

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c76-04e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-4: PIC16C72 REGISTER FILE MAP

File Address	3		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	
03h	STATUS	STATUS	
04h	FSR	FSR	
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	PORTC	TRISC	
08h			
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh	TMR1L	PCON	8Eh
0Fh	TMR1H		8Fh
10h	T1CON		90h
11h	TMR2		91h
12h	T2CON	PR2	92h
13h	SSPBUF	SSPADD	93h
14h	SSPCON	SSPSTAT	
15h	CCPR1L		95h
16h	CCPR1H		96h
17h	CCP1CON		97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh	ADRES		9Eh
1Fh	ADCON0	ADCON1	9Fh
20h			A0h
	General Purpose	General Purpose	
	Register	Register	
	U U		BFh
			C0h
7Fh			FFh
	Bank 0	Bank 1	
	nimplemented data	a memory locations	s, read as
'0'. Note 1: 1	Not a physical regis	stor	
	tot a priysical regit	лот.	

FIGURE 4-5: PIC16C73/73A/74/74A REGISTER FILE MAP

	REGIST	ER FILE MA	F
File Addres	SS		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	PORTC	TRISC	
08h	PORTD ⁽²⁾	TRISD ⁽²⁾	
09h	PORTE ⁽²⁾	TRISE ⁽²⁾	89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh	PIR2	PIE2	8Dh
0Eh	TMR1L	PCON	8Eh
0Fh	TMR1H		8Fh
10h	T1CON		90h
11h	TMR2		91h
12h	T2CON	PR2	
13h	SSPBUF	SSPADD	93h
14h	SSPCON	SSPSTAT	94h
15h	CCPR1L		95h
16h	CCPR1H		96h
17h	CCP1CON		97h
18h	RCSTA	TXSTA	
19h	TXREG	SPBRG	99h
1Ah	RCREG		9Ah
1Bh	CCPR2L		9Bh
1Ch	CCPR2H		9Ch
1Dh	CCP2CON		9Dh
1Eh	ADRES		9Eh
1Fh	ADCON0	ADCON1	9Fh
20h			A0h
	General Purpose Register	General Purpose Register	
7Fh			FFh
	Bank 0	Bank 1	
	Unimplemented da	-	ons, read as
Note 1: 2:	Not a physical reg These registers ar mented on the PIC	e not physically	

4.2.2.2 OPTION REGISTER

Applicable Devices

72 73 73A 74 74A 76 77

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the External INT Interrupt, TMR0, and the weak pull-ups on PORTB.

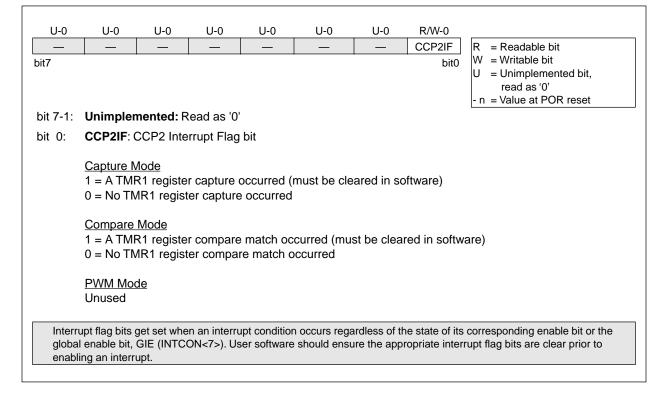
FIGURE 4-8: OPTION REGISTER (ADDRESS 81h, 181h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	R = Readable bit				
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset				
bit 7:	RBPU : PO 1 = PORTE 0 = PORTE	3 pull-ups	s are disat	bled	vidual port	latch value	es					
bit 6:	INTEDG: In 1 = Interru 0 = Interru	pt on risir	ng edge of	f RB0/INT								
bit 5:	1 = Transit	0 = Interrupt on falling edge of RB0/INT pin T0CS : TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT)										
bit 4:	1 = Increm	TOSE : TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin										
bit 3:	1 = Presca	 PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module 										
bit 2-0:	PS2:PS0:	Prescale	r Rate Sel	ect bits								
	Bit Value	TMR0 R	ate WD	Γ Rate								
	000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:12 1:25	2 1: 1: 28 1:	2 4								

