

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c76-10i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-2:PIC16C73/73A/76 PINOUT DESCRIPTION

Pin Name	DIP Pin#	SOIC Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	9	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	10	0	-	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	1	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
					PORTA is a bi-directional I/O port.
RA0/AN0	2	2	I/O	TTL	RA0 can also be analog input0
RA1/AN1	3	3	I/O	TTL	RA1 can also be analog input1
RA2/AN2	4	4	I/O	TTL	RA2 can also be analog input2
RA3/AN3/VREF	5	5	I/O	TTL	RA3 can also be analog input3 or analog reference voltage
RA4/T0CKI	6	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
RA5/ SS /AN4	7	7	I/O	TTL	RA5 can also be analog input4 or the slave select for the synchronous serial port.
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	21	21	I/O	TTL/ST(1)	RB0 can also be the external interrupt pin.
RB1	22	22	I/O	TTL	
RB2	23	23	I/O	TTL	
RB3	24	24	I/O	TTL	
RB4	25	25	I/O	TTL	Interrupt on change pin.
RB5	26	26	I/O	TTL	Interrupt on change pin.
RB6	27	27	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming clock.
RB7	28	28	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming data.
					PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	11	11	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input.
RC1/T1OSI/CCP2	12	12	I/O	ST	RC1 can also be the Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output.
RC2/CCP1	13	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	14	14	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	15	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	16	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK	17	17	I/O	ST	RC6 can also be the USART Asynchronous Transmit of Synchronous Clock.
RC7/RX/DT	18	18	I/O	ST	RC7 can also be the USART Asynchronous Receive of Synchronous Data.
Vss	8, 19	8, 19	Р	<u> </u>	Ground reference for logic and I/O pins.
VDD	20	20	P	<u> </u>	Positive supply for logic and I/O pins.
Legend: I = input	O = outp			input/output	P = power

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

4.2.2.4 PIE1 REGISTER

Applicable Devices

72 73 73A 74 74A 76 77

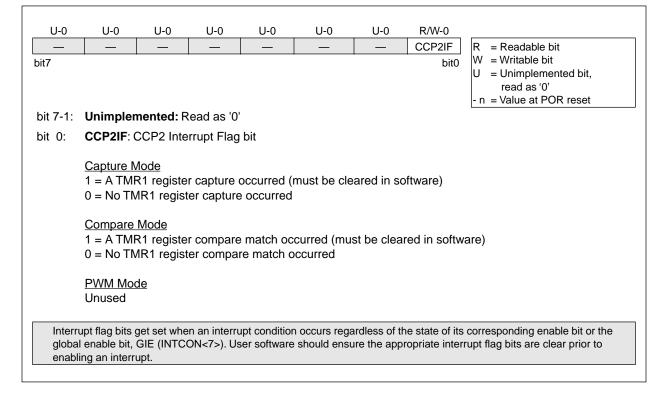
Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

This register contains the individual enable bits for the peripheral interrupts.

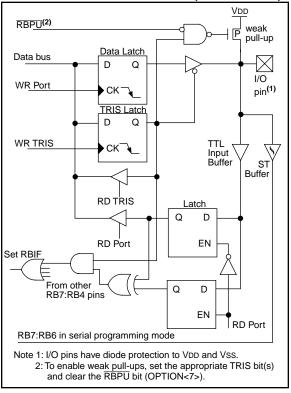
FIGURE 4-10: PIE1 REGISTER PIC16C72 (ADDRESS 8Ch)

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0							
	ADIE	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit						
bit7	bit0 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset													
bit 7:	Unimplemented: Read as '0'													
bit 6:		es the A/D	er Interrup D interrupt D interrupt		it									
bit 5-4:	Unimpler	Jnimplemented: Read as '0'												
bit 3:	1 = Enabl	SSPIE : Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt												
bit 2:	CCP1IE : CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt													
bit 1:	TMR2IE : TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt													
bit 0:	1 = Enabl	es the TM	erflow Inte R1 overflo IR1 overflo	w interrup	ot									

