

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c76-04-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC16C7X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C7X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C7X family, there are two device "types" as indicated in the device number:

- 1. **C**, as in PIC16**C**74. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC16LC74. These devices have EPROM type memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PICSTART[®] Plus and PRO MATE[®] II programmers both support programming of the PIC16C7X.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number.

4.0 MEMORY ORGANIZATION Applicable Devices

72 73 73A 74 74A 76 77

4.1 Program Memory Organization

The PIC16C7X family has a 13-bit program counter capable of addressing an $8K \times 14$ program memory space. The amount of program memory available to each device is listed below:

Device	Program Memory	Address Range
PIC16C72	2K x 14	0000h-07FFh
PIC16C73	4K x 14	0000h-0FFFh
PIC16C73A	4K x 14	0000h-0FFFh
PIC16C74	4K x 14	0000h-0FFFh
PIC16C74A	4K x 14	0000h-0FFFh
PIC16C76	8K x 14	0000h-1FFFh
PIC16C77	8K x 14	0000h-1FFFh

For those devices with less than 8K program memory, accessing a location above the physically implemented address will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 4-2: PIC16C73/73A/74/74A PROGRAM MEMORY MAP AND STACK

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (3)
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	то	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ac	Idress pointe	er					XXXX XXXX	uuuu uuuu
85h	TRISA	_	_		11 1111	11 1111					
86h	TRISB	PORTB Dat	ta Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Dat	ta Direction F	Register						1111 1111	1111 1111
88h	_	Unimpleme	nted							_	_
89h	_	Unimpleme	nted							_	—
8Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	r for the uppe	er 5 bits of the	e PC		0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	_	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
8Dh	_	Unimpleme	nted							_	_
8Eh	PCON	_	_	_	_	—	_	POR	BOR	dd	uu
8Fh	-	Unimpleme	nted							-	_
90h	_	Unimpleme	nted							_	_
91h	_	Unimpleme	nted							-	_
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Port	(I ² C mode)	Address Reg	gister				0000 0000	0000 0000
94h	SSPSTAT	—	-	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
95h	—	Unimpleme	nted							—	—
96h	—	Unimpleme	nted							—	—
97h	-	Unimpleme	nted							-	_
98h	_	Unimpleme	nted							—	_
99h	—	Unimpleme	nted							—	—
9Ah	-	Unimpleme	Unimplemented								
9Bh	-	Unimpleme	Unimplemented								
9Ch	_	Unimpleme	Unimplemented —								
9Dh	_	Unimpleme	nted								—
9Eh	_	Unimplemented							_	—	
9Fh	ADCON1	-	-	_	—	—	PCFG2	PCFG1	PCFG0	000	000

TABLE 4-1: PIC16C72 SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C72, always maintain these bits clear.