FIGURE 4-11: PIE1 REGISTER PIC16C73/73A/74/74A/76/77 (ADDRESS 8Ch)

PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	R	= Readable bit
bit7	1						bit0	U	 Writable bit Unimplemented bit, read as '0' Value at POR reset
bit 7:	1 = Enabl	Parallel S es the PS les the PS	P read/wr	te interrup		Enable bit			
bit 6:	1 = Enabl	D Converte les the A/E les the A/I) interrupt		it				
bit 5:	1 = Enabl	ART Rece es the US les the US	ART recei	ve interrup	ot				
bit 4:	1 = Enabl	ART Trans es the US les the US	ART trans	mit interru	ıpt				
bit 3:	1 = Enabl	ynchronou es the SS les the SS	P interrup	t	pt Enable b	bit			
bit 2:	1 = Enabl	CCP1 Inte les the CC les the CC	P1 interru	pt					
bit 1:	1 = Enabl	TMR2 to F es the TM les the TM	R2 to PR2	2 match in	•				
bit 0:	1 = Enabl	TMR1 Ove es the TM les the TM	R1 overflo	w interrup	ot				
Note 1:	PIC16C73					Slave Port i	mplemente	ed, tl	his bit location is reserved

4.2.2.7 PIR2 REGISTER


Applicable Devices

72 73 73A 74 74A 76 77

This register contains the CCP2 interrupt flag bit.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-15: PIR2 REGISTER (ADDRESS 0Dh)

6.0 OVERVIEW OF TIMER MODULES

Applicable Devices

The PIC16C72, PIC16C73/73A, PIC16C74/74A, PIC16C76/77 each have three timer modules.

Each module can generate an interrupt to indicate that an event has occurred (i.e. timer overflow). Each of these modules is explained in full detail in the following sections. The timer modules are:

- Timer0 Module (Section 7.0)
- Timer1 Module (Section 8.0)
- Timer2 Module (Section 9.0)

6.1 <u>Timer0 Overview</u> Applicable Devices 72|73|73A|74|74A|76|77

The Timer0 module is a simple 8-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock. When the clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

The Timer0 module also has a programmable prescaler option. This prescaler can be assigned to either the Timer0 module or the Watchdog Timer. Bit PSA (OPTION<3>) assigns the prescaler, and bits PS2:PS0 (OPTION<2:0>) determine the prescaler value. Timer0 can increment at the following rates: 1:1 (when prescaler assigned to Watchdog timer), 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, and 1:256 (Timer0 only).

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

6.2 <u>Timer1 Overview</u> Applicable Devices 72 73 73 74 74 76 77

Timer1 is a 16-bit timer/counter. The clock source can be either the internal system clock (Fosc/4), an external clock, or an external crystal. Timer1 can operate as either a timer or a counter. When operating as a counter (external clock source), the counter can either operate synchronized to the device or asynchronously to the device. Asynchronous operation allows Timer1 to operate during sleep, which is useful for applications that require a real-time clock as well as the power savings of SLEEP mode.

Timer1 also has a prescaler option which allows Timer1 to increment at the following rates: 1:1, 1:2, 1:4, and 1:8. Timer1 can be used in conjunction with the Capture/Compare/PWM module. When used with a CCP module, Timer1 is the time-base for 16-bit Capture or the 16-bit Compare and must be synchronized to the device.

6.3 <u>Timer2 Overview</u> Applicable Devices

				evic		_
72	73	73A	74	74A	76	77

Timer2 is an 8-bit timer with a programmable prescaler and postscaler, as well as an 8-bit period register (PR2). Timer2 can be used with the CCP1 module (in PWM mode) as well as the Baud Rate Generator for the Synchronous Serial Port (SSP). The prescaler option allows Timer2 to increment at the following rates: 1:1, 1:4, 1:16.

The postscaler allows the TMR2 register to match the period register (PR2) a programmable number of times before generating an interrupt. The postscaler can be programmed from 1:1 to 1:16 (inclusive).