4.2.2.7 PIR2 REGISTER


Applicable Devices

72 73 73A 74 74A 76 77


This register contains the CCP2 interrupt flag bit.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-15: PIR2 REGISTER (ADDRESS 0Dh)

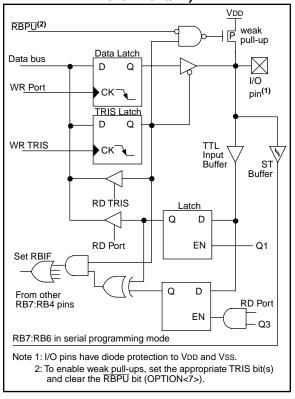


TABLE 5-3: PORTB FUNCTIONS

FIGURE 5-5: BLOCK DIAGRAM OF RB7:RB4 PINS (PIC16C72/ 73A/74A/76/77)

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

	TABLE 5-4:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
--	------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	PORTB	PORTB Data Direction Register								1111 1111
81h, 181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

6.0 OVERVIEW OF TIMER MODULES

Applicable Devices

The PIC16C72, PIC16C73/73A, PIC16C74/74A, PIC16C76/77 each have three timer modules.

Each module can generate an interrupt to indicate that an event has occurred (i.e. timer overflow). Each of these modules is explained in full detail in the following sections. The timer modules are:

- Timer0 Module (Section 7.0)
- Timer1 Module (Section 8.0)
- Timer2 Module (Section 9.0)

6.1 <u>Timer0 Overview</u> Applicable Devices 72|73|73A|74|74A|76|77

The Timer0 module is a simple 8-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock. When the clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

The Timer0 module also has a programmable prescaler option. This prescaler can be assigned to either the Timer0 module or the Watchdog Timer. Bit PSA (OPTION<3>) assigns the prescaler, and bits PS2:PS0 (OPTION<2:0>) determine the prescaler value. Timer0 can increment at the following rates: 1:1 (when prescaler assigned to Watchdog timer), 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, and 1:256 (Timer0 only).

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

6.2 <u>Timer1 Overview</u> Applicable Devices 72 73 73 74 74 76 77

Timer1 is a 16-bit timer/counter. The clock source can be either the internal system clock (Fosc/4), an external clock, or an external crystal. Timer1 can operate as either a timer or a counter. When operating as a counter (external clock source), the counter can either operate synchronized to the device or asynchronously to the device. Asynchronous operation allows Timer1 to operate during sleep, which is useful for applications that require a real-time clock as well as the power savings of SLEEP mode.

Timer1 also has a prescaler option which allows Timer1 to increment at the following rates: 1:1, 1:2, 1:4, and 1:8. Timer1 can be used in conjunction with the Capture/Compare/PWM module. When used with a CCP module, Timer1 is the time-base for 16-bit Capture or the 16-bit Compare and must be synchronized to the device.

6.3 <u>Timer2 Overview</u> Applicable Devices

	Applicable Devices										
72	73	73A	74	74A	76	77					

Timer2 is an 8-bit timer with a programmable prescaler and postscaler, as well as an 8-bit period register (PR2). Timer2 can be used with the CCP1 module (in PWM mode) as well as the Baud Rate Generator for the Synchronous Serial Port (SSP). The prescaler option allows Timer2 to increment at the following rates: 1:1, 1:4, 1:16.

The postscaler allows the TMR2 register to match the period register (PR2) a programmable number of times before generating an interrupt. The postscaler can be programmed from 1:1 to 1:16 (inclusive).

6.4 <u>CCP Overview</u>

 Applicable Devices

 72
 73
 73
 74
 74
 76
 77

The CCP module(s) can operate in one of these three modes: 16-bit capture, 16-bit compare, or up to 10-bit Pulse Width Modulation (PWM).

Capture mode captures the 16-bit value of TMR1 into the CCPRxH:CCPRxL register pair. The capture event can be programmed for either the falling edge, rising edge, fourth rising edge, or the sixteenth rising edge of the CCPx pin.