	· · - · ·												
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (2)		
Bank 0)												
00h ⁽⁴⁾	INDF	Addressing	this location	uses conten	ts of FSR to a	ddress data r	memory (not	a physical re	egister)	0000 0000	0000 0000		
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu		
02h ⁽⁴⁾	PCL	Program Co	Program Counter's (PC) Least Significant Byte										
03h ⁽⁴⁾	STATUS	IRP ⁽⁷⁾	RP1 ⁽⁷⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu		
04h ⁽⁴⁾	FSR	Indirect data	a memory ac	dress pointe	er	•				XXXX XXXX	uuuu uuuu		
05h	PORTA	_	—	PORTA Dat	a Latch when	written: POR	TA pins wher	n read		0x 0000	0u 0000		
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins whe	n read				XXXX XXXX	uuuu uuuu		
07h	PORTC	PORTC Dat	ta Latch whe	n written: PC	ORTC pins whe	en read				XXXX XXXX	uuuu uuuu		
08h ⁽⁵⁾	PORTD	PORTD Dat	ta Latch whe	n written: PC	ORTD pins whe	en read				XXXX XXXX	uuuu uuuu		
09h (5)	PORTE	—	_	_	_	_	RE2	RE1	RE0	xxx	uuu		
0Ah ^(1,4)	PCLATH	—	—	—	Write Buffer fo	or the upper	5 bits of the I	Program Cou	inter	0 0000	0 0000		
0Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u		
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000		
0Dh	PIR2	—	—	—	-	-	—	—	CCP2IF	0	0		
0Eh	TMR1L	Holding reg	ister for the L	_east Signific	cant Byte of the	e 16-bit TMR	1 register			XXXX XXXX	uuuu uuuu		
0Fh	TMR1H	Holding reg	ister for the I	Most Signific	ant Byte of the	16-bit TMR1	register			XXXX XXXX	uuuu uuuu		
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu		
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000		
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000		
13h	SSPBUF	Synchronou	is Serial Port	Receive Bu	ffer/Transmit R	egister				XXXX XXXX	uuuu uuuu		
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000		
15h	CCPR1L	Capture/Co	mpare/PWM	Register1 (I	_SB)					XXXX XXXX	uuuu uuuu		
16h	CCPR1H	Capture/Co	mpare/PWM	Register1 (I	MSB)					XXXX XXXX	uuuu uuuu		
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000		
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x		
19h	TXREG	USART Trai	nsmit Data R	egister	•					0000 0000	0000 0000		
1Ah	RCREG	USART Red	ceive Data R	egister						0000 0000	0000 0000		
1Bh	CCPR2L	Capture/Co	mpare/PWM	Register2 (I	_SB)					XXXX XXXX	uuuu uuuu		
1Ch	CCPR2H	Capture/Compare/PWM Register2 (MSB)								XXXX XXXX	uuuu uuuu		
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000		
1Eh	ADRES	A/D Result	Register							XXXX XXXX	uuuu uuuu		
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0		

 TABLE 4-2:
 PIC16C73/73A/74/74A SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

4: These registers can be addressed from either bank.

5: PORTD and PORTE are not physically implemented on the PIC16C73/73A, read as '0'.

6: Brown-out Reset is not implemented on the PIC16C73 or the PIC16C74, read as '0'.

7: The IRP and RP1 bits are reserved on the PIC16C73/73A/74/74A, always maintain these bits clear.

4.2.2.5 PIR1 REGISTER

Applicable Devices

This register contains the individual flag bits for the Peripheral interrupts.

FIGURE 4-12: PIR1 REGISTER PIC16C72 (ADDRESS 0Ch)

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

U-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 ADIF SSPIF CCP1IF TMR2IF TMR1IF = Readable bit R = Writable bit W bit0 bit7 = Unimplemented bit, U read as '0' n = Value at POR reset bit 7: Unimplemented: Read as '0' bit 6: ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed (must be cleared in software) 0 = The A/D conversion is not complete bit 5-4: Unimplemented: Read as '0' bit 3: SSPIF: Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive bit 2: CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode TMR2IF: TMR2 to PR2 Match Interrupt Flag bit bit 1: 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred bit 0: TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register did not overflow Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

5.6 <u>I/O Programming Considerations</u> Applicable Devices 72 73 73A 74 74A 76 77

5.6.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched to an output, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-4 shows the effect of two sequential readmodify-write instructions on an I/O port.

EXAMPLE 5-4: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs
; PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
;not connected to other circuitry

'								
;					PORT	latch	PORT P	pins
;								
	BCF	PORTB,	7	;	01pp	pppp	11pp	pppp
	BCF	PORTB,	б	;	10pp	pppp	11pp	pppp
	BSF	STATUS,	RP0	;				
	BCF	TRISB,	7	;	10pp	pppp	11pp	pppp
	BCF	TRISB,	б	;	10pp	pppp	10pp	pppp
;								

;Note that the user may have expected the ;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

5.6.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-10). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/ O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-10: SUCCESSIVE I/O OPERATION

To enable the serial port, SSP enable bit SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear enable bit SSPEN, re-initialize SSPCON register, and then set enable bit SSPEN. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRIS register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- <u>SS</u> must have TRISA<5> set (if implemented)

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value. An example would be in master mode where you are only sending data (to a display driver), then both SDI and SS could be used as general purpose outputs by clearing their corresponding TRIS register bits.

