

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c74at-04i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.5 PORTE and TRISE Register Applicable Devices 72/73/73A/74/74A/76/77

PORTE has three pins RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/AN7, which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs) and that register ADCON1 is configured for digital I/O. In this mode the input buffers are TTL.

Figure 5-9 shows the TRISE register, which also controls the parallel slave port operation.

PORTE pins are multiplexed with analog inputs. The operation of these pins is selected by control bits in the ADCON1 register. When selected as an analog input, these pins will read as '0's.

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

FIGURE 5-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

FIGURE 5-9: TRISE REGISTER (ADDRESS 89h)

R _0	R-0	P/\/_0	R/M/-0	11-0	P/\\/_1	P/\/_1	₽/\\/_1						
IBF	OBF	IBOV	PSPMODE		bit2	bit1	bit0	R = Readable bit					
bit7					512	<u><u></u></u>	bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset					
bit 7 :	bit 7 : IBF: Input Buffer Full Status bit 1 = A word has been received and is waiting to be read by the CPU 0 = No word has been received												
bit 6:	OBF : Output Buffer Full Status bit 1 = The output buffer still holds a previously written word 0 = The output buffer has been read												
bit 5:	 IBOV: Input Buffer Overflow Detect bit (in microprocessor mode) 1 = A write occurred when a previously input word has not been read (must be cleared in software) 0 = No overflow occurred 												
bit 4:	PSPMODE 1 = Paralle 0 = Genera	E: Parallel S I slave por al purpose	Slave Port Moo t mode I/O mode	de Select b	bit								
bit 3:	Unimplem	ented: Re	ad as '0'										
	PORTE D	Data Direc	ction Bits										
bit 2:	Bit2 : Direc 1 = Input 0 = Output	tion Contro	ol bit for pin RI	E2/CS/AN7	,								
bit 1:	Bit1 : Direc 1 = Input 0 = Output	tion Contro	ol bit for pin RI	E1/WR/AN	6								
bit 0:	Bit0 : Direc 1 = Input 0 = Output	tion Contro	ol bit for pin RI	E0/RD/AN5	5								

8.0 TIMER1 MODULE Applicable Devices

72 73 73A 74 74A 76 77

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

- As a timer
- · As a counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "reset input". This reset can be generated by either of the two CCP modules (Section 10.0). Figure 8-1 shows the Timer1 control register.

For the PIC16C72/73A/74A/76/77, when the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI/CCP2 and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

For the PIC16C73/74, when the Timer1 oscillator is enabled (T1OSCEN is set), RC1/T1OSI/CCP2 pin becomes an input, however the RC0/T1OSO/T1CKI pin will have to be configured as an input by setting the TRISC<0> bit.

FIGURE 8-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

10.0 CAPTURE/COMPARE/PWM MODULE(s)

 Applicable Devices

 72
 73
 73A
 74
 74A
 76
 77
 CCP1

 72
 73
 73A
 74
 74A
 76
 77
 CCP2

Each CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register or as a PWM master/slave Duty Cycle register. Both the CCP1 and CCP2 modules are identical in operation, with the exception of the operation of the special event trigger. Table 10-1 and Table 10-2 show the resources and interactions of the CCP module(s). In the following sections, the operation of a CCP module is described with respect to CCP1. CCP2 operates the same as CCP1, except where noted.

CCP1 module:

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

CCP2 module:

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

For use of the CCP modules, refer to the Embedded Control Handbook, "Using the CCP Modules" (AN594).

TABLE 10-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

TABLE 10-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time-base.
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1.
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1.
PWM	PWM	The PWMs will have the same frequency, and update rate (TMR2 interrupt).
PWM	Capture	None
PWM	Compare	None

11.5.1 SLAVE MODE

In slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this \overline{ACK} pulse. These are if either (or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 11-4 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification as well as the requirement of the SSP module is shown in timing parameter #100 and parameter #101.

11.5.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The

address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on the falling edge of the ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave (Figure 11-16). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/\overline{W} (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7- 9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

Status Bi Transfer is	ts as Data s Received			Set bit SSPIF		
BF	SSPOV	$SSPSR \to SSPBUF$	Generate ACK Pulse	(SSP Interrupt occurs if enabled)		
0	0	Yes	Yes	Yes		
1	0	No	No	Yes		
1	1	No	No	Yes		
0	1	No	No	Yes		

TABLE 11-4: DATA TRANSFER RECEIVED BYTE ACTIONS

12.1 USART Baud Rate Generator (BRG) Applicable Devices 72 73 73A 74 74A 76 77

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In asynchronous mode bit BRGH (TXSTA<2>) also controls the baud rate. In synchronous mode bit BRGH is ignored. Table 12-1 shows the formula for computation of the baud rate for different USART modes which only apply in master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 12-1. From this, the error in baud rate can be determined.

Example 12-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 BRGH = 0 SYNC = 0

EXAMPLE 12-1: CALCULATING BAUD RATE ERROR

Desired Baud rate = Fosc / (64 (X + 1))

 $9600 = \frac{16000000}{(64 (X + 1))}$

 $X = \lfloor 25.042 \rfloor = 25$

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615

- Error = (Calculated Baud Rate Desired Baud Rate) Desired Baud Rate
 - = (9615 9600) / 9600

= 0.16%

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Note:	For the PIC16C73/73A/74/74A, the asyn- chronous high speed mode (BRGH = 1) may experience a high rate of receive errors. It is recommended that BRGH = 0. If you desire a higher baud rate than BRGH = 0 can support, refer to the device errata for additional information, or use the DIC16C76/77
	PIC16C76/77.

Writing a new value to the SPBRG register, causes the BRG timer to be reset (or cleared), this ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

TABLE 12-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate= Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	NA

X = value in SPBRG (0 to 255)

TABLE 12-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets	
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010	
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x	
99h	SPBRG	Baud R	ate Gen	erator Re	0000 0000	0000 0000						

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the BRG.

Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 12.1)
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.
- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).

FIGURE 12-8: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 12-9: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR		Value on all other Resets	
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000	-00x	0000	-00x
19h	TXREG	USART Trar	nsmit Re	gister						0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000	-010	0000	-010
99h	SPBRG	Baud Rate (0000	0000	0000	0000							

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

TABLE 12-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets	
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000	
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x	
19h	TXREG	USART Tra	ansmit Re	egister						0000 0000	0000 0000	
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000	
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010	
99h	SPBRG	Baud Rate	Generat	0000 0000	0000 0000							

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

FIGURE 12-12: SYNCHRONOUS TRANSMISSION

FIGURE 12-13: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

14.4 Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST), and Brown-out Reset (BOR) Applicable Devices 72 73 73 74 74 76 77

14.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the \overline{MCLR} pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting.*"

14.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

14.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

14.4.4 BROWN-OUT RESET (BOR) Applicable Devices 72 73 73 74 74 76 77

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for greater than parameter #35, the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 14-9 shows typical brown-out situations.

FIGURE 14-9: BROWN-OUT SITUATIONS

PIC16C7X

Register	Applicable Devices							Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt		
SSPADD	72	73	73A	74	74A	76	77	0000 0000	0000 0000	uuuu uuuu		
SSPSTAT	72	73	73A	74	74A	76	77	00 0000	00 0000	uu uuuu		
TXSTA	72	73	73A	74	74A	76	77	0000 -010	0000 -010	uuuu -uuu		
SPBRG	72	73	73A	74	74A	76	77	0000 0000	0000 0000	uuuu uuuu		
ADCON1	72	73	73A	74	74A	76	77	000	000	uuu		

TABLE 14-8: INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.'d)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 14-7 for reset value for specific condition.

GOTO	Uncondi	tional Br	anch			INCF	Increment f					
Syntax:	[label]	GOTO	k		I	Syntax:	[label]	INCF f	,d			
Operands:	$0 \le k \le 20$	047				Operands:	$0 \le f \le 127$					
Operation:	$k \rightarrow PC <$	10:0>					d ∈ [0,1]					
	PCLATH	$<4:3> \rightarrow 1$	PC<12:11	>		Operation:	(f) + 1 \rightarrow	(destina	tion)			
Status Affected:	None					Status Affected:	Z					
Encoding:	10	1kkk	kkkk	kkkk		Encoding:	00	1010	dfff	ffff		
Description:	GOTO is ar eleven bit into PC bit PC are loa GOTO is a	n unconditi immediate ts <10:0>. aded from I two cycle i	onal branc value is lo The upper PCLATH </td <td>h. The baded bits of I:3>.</td> <td></td> <td>Description:</td> <td colspan="5">The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.</td>	h. The baded bits of I:3>.		Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.					
Words:	1	-				Words:	1					
Cycles:	2					Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		Q Cycle Activity:	Q1	Q2	Q3	Q4		
1st Cycle	Decode	Read literal 'k'	Process data	Write to PC			Decode	Read register 'f'	Process data	Write to destination		
2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation								
						Example	INCF	CNT,	1			
Example	GOTO T	HERE					Before Ir	struction	05			
	After Inst	ruction						7 7	= 0	F		
		PC = .	Address	THERE			After Inst	ruction	Ū			
								CNT	= 0x0	0		
								Z	= 1			

RLF	Rotate L	.eft f thre	ough Ca	rry	RRF	Rotate F	Right f th	rough C	arry
Syntax:	[label]	RLF	f,d		Syntax:	[<i>label</i>] RRF f,d			
Operands:	0 ≤ f ≤ 12 d ∈ [0,1]	27			Operands:	0 ≤ f ≤ 127 d ∈ [0,1]			
Operation:	See des	cription b	elow		Operation:	See description below			
Status Affected:	С				Status Affected:	С			
Encoding:	00	1101	dfff	ffff	Encoding:	00	1100	dfff	ffff
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.		Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. C - Register f			e rotated e Carry ced in the is placed		
Words:	1				Words:	1			
Cycles:	1				Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4	Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination		Decode	Read register 'f'	Process data	Write to destination
Example	RLF	REG	G1,0		Example	RRF		REG1,0	
	Before Ir	structior	า			Before Ir	structior	n	
		REG1	= 111	0 0110			REG1	= 111	0 0110
	Aftor Inc	C	= 0			A (1 1	C	= 0	
	Atter Instruction				After Inst		111	0 0110	
		W	= 110	0 1100			W	= 111 = 011	1 0011
		С	= 1				C	= 0	

Applicable Devices 72 73 73A 74 74A 76 77

17.1 DC Characteristics: PIC16C72-04 (Commercial, Industrial, Extended) PIC16C72-10 (Commercial, Industrial, Extended) PIC16C72-20 (Commercial, Industrial, Extended)

			Standard Operating Conditions (unless otherwise stated)						
DC CHA	RACTERISTICS		Operat	ing tem	peratu	re -4۔ 1-	10° C \leq IA \leq +125 °C for extended, 10° C \leq TA \leq +85 °C for industrial and		
						0°	$C \leq TA \leq +70^{\circ}C$ for commercial		
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions		
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration		
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V			
D003	VDD start voltage to ensure internal Power- on Reset Signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset Signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details		
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled		
			3.7	4.0	4.4	V	Extended Only		
D010	Supply Current (Note 2,5)	IDD	-	2.7	5.0	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)		
D013			-	10	20	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V		
D015	Brown-out Reset Current (Note 6)	ΔIBOR	-	350	425	μA	BOR enabled VDD = 5.0V		
D020	Power-down Current	IPD	-	10.5	42	μΑ	VDD = 4.0V, WDT enabled, -40° C to $+85^{\circ}$ C		
D021	(Note 3,5)		-	1.5	16	μA	$VDD = 4.0V$, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$		
D021A				1.5	19	μΑ μΑ	$VD = 4.0V$, $VD T$ disabled, $-40^{\circ}C$ to $+85^{\circ}C$		
D023	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled $VDD = 5.0V$		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.

The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 17-5: BROWN-OUT RESET TIMING

TABLE 17-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

Parameter	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
No.							
30	TmcL	MCLR Pulse Width (low)	2	_	—	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	—	-	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	_	2.1	μs	
35	TBOR	Brown-out Reset pulse width	100	—	—	μs	$VDD \le BVDD$ (D005)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 72 73 73A 74 74A 76 77

CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2) **TABLE 19-6**:

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2 No Prescaler			0.5Tcy + 20	-	_	ns	
	Input low time		PIC16 C 73A/74A	10	-	_	ns		
		With Prescaler	PIC16 LC 73A/74A	20	—	—	ns		
51*	51* TccH CCP1 and CCP2 No Preso		No Prescaler		0.5Tcy + 20	—		ns	
	input high time		PIC16 C 73A/74A	10	-	—	ns		
			with Prescaler	PIC16 LC 73A/74A	20	_	—	ns	
52*	TccP	CCP1 and CCP2 in	nput period		<u>3Tcy + 40</u> N	-	_	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 and CCP2 of	output rise time	PIC16 C 73A/74A	_	10	25	ns	
				PIC16 LC 73A/74A	—	25	45	ns	
54*	TccF	CCP1 and CCP2 output fall time		PIC16 C 73A/74A	—	10	25	ns	
				PIC16 LC 73A/74A	_	25	45	ns	

These parameters are characterized but not tested. t

Data in "Typ" column is at 5V, 25°C unless otherwise stated.

These parameters are for design guidance only and are not tested.

*

 Applicable Devices
 72
 73
 73A
 74
 74A
 76
 77

FIGURE 19-10: I²C BUS START/STOP BITS TIMING

TABLE 19-9. I C DUS START/STUP DITS REQUIREMENT	TABLE 19-9:	I ² C BUS START/STOP BITS REQUIREMENTS
---	-------------	---

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz mode	4700	-	—	ns	Only relevant for repeated START
		Setup time	400 kHz mode	600	—	—	113	condition
91	THD:STA	START condition	100 kHz mode	4000	—	—	ne	After this period the first clock
		Hold time	400 kHz mode	600	—	—	115	pulse is generated
92	Tsu:sto	STOP condition	100 kHz mode	4700	—	—	ne	
		Setup time	400 kHz mode	600	—	—	113	
93	THD:STO	STOP condition	100 kHz mode	4000	—	—	ne	
		Hold time	400 kHz mode	600	—	—	1 13	

PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 20-17: A/D CONVERSION TIMING

TABLE 20-14: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
130	TAD	A/D clock period	PIC16 C 76/77	1.6	_	_	μs	Tosc based, VREF ≥ 3.0V
			PIC16LC76/77	2.0	_	—	μs	Tosc based, VREF full range
			PIC16 C 76/77	2.0	4.0	6.0	μs	A/D RC Mode
			PIC16LC76/77	3.0	6.0	9.0	μs	A/D RC Mode
131	TCNV	Conversion time (not in (Note 1)	cluding S/H time)	_	9.5		TAD	
132	TACQ	Acquisition time		Note 2	20		μs	
				5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start		_	Tosc/2 §	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from convert	\rightarrow sample time	1.5 §	—	—	TAD	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 13.1 for min conditions.

TABLE 21-1: RC OSCILLATOR FREQUENCIES

Coxt	Povt	Average				
CEXI	Next	Fosc @ 5V, 25°C				
22 pF	5k	4.12 MHz	± 1.4%			
	10k	2.35 MHz	± 1.4%			
	100k	268 kHz	± 1.1%			
100 pF	3.3k	1.80 MHz	± 1.0%			
	5k	1.27 MHz	± 1.0%			
	10k	688 kHz	± 1.2%			
	100k	77.2 kHz	± 1.0%			
300 pF	3.3k	707 kHz	± 1.4%			
	5k	501 kHz	± 1.2%			
	10k	269 kHz	± 1.6%			
	100k	28.3 kHz	± 1.1%			

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 21-19: TRANSCONDUCTANCE(gm) OF HS OSCILLATOR vs. VDD

FIGURE 21-20: TRANSCONDUCTANCE(gm) OF LP OSCILLATOR vs. VDD

FIGURE 21-21: TRANSCONDUCTANCE(gm) OF XT OSCILLATOR vs. VDD

Data based on matrix samples. See first page of this section for details.

© 1997 Microchip Technology Inc.

22.3 28-Lead Plastic Dual In-line (300 mil) (SP)

Package Group: Plastic Dual In-Line (PLA)									
		Millimeters		Inches					
Symbol	Min	Max	Notes	Min	Max	Notes			
α	0°	10°		0°	10°				
Α	3.632	4.572		0.143	0.180				
A1	0.381	_		0.015	_				
A2	3.175	3.556		0.125	0.140				
В	0.406	0.559		0.016	0.022				
B1	1.016	1.651	Typical	0.040	0.065	Typical			
B2	0.762	1.016	4 places	0.030	0.040	4 places			
B3	0.203	0.508	4 places	0.008	0.020	4 places			
С	0.203	0.331	Typical	0.008	0.013	Typical			
D	34.163	35.179		1.385	1.395				
D1	33.020	33.020	Reference	1.300	1.300	Reference			
E	7.874	8.382		0.310	0.330				
E1	7.112	7.493		0.280	0.295				
e1	2.540	2.540	Typical	0.100	0.100	Typical			
eA	7.874	7.874	Reference	0.310	0.310	Reference			
eB	8.128	9.652		0.320	0.380				
L	3.175	3.683		0.125	0.145				
N	28	-		28	-				
S	0.584	1.220		0.023	0.048				

E.5 PIC16C55X Family of Devices

		PIC16C554	PIC16C556 ⁽¹⁾	PIC16C558
Clock	Maximum Frequency of Operation (MHz)	20	20	20
Memory	EPROM Program Memory (x14 words)	512	1K	2K
wentory	Data Memory (bytes)	80	80	128
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0
	Comparators(s)	—	—	—
	Internal Reference Voltage	—	—	—
	Interrupt Sources	3	3	3
	I/O Pins	13	13	13
	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0
Features	Brown-out Reset	—	—	—
	Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C5XX Family devices use serial programming with clock pin RB6 and data pin RB7. Note 1: Please contact your local Microchip sales office for availability of these devices.

E.6 PIC16C62X and PIC16C64X Family of Devices

		PIC16C620	PIC16C621	PIC16C622	PIC16C642	PIC16C662
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20
Memory	EPROM Program Memory (x14 words)	512	1K	2К	4K	4K
	Data Memory (bytes)	80	80	128	176	176
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0
	Comparators(s)	2	2	2	2	2
	Internal Reference Voltage	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	4	4	4	4	5
	I/O Pins	13	13	13	22	33
	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	3.0-6.0	3.0-6.0
Footuroo	Brown-out Reset	Yes	Yes	Yes	Yes	Yes
Teatules	Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin PDIP, SOIC, Windowed CDIP	40-pin PDIP, Windowed CDIP; 44-pin PLCC, MQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high

I/O current capability. All PIC16C62X and PIC16C64X Family devices use serial programming with clock pin RB6 and data pin RB7.