Compare mode compares the TMR1H:TMR1L register pair to the CCPRxH:CCPRxL register pair. When a match occurs an interrupt can be generated, and the output pin CCPx can be forced to given state (High or Low), TMR1 can be reset (CCP1), or TMR1 reset and start A/D conversion (CCP2). This depends on the control bits CCPxM3:CCPxM0.

PWM mode compares the TMR2 register to a 10-bit duty cycle register (CCPRxH:CCPRxL<5:4>) as well as to an 8-bit period register (PR2). When the TMR2 register = Duty Cycle register, the CCPx pin will be forced low. When TMR2 = PR2, TMR2 is cleared to 00h, an interrupt can be generated, and the CCPx pin (if an output) will be forced high.

٦

FIGURE 11-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	WCOL: W	rite Collisio	n Detect l	oit				
	1 = The S	SPBUF reg	jister is wr		it is still tr	ansmitting	the previou	us word
bit 6:	SSPOV: R	eceive Ove	erflow Det	ect bit				
	the data ir BUF, even	byte is rece SSPSR re if only train new rece	egister is I	ost. Overfl data, to av	ow can on oid setting	ly occur in overflow.	slave mod In master	revious data. In case of overflow e. The user must read the SSP mode the overflow bit is not se SSPBUF register.
	In I ² C mod	<u>de</u>						
	1 = A byte in transmit 0 = No ove	mode. SS						us byte. SSPOV is a "don't care
bit 5:	SSPEN: S	ynchronou	s Serial P	ort Enable	bit			
	$\frac{\text{In SPI model}}{1 = \text{Enable}}$ $0 = \text{Disable}$	es serial po					s serial por pins	t pins
	0 = Disabl	es the seria	ort and co	nfigures th	nese pins a	as I/O port	pins	ial port pins s input or output.
bit 4:	CKP: Cloc	k Polarity	Select bit					
		ate for cloc						receive on rising edge. ceive on falling edge.
	$\frac{\ln l^2 C \mod SCK \text{ relea}}{1 = \text{Enable}}$	se control e clock	-11		4		. (:)	
	0 = Holds			, ,			o time)	
bit 3-0:	0001 = SF 0010 = SF 0011 = SF 0100 = SF 0101 = SF	PI master n PI master n PI master n PI master n PI slave mo	node, cloc node, cloc node, cloc node, cloc ode, clock ode, clock	k = Fosc/4 k = Fosc/1 k = Fosc/6 k = TMR2 = SCK pir = SCK pir	l 6 64 output/2 1. SS pin co	ontrol enal		n be used as I/O pin.
	$0111 = I^{2}(0)$ $1011 = I^{2}(0)$ $1110 = I^{2}(0)$	C slave mo C firmware C slave mo	de, 10-bit controlled de, 7-bit a	address I Master M ddress wi	th start an	d stop bit i	nterrupts er interrupts o	

Г

11.5.1 SLAVE MODE

In slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this \overline{ACK} pulse. These are if either (or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 11-4 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification as well as the requirement of the SSP module is shown in timing parameter #100 and parameter #101.

11.5.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The

address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on the falling edge of the ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave (Figure 11-16). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7- 9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

	ts as Data s Received			Set bit SSPIF	
BF	SSPOV	$SSPSR \to SSPBUF$	Generate ACK Pulse	(SSP Interrupt occurs if enabled)	
0	0	Yes	Yes	Yes	
1	0	No	No	Yes	
1	1	No	No	Yes	
0	1	No	No	Yes	

TABLE 11-4: DATA TRANSFER RECEIVED BYTE ACTIONS

12.1 USART Baud Rate Generator (BRG) Applicable Devices 72 73 73A 74 74A 76 77

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In asynchronous mode bit BRGH (TXSTA<2>) also controls the baud rate. In synchronous mode bit BRGH is ignored. Table 12-1 shows the formula for computation of the baud rate for different USART modes which only apply in master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 12-1. From this, the error in baud rate can be determined.