Figure 11-4 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- · Master sends dummy data Slave sends data

FIGURE 11-4: SPI MASTER/SLAVE CONNECTION

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2) is to broadcast data by the software protocol.

In master mode the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SCK output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "line activity monitor" mode.

In slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched interrupt flag bit SSPIF (PIR1<3>) is set.

The clock polarity is selected by appropriately programming bit CKP (SSPCON<4>). This then would give waveforms for SPI communication as shown in Figure 11-5 and Figure 11-6 where the MSB is transmitted first. In master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or TCY)
- Fosc/16 (or 4 TCY)
- Fosc/64 (or 16 TCY)
- Timer2 output/2

This allows a maximum bit clock frequency (at 20 MHz) of 5 MHz. When in slave mode the external clock must meet the minimum high and low times.

In sleep mode, the slave can transmit and receive data and wake the device from sleep.

12.1 USART Baud Rate Generator (BRG) Applicable Devices 72 73 73A 74 74A 76 77

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In asynchronous mode bit BRGH (TXSTA<2>) also controls the baud rate. In synchronous mode bit BRGH is ignored. Table 12-1 shows the formula for computation of the baud rate for different USART modes which only apply in master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 12-1. From this, the error in baud rate can be determined.

Example 12-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 BRGH = 0 SYNC = 0

EXAMPLE 12-1: CALCULATING BAUD RATE ERROR

Desired Baud rate = Fosc / (64 (X + 1))

 $9600 = \frac{16000000}{(64 (X + 1))}$

 $X = \lfloor 25.042 \rfloor = 25$

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615

- Error = (Calculated Baud Rate Desired Baud Rate) Desired Baud Rate
 - = (9615 9600) / 9600

= 0.16%

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Note:	For the PIC16C73/73A/74/74A, the asyn- chronous high speed mode (BRGH = 1) may experience a high rate of receive errors. It is recommended that BRGH = 0. If you desire a higher baud rate than BRGH = 0 can support, refer to the device errata for additional information, or use the DIC16C76/77
	PIC16C76/77.

Writing a new value to the SPBRG register, causes the BRG timer to be reset (or cleared), this ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

TABLE 12-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate= Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	NA

X = value in SPBRG (0 to 255)

TABLE 12-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
99h	SPBRG	Baud R	ate Gen	erator Re		0000 0000	0000 0000				

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the BRG.

TABLE 12-3: BAUD RATES FOR SYNCHRONOUS MODE

BAUD	FOSC = 20 MHz SPBRO		SPBRG	G 16 MHz SPBRG			10 MHz		SPBRG	7.15909	MHz	SPBRG
RATE (K)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-
9.6	NA	-	-	NA	-	-	9.766	+1.73	255	9.622	+0.23	185
19.2	19.53	+1.73	255	19.23	+0.16	207	19.23	+0.16	129	19.24	+0.23	92
76.8	76.92	+0.16	64	76.92	+0.16	51	75.76	-1.36	32	77.82	+1.32	22
96	96.15	+0.16	51	95.24	-0.79	41	96.15	+0.16	25	94.20	-1.88	18
300	294.1	-1.96	16	307.69	+2.56	12	312.5	+4.17	7	298.3	-0.57	5
500	500	0	9	500	0	7	500	0	4	NA	-	-
HIGH	5000	-	0	4000	-	0	2500	-	0	1789.8	-	0
LOW	19.53	-	255	15.625	-	255	9.766	-	255	6.991	-	255