6.4 <u>CCP Overview</u>

 Applicable Devices

 72
 73
 73
 74
 74
 76
 77

The CCP module(s) can operate in one of these three modes: 16-bit capture, 16-bit compare, or up to 10-bit Pulse Width Modulation (PWM).

Capture mode captures the 16-bit value of TMR1 into the CCPRxH:CCPRxL register pair. The capture event can be programmed for either the falling edge, rising edge, fourth rising edge, or the sixteenth rising edge of the CCPx pin.

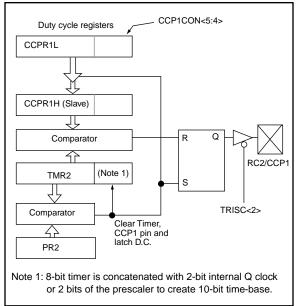
Compare mode compares the TMR1H:TMR1L register pair to the CCPRxH:CCPRxL register pair. When a match occurs an interrupt can be generated, and the output pin CCPx can be forced to given state (High or Low), TMR1 can be reset (CCP1), or TMR1 reset and start A/D conversion (CCP2). This depends on the control bits CCPxM3:CCPxM0.

PWM mode compares the TMR2 register to a 10-bit duty cycle register (CCPRxH:CCPRxL<5:4>) as well as to an 8-bit period register (PR2). When the TMR2 register = Duty Cycle register, the CCPx pin will be forced low. When TMR2 = PR2, TMR2 is cleared to 00h, an interrupt can be generated, and the CCPx pin (if an output) will be forced high.

NOTES:

10.3 PWM Mode

Applicable Devices


In Pulse Width Modulation (PWM) mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note: Clearing the CCP1CON register will force the CCP1 PWM output latch to the default low level. This is not the PORTC I/O data latch.

Figure 10-4 shows a simplified block diagram of the CCP module in PWM mode.

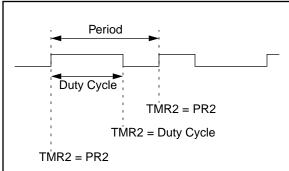

For a step by step procedure on how to set up the CCP module for PWM operation, see Section 10.3.3.

FIGURE 10-4: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 10-5) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 10-5: PWM OUTPUT

10.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM period = [(PR2) + 1] • 4 • TOSC • (TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 9.1) is
	not used in the determination of the PWM
	frequency. The postscaler could be used to
	have a servo update rate at a different fre-
	quency than the PWM output.

10.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)} \quad \text{bits}$$

Note: If the PWM duty cycle value is longer than the PWM period the CCP1 pin will not be cleared.

٦

FIGURE 11-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	WCOL: W	rite Collisio	n Detect l	oit				
	1 = The S	SPBUF reg	jister is wr		it is still tr	ansmitting	the previou	us word
bit 6:	SSPOV: R	eceive Ove	erflow Det	ect bit				
	the data ir BUF, even	byte is rece SSPSR re if only train new rece	egister is I	ost. Overfl data, to av	ow can on oid setting	ly occur in overflow.	slave mod In master	revious data. In case of overflow e. The user must read the SSP mode the overflow bit is not se SSPBUF register.
	In I ² C mod	<u>de</u>						
	1 = A byte in transmit 0 = No ove	mode. SS						us byte. SSPOV is a "don't care
bit 5:	SSPEN: S	ynchronou	s Serial P	ort Enable	bit			
	$\frac{\text{In SPI model}}{1 = \text{Enable}}$ $0 = \text{Disable}$	es serial po					s serial por pins	t pins
	0 = Disabl	es the seria	ort and co	nfigures th	nese pins a	as I/O port	pins	ial port pins s input or output.
bit 4:	CKP: Cloc	k Polarity	Select bit					
		ate for cloc						receive on rising edge. ceive on falling edge.
	$\frac{\ln l^2 C \mod SCK \text{ relea}}{1 = \text{Enable}}$	se control e clock	-11		4		. (:)	
	0 = Holds			, ,			o time)	
bit 3-0:	0001 = SF 0010 = SF 0011 = SF 0100 = SF 0101 = SF	PI master n PI master n PI master n PI master n PI slave mo	node, cloc node, cloc node, cloc node, cloc ode, clock ode, clock	k = Fosc/4 k = Fosc/1 k = Fosc/6 k = TMR2 = SCK pir = SCK pir	l 6 64 output/2 1. SS pin co	ontrol enal		n be used as I/O pin.
	$0111 = I^{2}(0)$ $1011 = I^{2}(0)$ $1110 = I^{2}(0)$	C slave mo C firmware C slave mo	de, 10-bit controlled de, 7-bit a	address I Master M ddress wi	th start an	d stop bit i	nterrupts er interrupts o	