Example 12-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 BRGH = 0 SYNC = 0

EXAMPLE 12-1: CALCULATING BAUD RATE ERROR

Desired Baud rate = Fosc / (64 (X + 1))

 $9600 = \frac{16000000}{(64 (X + 1))}$

 $X = \lfloor 25.042 \rfloor = 25$

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615

- Error = (Calculated Baud Rate Desired Baud Rate) Desired Baud Rate
 - = (9615 9600) / 9600

= 0.16%

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Note:	For the PIC16C73/73A/74/74A, the asyn- chronous high speed mode (BRGH = 1) may experience a high rate of receive errors. It is recommended that BRGH = 0. If you desire a higher baud rate than BRGH = 0 can support, refer to the device errata for additional information, or use the PIC16C76/77.
-------	---

Writing a new value to the SPBRG register, causes the BRG timer to be reset (or cleared), this ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

TABLE 12-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate= Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	NA

X = value in SPBRG (0 to 255)

TABLE 12-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	0000 -00x	0000 -00x				
99h	SPBRG		0000 0000	0000 0000							

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the BRG.

14.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 14.8 for details on SLEEP mode.

14.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 7.0)

14.5.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 5.2)

Note:	For the PIC16C73/74, if a change on the
	I/O pin should occur when the read opera-
	tion is being executed (start of the Q2
	cycle), then the RBIF interrupt flag may not
	get set.

14.6 <u>Context Saving During Interrupts</u> Applicable Devices

72 73 73A 74 74A 76 77

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 14-1 stores and restores the STATUS, W, and PCLATH registers. The register, W_TEMP, must be defined in each bank and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Stores the PCLATH register.
- d) Executes the ISR code.
- e) Restores the STATUS register (and bank select bit).
- f) Restores the W and PCLATH registers.

EXAMPLE 14-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

MOVWF SWAPF CLRF	W_TEMP STATUS,W STATUS	;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W ;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
MOVF	PCLATH, W	;Only required if using pages 1, 2 and/or 3
MOVWF	PCLATH_TEMP	;Save PCLATH into W
CLRF	PCLATH	;Page zero, regardless of current page
BCF	STATUS, IRP	;Return to Bank 0
MOVF	FSR, W	;Copy FSR to W
MOVWF	FSR_TEMP	;Copy FSR from W to FSR_TEMP
:		
:(ISR)		
:		
MOVF	PCLATH_TEMP, W	;Restore PCLATH
MOVWF	PCLATH	;Move W into PCLATH
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

14.7 Watchdog Timer (WDT) **Applicable Devices** 72 73 73A 74 74A 76 77

The Watchdog Timer is as a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The WDT can be permanently disabled by clearing configuration bit WDTE (Section 14.1).

14.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a

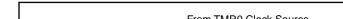
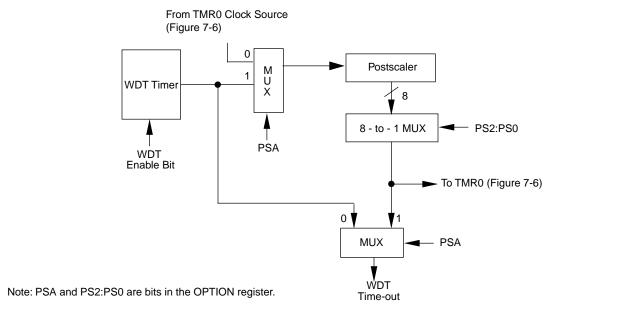


FIGURE 14-18: WATCHDOG TIMER BLOCK DIAGRAM

prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.