	Fosc =	SC = 5.0688 MHz 4 MHz					3.57954	5 MHz		1 MHz			32.768 kHz		
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-	0.303	+1.14	26
1.2	NA	-	-	NA	-	-	NA	-	-	1.202	+0.16	207	1.170	-2.48	6
2.4	NA	-	-	NA	-	-	NA	-	-	2.404	+0.16	103	NA	-	-
9.6	9.6	0	131	9.615	+0.16	103	9.622	+0.23	92	9.615	+0.16	25	NA	-	-
19.2	19.2	0	65	19.231	+0.16	51	19.04	-0.83	46	19.24	+0.16	12	NA	-	-
76.8	79.2	+3.13	15	76.923	+0.16	12	74.57	-2.90	11	83.34	+8.51	2	NA	-	-
96	97.48	+1.54	12	1000	+4.17	9	99.43	+3.57	8	NA	-	-	NA	-	-
300	316.8	+5.60	3	NA	-	-	298.3	-0.57	2	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	1267	-	0	100	-	0	894.9	-	0	250	-	0	8.192	-	0
LOW	4.950	-	255	3.906	-	255	3.496	-	255	0.9766	-	255	0.032	-	255

TABLE 12-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	Fosc = 2	= 20 MHz SPBRG		G 16 MHz SPBRG 10			10 MHz		SPBRG	7.15909	SPBRG	
RATE		%	value		%	value		%	value		%	value
(K)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	1.221	+1.73	255	1.202	+0.16	207	1.202	+0.16	129	1.203	+0.23	92
2.4	2.404	+0.16	129	2.404	+0.16	103	2.404	+0.16	64	2.380	-0.83	46
9.6	9.469	-1.36	32	9.615	+0.16	25	9.766	+1.73	15	9.322	-2.90	11
19.2	19.53	+1.73	15	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5
76.8	78.13	+1.73	3	83.33	+8.51	2	78.13	+1.73	1	NA	-	-
96	104.2	+8.51	2	NA	-	-	NA	-	-	NA	-	-
300	312.5	+4.17	0	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	312.5	-	0	250	-	0	156.3	-	0	111.9	-	0
LOW	1.221	-	255	0.977	-	255	0.6104	-	255	0.437	-	255

	FOSC = 5.0688 MHz			4 MHz			3.579545 MHz			1 MHz			32.768 kHz		
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	0.31	+3.13	255	0.3005	-0.17	207	0.301	+0.23	185	0.300	+0.16	51	0.256	-14.67	1
1.2	1.2	0	65	1.202	+1.67	51	1.190	-0.83	46	1.202	+0.16	12	NA	-	-
2.4	2.4	0	32	2.404	+1.67	25	2.432	+1.32	22	2.232	-6.99	6	NA	-	-
9.6	9.9	+3.13	7	NA	-	-	9.322	-2.90	5	NA	-	-	NA	-	-
19.2	19.8	+3.13	3	NA	-	-	18.64	-2.90	2	NA	-	-	NA	-	-
76.8	79.2	+3.13	0	NA	-	-	NA	-	-	NA	-	-	NA	-	-
96	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	79.2	-	0	62.500	-	0	55.93	-	0	15.63	-	0	0.512	-	0
LOW	0.3094	-	255	3.906	-	255	0.2185	-	255	0.0610	-	255	0.0020	-	255

12.4 USART Synchronous Slave Mode

Applicable Devices 72 73 73A 74 74A 76 77

Synchronous slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

12.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

12.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the synchronous master and slave modes is identical except in the case of the SLEEP mode. Also, bit SREN is a don't care in slave mode.

If receive is enabled, by setting bit CREN, prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