Г

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 12.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC, and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.

- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.

TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Rec	eive Reg	0000 0000	0000 0000						
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate (Generato	0000 0000	0000 0000						

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

13.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

Applicable Devices

The analog-to-digital (A/D) converter module has five inputs for the PIC16C72/73/73A/76, and eight for the PIC16C74/74A/77.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin. The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Figure 13-1, controls the operation of the A/D module. The ADCON1 register, shown in Figure 13-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0			
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	R = Readable bit		
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset		
bit 7-6:	00 = Fos 01 = Fos 10 = Fos	c/2 c/8 c/32			Select bits	·)				
bit 5-3:	000 = cha 001 = cha 010 = cha 011 = cha 100 = cha 101 = cha	annel 0, (F annel 1, (F annel 2, (F annel 3, (F annel 4, (F annel 5, (F annel 6, (F	RĂO/ANO) RA1/AN1) RA2/AN2) RA3/AN3) RA5/AN4) RE0/AN5) RE0/AN5)	[1)	ts					
bit 2:	GO/DON	E: A/D Co	nversion S	Status bit						
	$\frac{\text{If ADON} = 1}{1 = A/D \text{ conversion in progress (setting this bit starts the A/D conversion)}} \\ 0 = A/D \text{ conversion not in progress (This bit is automatically cleared by hardware when the A/D conversion is complete)}$									
bit 1:	Unimpler	nented: F	Read as '0	,						
bit 0:	ADON : $A/A = A/D c $	onverter n			d consumes no	o operating	g current			

FIGURE 13-1: ADCON0 REGISTER (ADDRESS 1Fh)

13.4 A/D Conversions

 Applicable Devices

 72
 73
 73
 74
 74
 76
 77

Example 13-2 shows how to perform an A/D conversion. The RA pins are configured as analog inputs. The analog reference (VREF) is the device VDD. The A/D interrupt is enabled, and the A/D conversion clock is FRC. The conversion is performed on the RA0 pin (channel 0).

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, an acquisition is automatically started on the selected channel.

EXAMPLE 13-2: A/D CONVERSION

;

; ;

BSF	STATUS,	RP0	;	Select Bank 1
BCF	STATUS,	RP1	;	PIC16C76/77 only
CLRF	ADCON1		;	Configure A/D inputs
BSF	PIE1,	ADIE	;	Enable A/D interrupts
BCF	STATUS,	RP0	;	Select Bank 0
MOVLW	0xC1		;	RC Clock, A/D is on, Channel 0 is selected
MOVWF	ADCON0		;	
BCF	PIR1,	ADIF	;	Clear A/D interrupt flag bit
BSF	INTCON,	PEIE	;	Enable peripheral interrupts
BSF	INTCON,	GIE	;	Enable all interrupts
Enguro th	at the m	oquirod gamp	14.	ng time for the selected input channel has elapsed.
		on may be sta		

BSF	ADCON0,	GO	;	; Start A/D Conversion	
:			;	; The ADIF bit will be set and the GO/DONE bit	
:			;	; is cleared upon completion of the A/D Conversion.	

PIC16C7X

Register	Applicable Devices				Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt			
SSPADD	72	73	73A	74	74A	76	77	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	72	73	73A	74	74A	76	77	00 0000	00 0000	uu uuuu
TXSTA	72	73	73A	74	74A	76	77	0000 -010	0000 -010	uuuu -uuu
SPBRG	72	73	73A	74	74A	76	77	0000 0000	0000 0000	uuuu uuuu
ADCON1	72	73	73A	74	74A	76	77	000	000	uuu

TABLE 14-8: INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.'d)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 14-7 for reset value for specific condition.