The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

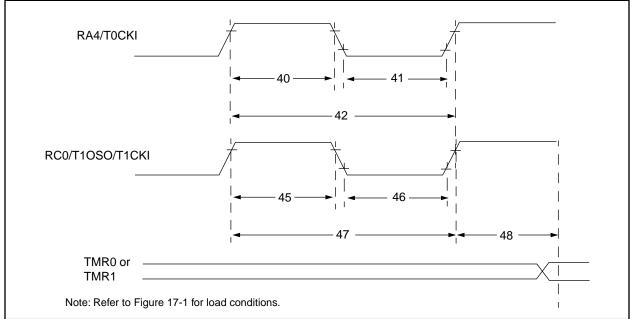
14.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., and max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 14-19: SUMMARY OF WATCHDOG TIMER REGISTERS

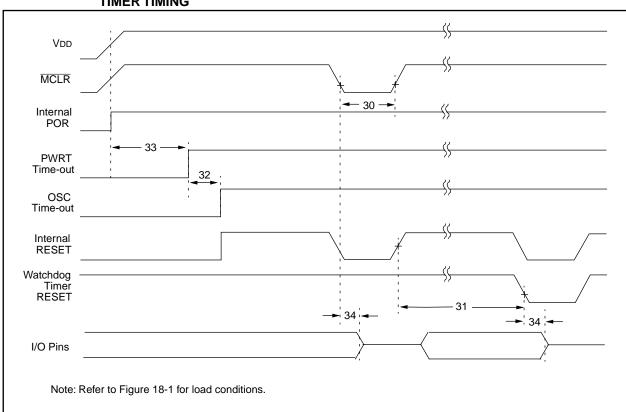
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h,181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0


Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Figure 14-1, and Figure 14-2 for operation of these bits.

INCFSZ	Increment f, Skip if 0	IORLW	Inclusive OR Literal with W
Syntax:	[<i>label</i>] INCFSZ f,d	Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \le f \le 127$	Operands:	$0 \le k \le 255$
	d ∈ [0,1]	Operation:	(W) .OR. $k \rightarrow$ (W)
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0	Status Affected:	Z
Status Affected:	None	Encoding:	11 1000 kkkk kkkk
Encoding:	00 1111 dfff fff	Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in		result is placed in the W register.
	the W register. If 'd' is 1 the result is	Words:	1
	placed back in register 'f'. If the result is 1, the next instruction is	Cycles:	1
	executed. If the result is 0, a NOP is executed instead making it a 2Tcy	Q Cycle Activity:	Q1 Q2 Q3 Q4
Words:	instruction.		Decode Read Process Write to literal 'k' data W
Cycles:	1(2)	F ormula	
Q Cycle Activity:	Q1 Q2 Q3 Q4	Example	IORLW 0x35
	Decode Read register 'f' Process Write to destination		Before Instruction W = 0x9A After Instruction
If Skip:	(2nd Cycle)		W = 0xBF
	Q1 Q2 Q3 Q4		Z = 1
	No- OperationNo- OperationNo- Operation		
Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • • Before Instruction PC = address HERE After Instruction CNT = CNT + 1 if CNT= 0, PC = address CONTINUE if CNT \neq 0, PC = address HERE +1		

Applicable Devices 72 73 73A 74 74A 76 77


TABLE 17-5:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
-------------	---

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5Tcy + 20	—	—	ns	Must also meet
				With Prescaler	10	_	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	-	—	ns	Must also meet
		-		With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period			Tcy + 40	_	—	ns	
		V		With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	-	_	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, F	Prescaler = 1	0.5TCY + 20	- 1	_	ns	Must also meet
			Synchronous,	PIC16 C 7X	15	- 1	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 7X	25	-	—	ns	-
			Asynchronous	PIC16 C 7X	30	—	—	ns	
				PIC16 LC 7X	50	—	—	ns	
46*	Tt1L T	T1CKI Low Time	Synchronous, F		0.5Tcy + 20	-	—	ns	Must also meet
			Synchronous,	PIC16 C 7X	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 7X	25	-	-	ns	
			Asynchronous	PIC16 C 7X	30	—	—	ns	
				PIC16 LC 7X	50	—	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 7X	<u>Greater of:</u> 30 OR <u>TCY + 40</u> N	-	—	ns	N = prescale value (1, 2, 4, 8)
				PIC16 LC 7X	<u>Greater of:</u> 50 OR <u>TCY + 40</u> N				N = prescale value (1, 2, 4, 8)
				PIC16 C 7X	60	-	—	ns	
				PIC16 LC 7X	100	—	—	ns	
	Ft1	Timer1 oscillator inp (oscillator enabled b			DC	-	200	kHz	
48	TCKEZtmr	1 Delay from external	clock edge to tir	ner increment	2Tosc	_	7Tosc	—	

These parameters are characterized but not tested.