- 1. Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

COMF	Complement f	DECFSZ	Decrement f, Skip if 0
Syntax:	[<i>label</i>] COMF f,d	Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	$(\overline{f}) \rightarrow$ (destination)	Operation:	(f) - 1 \rightarrow (destination);
Status Affected:	Z		skip if result = 0
Encoding:	00 1001 dfff ffff	Status Affected:	None
Description:	The contents of register 'f' are comple-	Encoding:	00 1011 dfff ffff
Wordo:	W. If 'd' is 1 the result is stored back in register 'f'.	Description:	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'
vvoras:			If the result is 1, the next instruction, is
Cycles: Q Cycle Activity:	1 Q1 Q2 Q3 Q4		executed instead making it a 2Tcy instruc- tion.
	Decode Read Process Write to	Words:	1
	register data destination	Cycles:	1(2)
		Q Cycle Activity:	Q1 Q2 Q3 Q4
Example	COMF REG1,0 Before Instruction		Decode Read register 'f' Process Write to data destination
	REG1 = 0x13	If Skip:	(2nd Cycle)
	After Instruction REG1 = $0x13$		Q1 Q2 Q3 Q4
	W = 0xEC		No- No- No- Operation Operation Operation Operation
DECF	Decrement f	Evenale	
Syntax:	[<i>label</i>] DECF f,d	Example	HERE DECFSZ CNT, I GOTO LOOP
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$		CONTINUE •
Operation:	(f) - 1 \rightarrow (destination)		Before Instruction
Status Affected:	Z		PC = address HERE
Encoding:	00 0011 dfff ffff		CNT = CNT - 1
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.		if CNT = 0, PC = address CONTINUE
Words:	1		PC = address HERE+1
Cycles:	1		
Q Cycle Activity:	Q1 Q2 Q3 Q4		
	Decode Read Process Write to		
	register data destination		
Example	DECF CNT, 1		
Example	DECF CNT, 1 Before Instruction CNT = 0x01		

PIC16C7X

Inclusive	e OR W v	with f	
[label]	IORWF	f,d	
$0 \le f \le 12$ $d \in [0,1]$	27		
(W) .OR.	$(f) \rightarrow (de)$	estination)
Z			
00	0100	dfff	ffff
Inclusive C ter 'f'. If 'd' W register back in reg	OR the W is 0 the re . If 'd' is 1 gister 'f'.	register wi sult is place the result	ith regis- ced in the is placed
1			
1			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process data	Write to destination
IORWF		RESULT,	0
Before In	struction	I	
	RESULT	= 0x13	3
After Inst	ruction	- 0001	
	RESULT	= 0x13	3
	W	= 0x93	3
	Inclusive [label] $0 \le f \le 12$ $d \in [0,1]$ (W) .OR. Z 00 Inclusive O ter 'f'. If 'd' W register back in reg 1 1 Q1 Decode IORWF Before In After Inst	Inclusive OR W $[label]$ IORWF $0 \le f \le 127$ $d \in [0,1]$ (W) .OR. $(f) \rightarrow (de Z)$ 00 0100Inclusive OR the Wter 'f'. If 'd' is 0 the reW register. If 'd' is 0 the reW register. If 'd' is 1back in register 'f'.11Q1Q2DecodeReadregister'f'IORWFBefore InstructionRESULTWAfter InstructionRESULTW	Inclusive OR W with f[label]IORWFf,d $0 \le f \le 127$ $d \in [0,1]$ (W) .OR. (f) \rightarrow (destination Z 00 0100dfffInclusive OR the W register with ter 'f'. If 'd' is 0 the result is place W register. If 'd' is 1 the result back in register 'f'.11Q1Q2Q3DecodeRead register 'f'Process dataIORWFRESULT ,Before Instruction RESULT = 0x13 W = 0x91After Instruction RESULT = 0x13 W = 0x93

MOVLW	Move Lit	eral to V	v	
Syntax:	[label]	MOVLW	/ k	
Operands:	$0 \le k \le 2\xi$	55		
Operation:	$k \to (W)$			
Status Affected:	None			
Encoding:	11	00xx	kkkk	kkkk
Description:	The eight register. Th as 0's.	bit literal ' ne don't c	k' is loaded ares will as	d into W ssemble
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal 'k'	Process data	Write to W
Example	MOVLW After Inst	0x5A ruction W =	0x5A	

MOVF	Move f			
Syntax:	[label]	MOVF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	7		
Operation:	$(f) \rightarrow (des$	stination)	
Status Affected:	Z			
Encoding:	00	1000	dfff	ffff
Description:	The contendestination of d. If $d = 1$, the itself. $d = 1$ ter since s	nts of regi n dependa 0, destina destinatio l is useful tatus flag	ister f is mo ant upon th tion is W r n is file reg to test a f Z is affect	oved to a ne status egister. If gister f ile regis- ed.
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination
Example	MOVF	FSR,	0	
	After Inst	ruction W = valu Z = 1	ie in FSR i	register