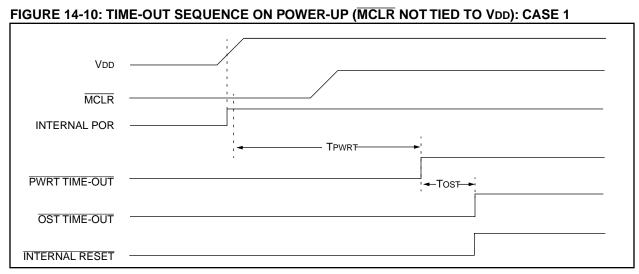
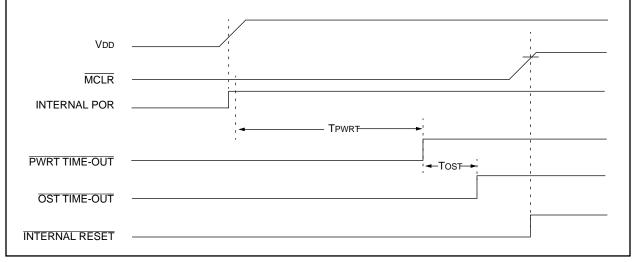
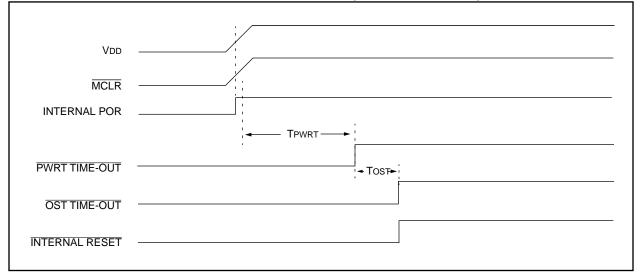




FIGURE 14-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 14-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

GOTO	Uncondi	tional Br	anch		INCF	Increment f			
Syntax:	[label]	GOTO	k		Syntax:	[label] INC	f,d		
Operands:	$0 \le k \le 20$	047			Operands:	$0 \leq f \leq 127$			
Operation:	$k \rightarrow PC <$	10:0>				d ∈ [0,1]			
	PCLATH-	<4:3> →	PC<12:11	>	Operation:	(f) + 1 \rightarrow (des	inatio	n)	
Status Affected:	None				Status Affected:	Z			
Encoding:	10	1kkk	kkkk	kkkk	Encoding:	00 101	0 d	lfff	ffff
Description:	GOTO is an eleven bit into PC bit PC are loa GOTO is a	immediate s <10:0>. ided from	value is lo The upper PCLATH<4	bits of 1:3>.	Description:	The contents of mented. If 'd' is the W register. I placed back in r) the re 'd' is <i>'</i>	esult is 1 the re	placed in
Words:	1				Words:	1			
Cycles:	2				Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4	Q Cycle Activity:	Q1 Q1	2	Q3	Q4
1st Cycle	Decode	Read literal 'k'	Process data	Write to PC		Decode Rea regis		rocess data	Write to destination
2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation					
					Example	INCF CN	, 1		
Example	GOTO TH	HERE				Before Instruc	ion		_
	After Inst	ruction				CNT Z	=	0xFF 0	-
	PC = Address THERE			After Instructio		0			
						CNT	=	0x00)
						Z	=	1	

Applicable Devices 72 73 73A 74 74A 76 77

17.2 DC Characteristics: PIC16LC72-04 (Commercial, Industrial)

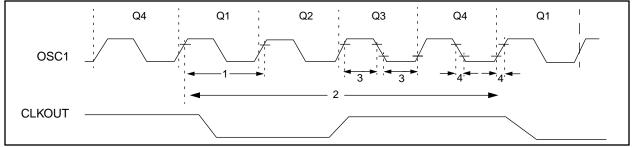
DC CHA	Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +85°C for industrial and0°C \leq TA \leq +70°C for commercial									
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions			
D001	Supply Voltage	Vdd	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)			
D002*	RAM Data Retention Volt- age (Note 1)	Vdr	-	1.5	-	V				
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details			
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled			
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)			
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled			
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V			
D020 D021 D021A	Power-down Current (Note 3,5)	IPD	- - -	7.5 0.9 0.9	30 5 5	μΑ μΑ μΑ	$VDD = 3.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 3.0V, WDT disabled, 0^{\circ}C to +70^{\circ}C$ $VDD = 3.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$			
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