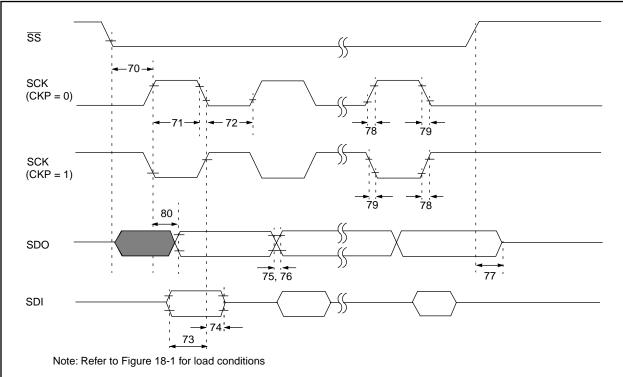
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 18-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 18-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	100	—	—	ns	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	—	_	Tosc = OSC1 period
33*	Tpwrt	Power up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +85°C
34	Tıoz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	—	_	100	ns	


These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77

TABLE 18-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	—	-	ns	
71	TscH	SCK input high time (slave mode)	TCY + 20	_	_	ns	
72	TscL	SCK input low time (slave mode)	TCY + 20	_	_	ns	
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	_	_	ns	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_	-	ns	
75	TdoR	SDO data output rise time	_	10	25	ns	
76	TdoF	SDO data output fall time	_	10	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-impedance	10	_	50	ns	
78	TscR	SCK output rise time (master mode)	_	10	25	ns	
79	TscF	SCK output fall time (master mode)	_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

	Applicable Devices 72 73 73A 74 74A 76 77									
20.3	PIC10 PIC10	6C76/77-04 (Commercial, Industrial, Extended) 6C76/77-10 (Commercial, Industrial, Extended) 6C76/77-20 (Commercial, Industrial, Extended) 6LC76/77-04 (Commercial, Industrial)								
			ird Opera				less otherwise stated) TA \leq +125°C for extended,			
	ARACTERISTICS	operati	ing tempe	latai	-40		$TA \leq +85^{\circ}C$ for industrial and			
		Operati Section		e Vd	0°C D range a		$TA \le +70^{\circ}C$ for commercial ribed in DC spec Section 20.1 and			
Param	Characteristic	Sym	Min	Тур	Мах	Units	Conditions			
No.				†						
	Input Low Voltage									
	I/O ports	VIL								
D030	with TTL buffer		Vss	-	0.15Vdd		For entire VDD range			
D030A			Vss	-	0.8V	V	$4.5V \le VDD \le 5.5V$			
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	V				
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2VDD	V	NI-4-4			
D033	OSC1 (in XT, HS and LP) Input High Voltage		Vss	-	0.3Vdd	V	Note1			
	I/O ports	ViH		-						
D040	with TTL buffer	VIII	2.0	_	VDD	v	$4.5V \leq VDD \leq 5.5V$			
D040A			0.25VDD + 0.8V	-	VDD	V	For entire VDD range			
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	v	For entire VDD range			
D042	MCLR		0.8Vdd	-	Vdd	V	Ū.			
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1			
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V				
D070	PORTB weak pull-up current	I PURB	50	250	400	μA	VDD = 5V, VPIN = VSS			
	Input Leakage Current (Notes 2, 3)									
D060	I/O ports	lı∟	-	-	±1	μA	$Vss \le VPIN \le VDD$, Pin at hi-imped-ance			
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \le VPIN \le VDD$			
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration			
	Output Low Voltage									
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C			
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C			
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	lOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C			
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C			
*	These parameters are characteri	zed but	not tested	1						