MOVWF	Move W	to f		
Syntax:	[label]	MOVW	= f	
Operands:	$0 \le f \le 12$	27		
Operation:	$(W) \rightarrow (f)$			
Status Affected:	None			
Encoding:	00	0000	lff	ffff
Description:	Move data 'f'.	from W r	egister 1	to register
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Proces data	S Write register 'f'
Example	MOVWF	OPTIC	N_REG	
	Before In	struction OPTION W	= 0x = 0x	(FF (4F
	After Inst	ruction OPTION W	= 0x	(4F

RLF	Rotate L	.eft f thre	ough Ca	rry	RRF	RRF Rotate Right f through			
Syntax:	[label]	RLF	f,d		Syntax:	[label]	RRF f	,d	
Operands:	0 ≤ f ≤ 12 d ∈ [0,1]	27			Operands:	$0 \le f \le 12$ $d \in [0,1]$	27		
Operation:	See des	cription b	elow		Operation:	See dese	cription b	elow	
Status Affected:	С				Status Affected:	С			
Encoding:	00	1101	dfff	ffff	Encoding:	00	1100	dfff	ffff
Description:	The conte one bit to Flag. If 'd' W registe back in re	ents of reg the left th is 0 the re r. If 'd' is 1 gister 'f'.	ister 'f' are rough the esult is plac the result Register f	e rotated Carry ced in the is stored	Description:	The conte one bit to Flag. If 'd' W register back in re	ents of reg the right t is 0 the re r. If 'd' is 1 gister 'f'. $C \rightarrow $	ister 'f' are hrough the soult is pla the result Register f	e rotated e Carry ced in the is placed
Words:	1				Words:	1			
Cycles:	1				Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4	Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination		Decode	Read register 'f'	Process data	Write to destination
Example	RLF	REG	G1,0		Example	RRF		REG1,0	
	Before Ir	structior	า			Before Ir	structior	n	
		REG1	= 111	0 0110			REG1	= 111	0 0110
	Aftor Inc	C	= 0			A (1 1	C	= 0	
	Aller IIIS	REG1	- 111	0 0110		After Inst		111	0 0110
		W	= 110	0 1100			W	= 111 = 011	1 0011
		С	= 1				C	= 0	

	PIC12C5XX	PIC14000	PIC16C5X	PIC16CXXX	PIC16C6X	PIC16C7XX	PIC16C8X	PIC16C9XX	PIC17C4X	PIC17C75X	24CXX 25CXX 93CXX	HCS200 HCS300 HCS301
E ator	>	2	7	2	7	2	2	>	2	Available 3Q97		
ost Ilator	7		7	7	7	7	7					
	2	7	7	7	7	7	7	7	7	7		
	7	7	7	7	7	7	2	>	7	2		
MP noi	2	7	7	7	7	7	7	7	7			
/™ Itor			7	7	7	7	7		7			
ince™ del											7	
w-Cost			7		7	7	2					
ost ev. Kit	7	7	7	7	7	7	7	7	7	7		
=	7	7	7	7	7	7	2	7	7	7	7	7
												7
It											7	
			7	7			7		7			
					7	2						
								7				
Git												7

TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 18-3: CLKOUT AND I/O TIMING

TABLE 10-3. CENCOT AND I/O HIMING NEQUINEMENTS	TABLE 18-3:	CLKOUT AND I/O TIMING REQUIREMENTS
--	-------------	---

Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valie	b	_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOL	JT ↑	0.25Tcy + 25	—	—	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	\uparrow	0	—	—	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		—	50	150	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to	PIC16 C 73/74	100	—	_	ns	
		Port input invalid (I/O in hold time)	PIC16 LC 73/74	200	—		ns	
19*	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)		0	—	—	ns	
20*	TioR	Port output rise time	PIC16 C 73/74	—	10	25	ns	
			PIC16 LC 73/74	—	—	60	ns	
21*	TioF	Port output fall time	PIC16 C 73/74	—	10	25	ns	
			PIC16 LC 73/74	_	_	60	ns	
22††*	Tinp	INT pin high or low time		Тсү	_		ns	
23††*	Trbp	RB7:RB4 change INT high	or low time	Тсү	_		ns	

* These parameters are characterized but not tested.