 The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are:


 $OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD <math>\overline{MCLR} = VDD; WDT$ enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

 Applicable Devices
 72
 73
 73A
 74
 76
 77

20.5 <u>Timing Diagrams and Specifications</u>

FIGURE 20-2: EXTERNAL CLOCK TIMING

TABLE 20-2: EXTERNAL CLOCK TIMING REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC		4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	—	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (-04)
			100	_	_	ns	HS osc mode (-10)
			50	_	_	ns	HS osc mode (-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250		_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			100	—	250	ns	HS osc mode (-10) HS osc mode (-20)
			50	—	250	ns	
			5	_	_	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	100	_	_	ns	XT oscillator
	TosH	Low Time	2.5	—	_	μs	LP oscillator
			15	—	_	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	_	_	25	ns	XT oscillator
	TosF	Fall Time	_	_	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 20-15: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

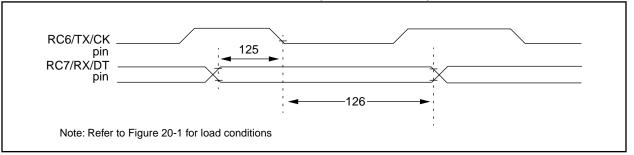


TABLE 20-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE) Clock high to data out valid	PIC16 C 76/77 PIC16 LC 76/77	_	_	80 100	ns ns	
121	Tckrf	Clock out rise time and fall time	PIC16 C 76/77			45	ns	
		(Master Mode)	PIC16 LC 76/77	—		50	ns	
122	Tdtrf	Data out rise time and fall time	PIC16 C 76/77	—	-	45	ns	
			PIC16 LC 76/77	—	—	50	ns	

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-16: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

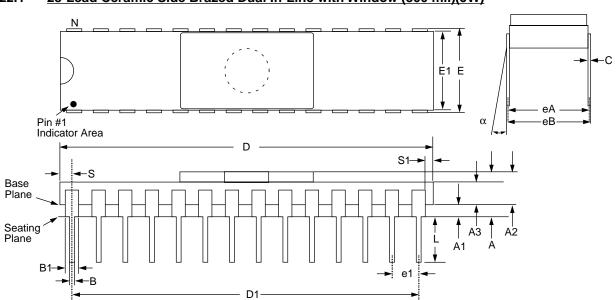
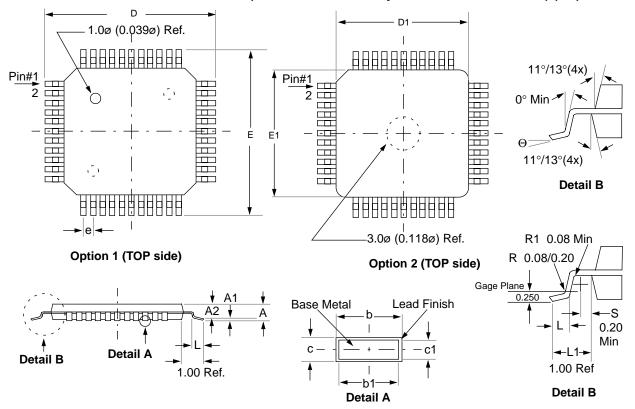


TABLE 20-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before CK \downarrow (DT setup time)	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	_	ns	


†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

22.0 PACKAGING INFORMATION

22.1 28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil)(JW)