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

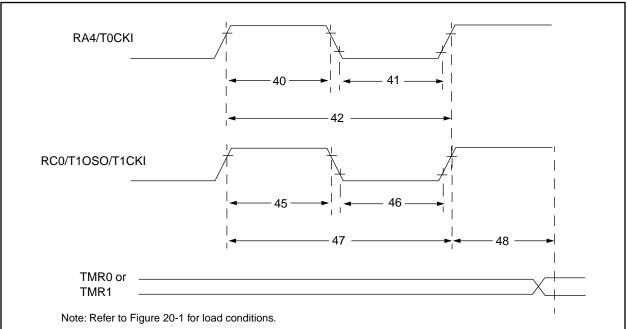
Applicable Devices 72 73 73A 74 74A 76 77

DC CHA	ARACTERISTICS	Operati	ng temper	ratur	e -40 -40 0°C)°C ≤ ≤ C°C ≤ C ≤	less otherwise stated) TA \leq +125°C for extended, TA \leq +85°C for industrial and TA \leq +70°C for commercial ribed in DC spec Section 20.1 and
Param No.	Characteristic	Sym	Min	Тур †	Max	Units	Conditions
	Output High Voltage			-			
D090	I/O ports (Note 3)	Voн	Vdd - 0.7	-	-	V	ІОН = -3.0 mA, VDD = 4.5V, -40°С to +85°С
D090A			Vdd - 0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С
D092A			Vdd - 0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when exter- nal clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC	Сю	-	-	50	pF	
D102	mode) SCL, SDA in I ² C mode	Св	-	-	400	pF	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77


TABLE 20-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic			Min	Тур†	Мах	Units	Conditions
40*	Tt0H	Tt0H T0CKI High Pulse Width No F		No Prescaler	0.5TCY + 20	- 1	—	ns	Must also meet
				With Prescaler	10	_	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	-	—	ns	Must also meet
		V		With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	-	—	ns	
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	_	_	ns	N = prescale valu (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, F	Prescaler = 1	0.5TCY + 20	-	—	ns	Must also meet
			Synchronous,	PIC16 C 7X	15	-	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 7X	25	-	—	ns	
			Asynchronous	PIC16 C 7X	30	0 <u> </u>	ns		
				PIC16 LC 7X	50	-	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, F	rescaler = 1	0.5TCY + 20	—	—	ns	Must also meet
			Synchronous,	PIC16 C 7X	15	-	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 7X	25	-	—	ns	
			Asynchronous	PIC16 C 7X	30	-	—	ns	
				PIC16 LC 7X	50	-	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 7X	<u>Greater of:</u> 30 OR <u>TCY + 40</u> N	_	_	ns	N = prescale valu (1, 2, 4, 8)
				PIC16 LC 7X	<u>Greater of:</u> 50 OR <u>TCY + 40</u> N				N = prescale valu (1, 2, 4, 8)
			Asynchronous	PIC16 C 7X	60	-	—	ns	
				PIC16 LC 7X	100	-	—	ns	
	Ft1	Timer1 oscillator inp (oscillator enabled b			DC	-	200	kHz	
48	TCKEZtmr	Delay from external	clock edge to tir	ner increment	2Tosc	—	7Tosc	—	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

22.6 28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)

	Package Group: Plastic SSOP										
		Millimeters			Inches						
Symbol	Min	Max	Notes	Min	Max	Notes					
α	0°	8 °		0°	8 °						
А	1.730	1.990		0.068	0.078						
A1	0.050	0.210		0.002	0.008						
В	0.250	0.380		0.010	0.015						
С	0.130	0.220		0.005	0.009						
D	10.070	10.330		0.396	0.407						
E	5.200	5.380		0.205	0.212						
е	0.650	0.650	Reference	0.026	0.026	Reference					
Н	7.650	7.900		0.301	0.311						
L	0.550	0.950		0.022	0.037						
N	28	28		28	28						
CP	-	0.102		-	0.004						

NOTES: