>V       | XT, RC and LP osc configuration<br>HS osc configuration                                                            |
| D002*              | RAM Data Retention<br>Voltage (Note 1)                            | Vdr           | -          | 1.5     | -          | V            |                                                                                                                    |
| D003               | VDD start voltage to<br>ensure internal Power-<br>on Reset Signal | VPOR          | -          | Vss     | -          | V            | See section on Power-on Reset for details                                                                          |
| D004*              | VDD rise rate to ensure<br>internal Power-on Reset<br>Signal      | Svdd          | 0.05       | -       | -          | V/ms         | See section on Power-on Reset for details                                                                          |
| D005               | Brown-out Reset Voltage                                           | Bvdd          | 3.7        | 4.0     | 4.3        | V            | BODEN bit in configuration word enabled                                                                            |
|                    |                                                                   |               | 3.7        | 4.0     | 4.4        | V            | Extended Only                                                                                                      |
| D010               | Supply Current<br>(Note 2,5)                                      | IDD           | -          | 2.7     | 5.0        | mA           | XT, RC osc configuration<br>Fosc = 4 MHz, VDD = 5.5V (Note 4)                                                      |
| D013               |                                                                   |               | -          | 10      | 20         | mA           | HS osc configuration<br>Fosc = 20 MHz, VDD = 5.5V                                                                  |
| D015               | Brown-out Reset Current<br>(Note 6)                               | ΔIBOR         | -          | 350     | 425        | μA           | BOR enabled VDD = 5.0V                                                                                             |
| D020               | Power-down Current                                                | IPD           | -          | 10.5    | 42         | μΑ           | VDD = 4.0V, WDT enabled, $-40^{\circ}$ C to $+85^{\circ}$ C                                                        |
| D021               | (Note 3,5)                                                        |               | -          | 1.5     | 16         | μA           | $VDD = 4.0V$ , WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$                                                       |
| D021A              |                                                                   |               |            | 1.5     | 19         | μΑ<br>μΑ     | $VDD = 4.0V$ , $VDT$ disabled, $-40^{\circ}C$ to $+85^{\circ}C$                                                    |
| D023               | Brown-out Reset Current<br>(Note 6)                               | $\Delta$ IBOR | -          | 350     | 425        | μA           | BOR enabled $VDD = 5.0V$                                                                                           |

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  $\overline{MCLR}$  = VDD; WDT enabled/disabled as specified.

The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

#### Applicable Devices 72 73 73A 74 74A 76 77

#### 18.1 DC Characteristics: PIC16C73/74-04 (Commercial, Industrial) PIC16C73/74-10 (Commercial, Industrial) PIC16C73/74-20 (Commercial, Industrial)

| DC CH                 | <b>Standa</b><br>Operat                                          | ard Op<br>ing terr | erating<br>operati | <b>g Cond</b><br>ure -4<br>0° | litions (unless otherwise stated) $40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial and $C$ $\leq TA \leq +70^{\circ}C$ for commercial |                |                                                                                                                                                                                                                     |
|-----------------------|------------------------------------------------------------------|--------------------|--------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Param<br>No.          | Characteristic                                                   | Sym                | Min                | Тур†                          | Мах                                                                                                                                           | Units          | Conditions                                                                                                                                                                                                          |
| D001<br>D001A         | Supply Voltage                                                   | Vdd                | 4.0<br>4.5         | -                             | 6.0<br>5.5                                                                                                                                    | V<br>V         | XT, RC and LP osc configuration<br>HS osc configuration                                                                                                                                                             |
| D002*                 | RAM Data Retention<br>Voltage (Note 1)                           | Vdr                | -                  | 1.5                           | -                                                                                                                                             | V              |                                                                                                                                                                                                                     |
| D003                  | VDD start voltage to<br>ensure internal Power-on<br>Reset signal | VPOR               | -                  | Vss                           | -                                                                                                                                             | V              | See section on Power-on Reset for details                                                                                                                                                                           |
| D004*                 | VDD rise rate to ensure<br>internal Power-on Reset<br>signal     | SVDD               | 0.05               | -                             | -                                                                                                                                             | V/ms           | See section on Power-on Reset for details                                                                                                                                                                           |
| D010                  | Supply Current (Note 2,5)                                        | IDD                | -                  | 2.7                           | 5                                                                                                                                             | mA             | XT, RC osc configuration<br>Fosc = 4 MHz, VDD = 5.5V (Note 4)                                                                                                                                                       |
| D013                  |                                                                  |                    | -                  | 13.5                          | 30                                                                                                                                            | mA             | HS osc configuration<br>Fosc = 20 MHz, VDD = 5.5V                                                                                                                                                                   |
| D020<br>D021<br>D021A | Power-down Current<br>(Note 3,5)                                 | IPD                |                    | 10.5<br>1.5<br>1.5            | 42<br>21<br>24                                                                                                                                | μΑ<br>μΑ<br>μΑ | $VDD = 4.0V, WDT enabled, -40^{\circ}C \text{ to } +85^{\circ}C$ $VDD = 4.0V, WDT \text{ disabled}, -0^{\circ}C \text{ to } +70^{\circ}C$ $VDD = 4.0V, WDT \text{ disabled}, -40^{\circ}C \text{ to } +85^{\circ}C$ |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR} = VDD$ ; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

#### FIGURE 21-25: TYPICAL IDD vs. FREQUENCY (LP MODE, 25°C)













# PIC16C7X

#### 22.2 40-Lead Ceramic CERDIP Dual In-line with Window (600 mil) (JW)



|        | Package Group: Ceramic CERDIP Dual In-Line (CDP) |             |           |        |       |           |  |
|--------|--------------------------------------------------|-------------|-----------|--------|-------|-----------|--|
|        |                                                  | Millimeters |           | Inches |       |           |  |
| Symbol | Min                                              | Max         | Notes     | Min    | Max   | Notes     |  |
| α      | 0°                                               | 10°         |           | 0°     | 10°   |           |  |
| А      | 4.318                                            | 5.715       |           | 0.170  | 0.225 |           |  |
| A1     | 0.381                                            | 1.778       |           | 0.015  | 0.070 |           |  |
| A2     | 3.810                                            | 4.699       |           | 0.150  | 0.185 |           |  |
| A3     | 3.810                                            | 4.445       |           | 0.150  | 0.175 |           |  |
| В      | 0.355                                            | 0.585       |           | 0.014  | 0.023 |           |  |
| B1     | 1.270                                            | 1.651       | Typical   | 0.050  | 0.065 | Typical   |  |
| С      | 0.203                                            | 0.381       | Typical   | 0.008  | 0.015 | Typical   |  |
| D      | 51.435                                           | 52.705      |           | 2.025  | 2.075 |           |  |
| D1     | 48.260                                           | 48.260      | Reference | 1.900  | 1.900 | Reference |  |
| E      | 15.240                                           | 15.875      |           | 0.600  | 0.625 |           |  |
| E1     | 12.954                                           | 15.240      |           | 0.510  | 0.600 |           |  |
| e1     | 2.540                                            | 2.540       | Reference | 0.100  | 0.100 | Reference |  |
| eA     | 14.986                                           | 16.002      | Typical   | 0.590  | 0.630 | Typical   |  |
| eB     | 15.240                                           | 18.034      |           | 0.600  | 0.710 |           |  |
| L      | 3.175                                            | 3.810       |           | 0.125  | 0.150 |           |  |
| N      | 40                                               | 40          |           | 40     | 40    |           |  |
| S      | 1.016                                            | 2.286       |           | 0.040  | 0.090 |           |  |
| S1     | 0.381                                            | 1.778       |           | 0.015  | 0.070 |           |  |

#### 22.6 28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)



|        | Package Group: Plastic SSOP |             |           |        |            |           |  |
|--------|-----------------------------|-------------|-----------|--------|------------|-----------|--|
|        |                             | Millimeters |           | Inches |            |           |  |
| Symbol | Min                         | Max         | Notes     | Min    | Мах        | Notes     |  |
| α      | 0°                          | 8°          |           | 0°     | <b>8</b> ° |           |  |
| А      | 1.730                       | 1.990       |           | 0.068  | 0.078      |           |  |
| A1     | 0.050                       | 0.210       |           | 0.002  | 0.008      |           |  |
| В      | 0.250                       | 0.380       |           | 0.010  | 0.015      |           |  |
| С      | 0.130                       | 0.220       |           | 0.005  | 0.009      |           |  |
| D      | 10.070                      | 10.330      |           | 0.396  | 0.407      |           |  |
| E      | 5.200                       | 5.380       |           | 0.205  | 0.212      |           |  |
| е      | 0.650                       | 0.650       | Reference | 0.026  | 0.026      | Reference |  |
| Н      | 7.650                       | 7.900       |           | 0.301  | 0.311      |           |  |
| L      | 0.550                       | 0.950       |           | 0.022  | 0.037      |           |  |
| Ν      | 28                          | 28          |           | 28     | 28         |           |  |
| CP     | -                           | 0.102       |           | -      | 0.004      |           |  |

# PIC16C7X

| Table 18-2:  | external Clock Timing                                 |
|--------------|-------------------------------------------------------|
|              | Requirements                                          |
| Table 18-3:  | CLKOUT and I/O Timing                                 |
| Table 18-4   | Reset Watchdog Timer Oscillator                       |
|              | Start-up Timer and Power-up Timer                     |
|              | Requirements 191                                      |
| Table 18-5:  | Timer() and Timer1 External Clock                     |
|              | Requirements                                          |
| Table 18-6:  | Capture/Compare/PWM                                   |
|              | Requirements (CCP1 and CCP2)                          |
| Table 18-7:  | Parallel Slave Port Requirements                      |
|              | (PIC16C74) 194                                        |
| Table 18-8:  | SPI Mode Requirements 195                             |
| Table 18-9:  | I <sup>2</sup> C Bus Start/Stop Bits                  |
|              | Requirements196                                       |
| Table 18-10: | I <sup>2</sup> C Bus Data Requirements197             |
| Table 18-11: | USART Synchronous Transmission                        |
|              | Requirements198                                       |
| Table 18-12: | usart Synchronous Receive                             |
|              | Requirements198                                       |
| Table 18-13: | A/D Converter Characteristics:                        |
|              | PIC16C73/74-04                                        |
|              | (Commercial, Industrial)                              |
|              | PIC16C73/74-10                                        |
|              | (Commercial, Industrial)                              |
|              | PIC16C73/74-20                                        |
|              |                                                       |
|              | PIC16LC73/74-04                                       |
| Table 18 14. | (Commercial, Industrial)                              |
| Table 10-14. | A/D Conversion Requirements                           |
|              | for Oscillator Configurations and                     |
|              | Frequencies of Operation                              |
|              | (Commercial Devices) 201                              |
| Table 19-2   | External Clock Timing                                 |
| 10010 10 2.  | Requirements                                          |
| Table 19-3:  | CLKOUT and I/O Timing                                 |
|              | Requirements                                          |
| Table 19-4:  | Reset, Watchdog Timer, Oscillator                     |
|              | Start-up Timer, Power-up Timer,                       |
|              | and brown-out reset Requirements                      |
| Table 19-5:  | Timer0 and Timer1 External Clock                      |
|              | Requirements210                                       |
| Table 19-6:  | Capture/Compare/PWM                                   |
|              | Requirements (CCP1 and CCP2)                          |
| Table 19-7:  | Parallel Slave Port Requirements                      |
|              | (PIC16C74A)212                                        |
| Table 19-8:  | SPI Mode Requirements                                 |
| Table 19-9:  | I <sup>2</sup> C Bus Start/Stop Bits Requirements 214 |
| Table 19-10: | I <sup>2</sup> C Bus Data Requirements215             |
| Table 19-11: | USART Synchronous Transmission                        |
|              | Requirements                                          |
| Table 19-12: | USART Synchronous Receive                             |
|              | Requirements                                          |
| Table 19-13: | A/D Converter Characteristics:                        |
|              | MUIDU/JA/14A-U4                                       |
|              | (Commercial, industrial, Extended)                    |
|              | FIGIOUIDAVIAA-IU                                      |
|              |                                                       |
|              | (Commercial Industrial Extended)                      |
|              | PIC16I C73A/74A-04                                    |
|              | (Commercial, Industrial) 217                          |
| Table 19-14  | A/D Conversion Requirements 218                       |
|              | 210                                                   |

| Table 20-1:  | Cross Reference of Device Specs                       |
|--------------|-------------------------------------------------------|
|              | for Oscillator Configurations and                     |
|              | Frequencies of Operation                              |
|              | (Commercial Devices) 220                              |
| Table 20-2:  | External Clock Timing                                 |
|              | Requirements 226                                      |
| Table 20-3:  | CLKOUT and I/O Timing                                 |
|              | Requirements 227                                      |
| Table 20-4:  | Reset, Watchdog Timer.                                |
|              | Oscillator Start-up Timer, Power-up                   |
|              | Timer, and brown-out reset                            |
|              | Requirements                                          |
| Table 20-5:  | Timer0 and Timer1 External Clock                      |
|              | Requirements 229                                      |
| Table 20-6:  | Capture/Compare/PWM                                   |
|              | Requirements (CCP1 and CCP2)                          |
| Table 20-7:  | Parallel Slave Port Requirements                      |
|              | (PIC16C77)                                            |
| Table 20-8:  | SPI Mode requirements                                 |
| Table 20-9:  | I <sup>2</sup> C Bus Start/Stop Bits Requirements 235 |
| Table 20-10: | I <sup>2</sup> C Bus Data Requirements                |
| Table 20-11: | USART Synchronous Transmission                        |
|              | Requirements                                          |
| Table 20-12: | USART Synchronous Receive                             |
|              | Requirements                                          |
| Table 20-13: | A/D Converter Characteristics:                        |
|              | PIC16C76/77-04                                        |
|              | (Commercial, Industrial, Extended)                    |
|              | PIC16C76/77-10                                        |
|              | (Commercial, Industrial, Extended)                    |
|              | PIC16C76/77-20                                        |
|              | (Commercial, Industrial, Extended)                    |
|              | PIC16LC76/77-04                                       |
|              | (Commercial, Industrial) 238                          |
| Table 20-14: | A/D Conversion Requirements 239                       |
| Table 21-1:  | RC Oscillator Frequencies 247                         |
| Table 21-2:  | Capacitor Selection for Crystal                       |
|              | Oscillators 248                                       |
| Table E-1:   | Pin Compatible Devices                                |

#### Note the following details of the code protection feature on PICmicro<sup>®</sup> MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
  mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

#### Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.





Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.