Package Group: Ceramic Side Brazed Dual In-Line (CER)								
Cumhal		Millimeters		Inches				
Symbol	Min	Мах	Notes	Min	Max	Notes		
α	0 °	10°		0°	10°			
А	3.937	5.030		0.155	0.198			
A1	1.016	1.524		0.040	0.060			
A2	2.921	3.506		0.115	0.138			
A3	1.930	2.388		0.076	0.094			
В	0.406	0.508		0.016	0.020			
B1	1.219	1.321	Typical	0.048	0.052			
С	0.228	0.305	Typical	0.009	0.012			
D	35.204	35.916		1.386	1.414			
D1	32.893	33.147	Reference	1.295	1.305			
E	7.620	8.128		0.300	0.320			
E1	7.366	7.620		0.290	0.300			
e1	2.413	2.667	Typical	0.095	0.105			
eA	7.366	7.874	Reference	0.290	0.310			
eB	7.594	8.179		0.299	0.322			
L	3.302	4.064		0.130	0.160			
Ν	28	28		28	28			
S	1.143	1.397		0.045	0.055			
S1	0.533	0.737		0.021	0.029			

22.9 44-Lead Plastic Surface Mount (TQFP 10x10 mm Body 1.0/0.10 mm Lead Form) (TQ)

	Package Group: Plastic TQFP									
		Millimeters			Inches					
Symbol	Min	Max	Notes	Min	Max	Notes				
A	1.00	1.20		0.039	0.047					
A1	0.05	0.15		0.002	0.006					
A2	0.95	1.05		0.037	0.041					
D	11.75	12.25		0.463	0.482					
D1	9.90	10.10		0.390	0.398					
E	11.75	12.25		0.463	0.482					
E1	9.90	10.10		0.390	0.398					
L	0.45	0.75		0.018	0.030					
е	0.80	BSC		0.03	1 BSC					
b	0.30	0.45		0.012	0.018					
b1	0.30	0.40		0.012	0.016					
С	0.09	0.20		0.004	0.008					
c1	0.09	0.16		0.004	0.006					
Ν	44	44		44	44					
Θ	0°	7 °		0°	7 °					

Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010") per side. D1 and E1 dimensions including mold mismatch.

2: Dimension "b" does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003")max.

3: This outline conforms to JEDEC MS-026.

E.8 PIC16C8X Family of Devices

		PIC16F83	PIC16CR83	PIC16F84	PIC16CR84
Clock	Maximum Frequency of Operation (MHz)	10	10	10	10
	Flash Program Memory	512	-	1K	—
	EEPROM Program Memory	—	—	—	_
Memory	ROM Program Memory	—	512	—	1K
	Data Memory (bytes)	36	36	68	68
	Data EEPROM (bytes)	64	64	64	64
Peripher- als	Timer Module(s)	TMR0	TMR0	TMR0	TMR0
	Interrupt Sources	4	4	4	4
	I/O Pins	13	13	13	13
Features	Voltage Range (Volts)	2.0-6.0	2.0-6.0	2.0-6.0	2.0-6.0
	Packages	18-pin DIP, SOIC	18-pin DIP, SOIC	18-pin DIP, SOIC	18-pin DIP, SOIC

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C8X Family devices use serial programming with clock pin RB6 and data pin RB7.

E.9 PIC16C9XX Family Of Devices

		PIC16C923	PIC16C924
Clock	Maximum Frequency of Operation (MHz)	8	8
Moreowy	EPROM Program Memory	4K	4K
Memory	Data Memory (bytes)	176	176
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
	Capture/Compare/PWM Module(s)	1	1
Peripherals	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C
	Parallel Slave Port	_	—
	A/D Converter (8-bit) Channels	—	5
	LCD Module	4 Com, 32 Seg	4 Com, 32 Seg
	Interrupt Sources	8	9
	I/O Pins	25	25
	Input Pins	27	27
	Voltage Range (Volts)	3.0-6.0	3.0-6.0
Features	In-Circuit Serial Programming	Yes	Yes
	Brown-out Reset	_	—
	Packages	64-pin SDIP ⁽¹⁾ , TQFP; 68-pin PLCC, Die	64-pin SDIP ⁽¹⁾ , TQFP; 68-pin PLCC, Die

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C9XX Family devices use serial programming with clock pin RB6 and data pin RB7.