†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77

TABLE 20-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param	Sym	Characteristic			Min	Typ†	Max	Units	Conditions
NO.				r					
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5Tcy + 20	—	—	ns	Must also meet
				With Prescaler	10	—	-	ns	parameter 42
41*	TtOL	T0CKI Low Pulse W	/idth	No Prescaler	0.5Tcy + 20	—	—	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	TCY + 40	—	—	ns	
				With Prescaler	Greater of:	-	—	ns	N = prescale value
					20 or <u>Tcy + 40</u>				(2, 4,, 256)
1=+		TORIN			N				
45*	It1H	I1CKI High Lime	Synchronous, P	rescaler = 1	0.51CY + 20			ns	Must also meet
			Synchronous,	PIC16 C 7X	15			ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 7X	25	-	-	ns	
			Asynchronous	PIC16 C 7X	30	-	- 1	ns	
				PIC16 LC 7X	50	-	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, F	Prescaler = 1	0.5TCY + 20	—	—	ns	Must also meet
			Synchronous,	PIC16 C 7X	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 7X	25	-	_	ns	
			Asynchronous	PIC16 C 7X	30	_	—	ns	
				PIC16 LC 7X	50	_	-	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 7X	Greater of: 30 OR <u>TCY + 40</u>	-	_	ns	N = prescale value (1, 2, 4, 8)
					Greater of:				N – prescale value
					50 or Tcy + 40				$(1 \ 2 \ 4 \ 8)$
					N				(., _, ., ., .)
			Asynchronous	PIC16 C 7X	60	-	-	ns	
				PIC16 LC 7X	100	-	-	ns	
	Ft1	Timer1 oscillator inp	out frequency rar	nge	DC	—	200	kHz	
		(oscillator enabled b	by setting bit T1C	SCEN)					
48	TCKEZtmr1	Delay from external	clock edge to tir	ner increment	2Tosc	-	7Tosc	—	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

22.8 44-Lead Plastic Surface Mount (MQFP 10x10 mm Body 1.6/0.15 mm Lead Form) (PQ)

	Package Group: Plastic MQFP							
		Millimeters		Inches				
Symbol	Min	Мах	Notes	Min	Мах	Notes		
α	0°	7°		0°	7 °			
A	2.000	2.350		0.078	0.093			
A1	0.050	0.250		0.002	0.010			
A2	1.950	2.100		0.768	0.083			
b	0.300	0.450	Typical	0.011	0.018	Typical		
С	0.150	0.180		0.006	0.007			
D	12.950	13.450		0.510	0.530			
D1	9.900	10.100		0.390	0.398			
D3	8.000	8.000	Reference	0.315	0.315	Reference		
E	12.950	13.450		0.510	0.530			
E1	9.900	10.100		0.390	0.398			
E3	8.000	8.000	Reference	0.315	0.315	Reference		
е	0.800	0.800		0.031	0.032			
L	0.730	1.030		0.028	0.041			
N	44	44		44	44			
CP	0.102	-		0.004	-			

PIC16C7X

Table 18-2:	external Clock Timing
	Requirements
Table 18-3:	CLKOUT and I/O Timing
Table 18-4	Reset Watchdog Timer Oscillator
	Start-up Timer and Power-up Timer
	Requirements 191
Table 18-5:	Timer() and Timer1 External Clock
	Requirements
Table 18-6:	Capture/Compare/PWM
	Requirements (CCP1 and CCP2)
Table 18-7:	Parallel Slave Port Requirements
	(PIC16C74) 194
Table 18-8:	SPI Mode Requirements 195
Table 18-9:	I ² C Bus Start/Stop Bits
	Requirements196
Table 18-10:	I ² C Bus Data Requirements197
Table 18-11:	USART Synchronous Transmission
	Requirements198
Table 18-12:	usart Synchronous Receive
	Requirements198
Table 18-13:	A/D Converter Characteristics:
	PIC16C73/74-04
	(Commercial, Industrial)
	PIC16C73/74-10
	(Commercial, Industrial)
	PIC16C73/74-20
	PIC16LC73/74-04
Table 18-14.	A/D Conversion Requirements 200
Table 10-14.	A/D Conversion Requirements
	for Oscillator Configurations and
	Frequencies of Operation
	(Commercial Devices) 201
Table 19-2	External Clock Timing
10010 10 2.	Requirements
Table 19-3:	CLKOUT and I/O Timing
	Requirements
Table 19-4:	Reset, Watchdog Timer, Oscillator
	Start-up Timer, Power-up Timer,
	and brown-out reset Requirements
Table 19-5:	Timer0 and Timer1 External Clock
	Requirements210
Table 19-6:	Capture/Compare/PWM
	Requirements (CCP1 and CCP2)
Table 19-7:	Parallel Slave Port Requirements
	(PIC16C74A)212
Table 19-8:	SPI Mode Requirements
Table 19-9:	I ² C Bus Start/Stop Bits Requirements 214
Table 19-10:	I ² C Bus Data Requirements215
Table 19-11:	USART Synchronous Transmission
	Requirements
Table 19-12:	USART Synchronous Receive
	Requirements
1 adle 19-13:	A/D COnverter Characteristics:
	PIC16C73A/74A-04
	(Commercial, industrial, Extended)
	FIGIOUIDAVIAA-IU
	(Commercial Industrial Extended)
	PIC16I C73A/74A-04
	(Commercial, Industrial) 217
Table 19-14	A/D Conversion Requirements 218
	210

Table 20-1:	Cross Reference of Device Specs	
	for Oscillator Configurations and	
	Frequencies of Operation	
	(Commercial Devices) 220	
Table 20-2:	External Clock Timing	
	Requirements 226	
Table 20-3:	CLKOUT and I/O Timing	
	Requirements 227	
Table 20-4:	Reset. Watchdog Timer.	
	Oscillator Start-up Timer, Power-up	
	Timer, and brown-out reset	
	Requirements	
Table 20-5:	Timer0 and Timer1 External Clock	
	Requirements 229	
Table 20-6:	Capture/Compare/PWM	
	Requirements (CCP1 and CCP2)	
Table 20-7:	Parallel Slave Port Requirements	
	(PIC16C77)	
Table 20-8:	SPI Mode requirements 234	
Table 20-9:	I ² C Bus Start/Stop Bits Requirements 235	
Table 20-10:	I ² C Bus Data Requirements	
Table 20-11:	able 20-11: USART Synchronous Transmission	
	Requirements	
Table 20-12:	USART Synchronous Receive	
	Requirements	
Table 20-13:	A/D Converter Characteristics:	
	PIC16C76/77-04	
	(Commercial, Industrial, Extended)	
	PIC16C76/77-10	
	(Commercial, Industrial, Extended)	
	PIC16C76/77-20	
	(Commercial, Industrial, Extended)	
	PIC16LC76/77-04	
	(Commercial, Industrial) 238	
Table 20-14:	A/D Conversion Requirements 239	
Table 21-1:	RC Oscillator Frequencies 247	
Table 21-2:	Capacitor Selection for Crystal	
	Oscillators 248	
Table E-1:	Pin Compatible Devices	

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent		
RE:	: Reader Response			
Fro	From: Name			
	Company			
	Address			
	City / State / ZIP / Country			
Telephone:				
Would you like a reply?YN				
Device: PIC16C6X Literature Number: DS30390E				
Que	estions:			
1 What are the best features of this document?				
1.	1. What are the best reatures of this document?			
2.	. How does this document meet your hardware and software development needs?			
3.	Do you find the organization of this data she	et easy to follow? If not, why?		
4.	. What additions to the data sheet do you think would enhance the structure and subject?			
5.	What deletions from the data sheet could be	e made without affecting the overall usefulness?		
6.	Is there any incorrect or misleading information (what and where)?			
7.	How would you improve this document?			
8.	How would you improve our software, system	ms, and silicon products?		