

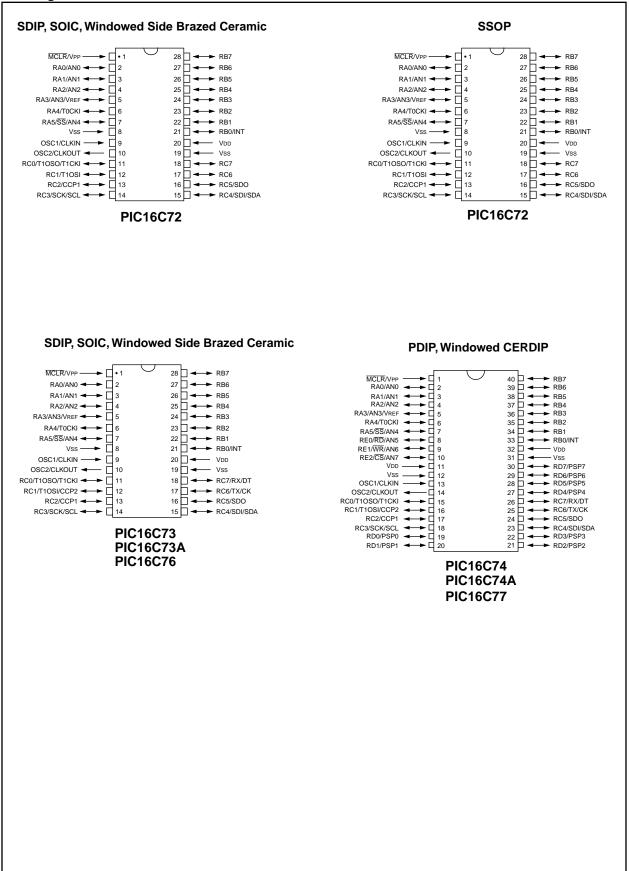
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c76t-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C7X

Pin Diagrams

PIC16C7X

NOTES:

FIGURE 4-6: PIC16C76/77 REGISTER FILE MAP

Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	181
PCL	02h	PCL	82h	PCL	102h	PCL	182
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183
FSR	04h	FSR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h		105h		185
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
PORTC	07h	TRISC	87h		107h		187
PORTD (1)	08h	TRISD ⁽¹⁾	88h		108h		188
PORTE (1)	09h	TRISE (1)	89h		109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18A
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18B
PIR1	0Ch	PIE1	8Ch		10Ch		1 18C
PIR2	0Dh	PIE2	8Dh		10Dh		18D
TMR1L	0Eh	PCON	8Eh		10Eh		18E
TMR1H	0Fh		8Fh		10Fh		18F
T1CON	10h		90h		110h		190
TMR2	11h		91h		111h		191
T2CON	12h	PR2	92h		112h		192
SSPBUF	13h	SSPADD	93h		113h		193
SSPCON	14h	SSPSTAT	94h		114h		194
CCPR1L	15h		95h		115h		195
CCPR1H	16h		96h		116h		196
CCP1CON	17h		97h	General	117h	General	197
RCSTA	18h	TXSTA	98h	Purpose Register	118h	Purpose Register	198
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199
RCREG	1Ah		9Ah		11Ah		19A
CCPR2L	1Bh		9Bh		11Bh		19B
CCPR2H	1Ch		9Ch		11Ch		19C
CCP2CON	1Dh		9Dh		11Dh		19D
ADRES	1Eh		9Eh		11Eh		19E
ADCON0	1Fh	ADCON1	9Fh		11Fh		19F
	20h		A0h		120h		1A0
General Purpose Register 96 Bytes		General Purpose Register 80 Bytes	EFh	General Purpose Register 80 Bytes	16Fh	General Purpose Register 80 Bytes	1EF
-	7Fh	accesses 70h-7Fh	F0h FFh	accesses 70h-7Fh	170h 17Fh	accesses 70h - 7Fh] 1F0
Bank 0		Bank 1		Bank 2		Bank 3	
_	nted data	memory locations, re				Bank 3	

Note: The upper 16 bytes of data memory in banks 1, 2, and 3 are mapped in Bank 0. This may require relocation of data memory usage in the user application code if upgrading to the PIC16C76/77.

4.2.2.4 PIE1 REGISTER

Applicable Devices

72 73 73A 74 74A 76 77

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

This register contains the individual enable bits for the peripheral interrupts.

FIGURE 4-10: PIE1 REGISTER PIC16C72 (ADDRESS 8Ch)

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
	ADIE	—	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit					
bit7				 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset 									
bit 7:	Unimpler	nented: R	lead as '0'										
bit 6:	ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt												
bit 5-4:	Unimplemented: Read as '0'												
bit 3:	SSPIE : Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt												
bit 2:	CCP1IE : CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt												
bit 1:		TMR2 to F es the TM les the TM											
bit 0:	1 = Enabl	es the TM	erflow Inte R1 overflo IR1 overflo										

4.2.2.5 PIR1 REGISTER

Applicable Devices

This register contains the individual flag bits for the Peripheral interrupts.

FIGURE 4-12: PIR1 REGISTER PIC16C72 (ADDRESS 0Ch)

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

U-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 ADIF SSPIF CCP1IF TMR2IF TMR1IF = Readable bit R = Writable bit W bit0 bit7 = Unimplemented bit, U read as '0' n = Value at POR reset bit 7: Unimplemented: Read as '0' bit 6: ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed (must be cleared in software) 0 = The A/D conversion is not complete bit 5-4: Unimplemented: Read as '0' bit 3: SSPIF: Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive bit 2: CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode TMR2IF: TMR2 to PR2 Match Interrupt Flag bit bit 1: 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred bit 0: TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register did not overflow Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

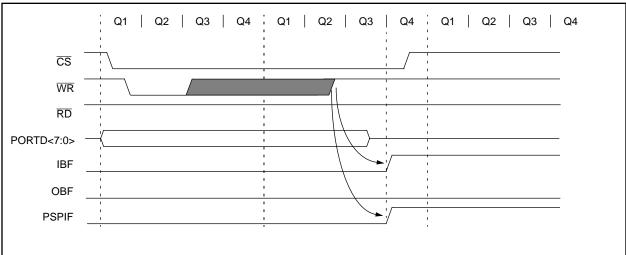
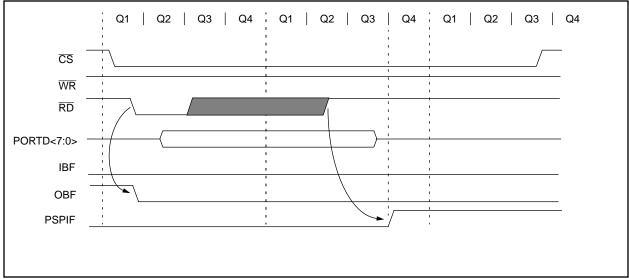
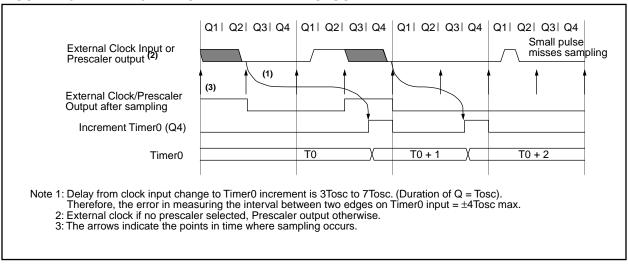



FIGURE 5-12: PARALLEL SLAVE PORT WRITE WAVEFORMS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	Port dat	a latch	when w		xxxx xxxx	uuuu uuuu				
09h	PORTE	_	—	_	_	_	- RE2 RE1 RE0		xxx	uuu	
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Data Direction Bits			0000 -111	0000 -111
0Ch	PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
9Fh	ADCON1	—	—		—	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Parallel Slave Port.

7.2 Using Timer0 with an External Clock Applicable Devices 72 73 73A 74 74A 76 77


When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

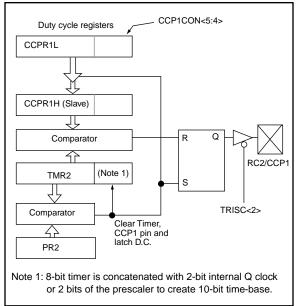
7.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK

10.3 PWM Mode

Applicable Devices


In Pulse Width Modulation (PWM) mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note: Clearing the CCP1CON register will force the CCP1 PWM output latch to the default low level. This is not the PORTC I/O data latch.

Figure 10-4 shows a simplified block diagram of the CCP module in PWM mode.

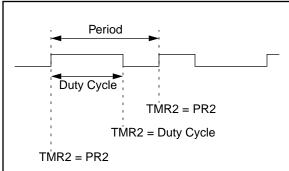

For a step by step procedure on how to set up the CCP module for PWM operation, see Section 10.3.3.

FIGURE 10-4: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 10-5) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 10-5: PWM OUTPUT

10.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM period = [(PR2) + 1] • 4 • TOSC • (TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 9.1) is
	not used in the determination of the PWM
	frequency. The postscaler could be used to
	have a servo update rate at a different fre-
	quency than the PWM output.

10.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)} \quad \text{bits}$$

Note: If the PWM duty cycle value is longer than the PWM period the CCP1 pin will not be cleared.

11.2 SPI Mode for PIC16C72/73/73A/74/74A

This section contains register definitions and operational characteristics of the SPI module for the PIC16C72, PIC16C73, PIC16C73A, PIC16C74, PIC16C74A.

FIGURE 11-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0					
_	—	D/Ā	Р	S	R/W	UA	BF	R = Readable bit				
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset				
bit 7-6:	Unimpl	emented	: Read as	'0'								
bit 5:	 D/Ā: Data/Address bit (l²C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address 											
bit 4:	P : Stop bit (I^2C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared) 1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET) 0 = Stop bit was not detected last											
bit 3:	S : Start bit (I^2C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared) 1 = Indicates that a start bit has been detected last (this bit is '0' on RESET) 0 = Start bit was not detected last											
bit 2:	This bit	holds the o the next ad	R/W bit i	ation (I ² C n nformation stop bit, or	following the	e last addre	ess match. T	his bit is valid from the address				
bit 1:	1 = Indi	cates that	the user	t I ² C mode needs to up to be upda	date the add	dress in the	SSPADD re	gister				
bit 0:	BF: Buf	fer Full St	atus bit									
	1 = Rec	eive com		es) PBUF is full SSPBUF is								
	1 = Trar		ogress, S	SPBUF is f PBUF is em								

12.1 USART Baud Rate Generator (BRG) Applicable Devices 72 73 73A 74 74A 76 77

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In asynchronous mode bit BRGH (TXSTA<2>) also controls the baud rate. In synchronous mode bit BRGH is ignored. Table 12-1 shows the formula for computation of the baud rate for different USART modes which only apply in master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 12-1. From this, the error in baud rate can be determined.

Example 12-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 BRGH = 0 SYNC = 0

EXAMPLE 12-1: CALCULATING BAUD RATE ERROR

Desired Baud rate = Fosc / (64 (X + 1))

 $9600 = \frac{16000000}{(64 (X + 1))}$

 $X = \lfloor 25.042 \rfloor = 25$

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615

- Error = (Calculated Baud Rate Desired Baud Rate) Desired Baud Rate
 - = (9615 9600) / 9600

= 0.16%

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Note:	For the PIC16C73/73A/74/74A, the asyn- chronous high speed mode (BRGH = 1) may experience a high rate of receive errors. It is recommended that BRGH = 0. If you desire a higher baud rate than BRGH = 0 can support, refer to the device errata for additional information, or use the PIC16C76/77.
-------	---

Writing a new value to the SPBRG register, causes the BRG timer to be reset (or cleared), this ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

TABLE 12-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate= Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	NA

X = value in SPBRG (0 to 255)

TABLE 12-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
99h	SPBRG	Baud Ra	ate Gene	erator Re	0000 0000	0000 0000					

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the BRG.

12.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is reset by the hardware. In this case it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register, i.e. it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register, will load bit RX9D with a new value, therefore it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. (Section 12.1)
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Re	eceive Re	egister					•	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat	0000 0000	0000 0000						

TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

14.5 Interrupts Applicable Devices 72 73 73A 74 74A 76 77

The PIC16C7X family has up to 12 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-	
	less of the status of their corresponding	
	mask bit or the GIE bit.	

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 14-17). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

- Note: For the PIC16C73/74, if an interrupt occurs while the Global Interrupt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:
 - 1. An instruction clears the GIE bit while an interrupt is acknowledged.
 - 2. The program branches to the Interrupt vector and executes the Interrupt Service Routine.
 - The Interrupt Service Routine completes with the execution of the RET-FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to disable interrupts.

Perform the following to ensure that interrupts are globally disabled:

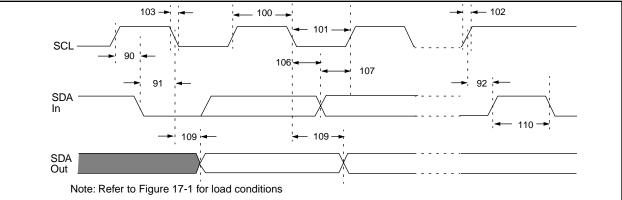
LOOP	BCF	INTCON,	GIE		Disable global
				;	
	BTFSC	INTCON,	GIE	;	Global interrupt
				;	disabled?
	GOTO	LOOP		;	NO, try again
	:			;	Yes, continue
				;	with program
				;	flow

Applicable Devices 72 73 73A 74 74A 76 77

		Standa	rd Opera	ting	Conditio	ons (un	less otherwise stated)
		Operati	ng temper	ratur	e -40)°C ́≤	TA \leq +125°C for extended,
	ACTERISTICS				-40	°C ≤	$TA \leq +85^{\circ}C$ for industrial and
	ACTERISTICS				0°0	C ≤	TA \leq +70°C for commercial
		•	ng voltage ction 17.2		o range a	as desci	ribed in DC spec Section 17.1
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				ť			
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С
D090A			Vdd - 0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°C to +85°C
D092A			Vdd - 0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin
	Capacitive Loading Specs on Out- put Pins						
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Сю	-	-	50	pF	
D102	SCL, SDA in I ² C mode	Св	-	-	400	pF	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

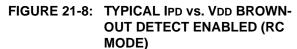
Applicable Devices 72 73 73A 74 74A 76 77

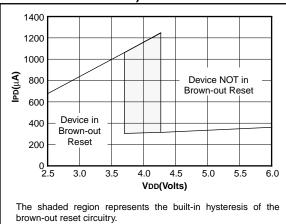
FIGURE 17-10: I²C BUS DATA TIMING

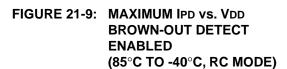
TABLE 17-9: I²C BUS DATA REQUIREMENTS

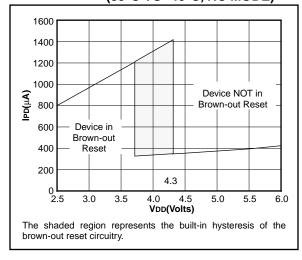
Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0	_	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
101	TLOW	Clock low time	100 kHz mode	4.7	_	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	_		
102	Tr	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
103	Tf	SDA and SCL fall time	100 kHz mode	_	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
90	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode		—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3		μs	before a new transmission can start
	Cb	Bus capacitive loading		_	400	pF	

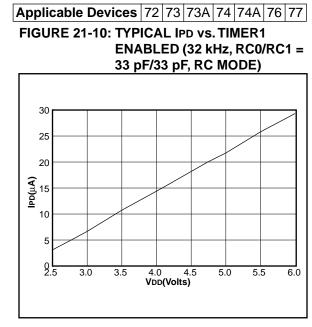
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

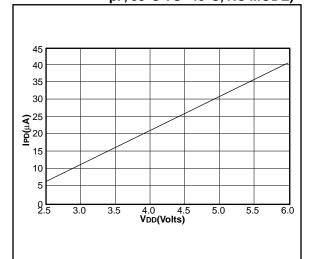

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz)S I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.


Applicable Devices 72 73 73A 74 74A 76 77


TABLE 20-1:CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)


osc	PIC16C76-04 PIC16C77-04	PIC16C76-10 PIC16C77-10	PIC16C76-20 PIC16C77-20	PIC16LC76-04 PIC16LC77-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
хт	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V	VDD: 4.5V to 5.5V IDD: 10 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V
LP	Freq: 4 MHz max. VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Freq: 10 MHz max. Not recommended for use in LP mode	Freq: 20 MHz max. Not recommended for use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.	Freq: 20 MHz max. VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.


The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.



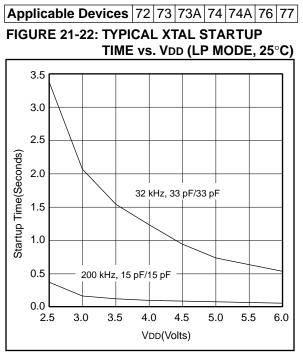
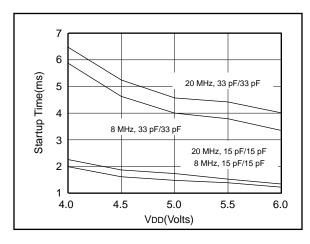



FIGURE 21-23: TYPICAL XTAL STARTUP TIME vs. Vdd (HS MODE, 25°C)

FIGURE 21-24: TYPICAL XTAL STARTUP TIME vs. VDD (XT MODE, 25°C)

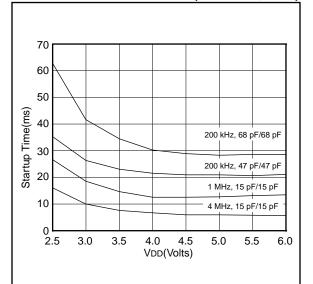
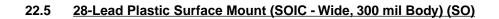
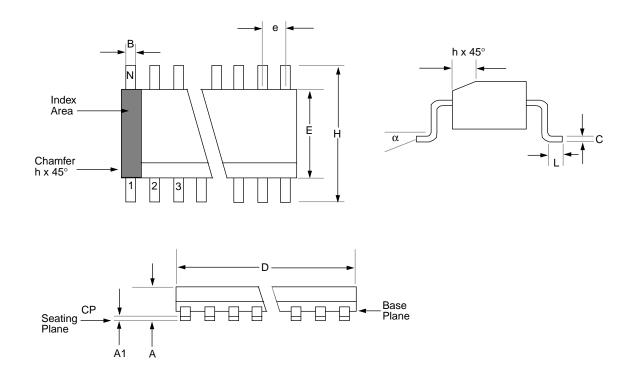




TABLE 21-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATORS

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF
Crystals Used			
32 kHz	Epson C-00)1R32.768K-A	± 20 PPM
200 kHz	STD XTL 2	00.000KHz	± 20 PPM
1 MHz	ECS ECS-1	10-13-1	± 50 PPM
4 MHz	ECS ECS-4	10-20-1	± 50 PPM
8 MHz	EPSON CA	-301 8.000M-C	± 30 PPM
20 MHz	EPSON CA	-301 20.000M-C	± 30 PPM

		Package	Group: Plastic	SOIC (SO)		
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	8 °		0°	8 °	
А	2.362	2.642		0.093	0.104	
A1	0.101	0.300		0.004	0.012	
В	0.355	0.483		0.014	0.019	
С	0.241	0.318		0.009	0.013	
D	17.703	18.085		0.697	0.712	
E	7.416	7.595		0.292	0.299	
е	1.270	1.270	Typical	0.050	0.050	Typical
Н	10.007	10.643		0.394	0.419	
h	0.381	0.762		0.015	0.030	
L	0.406	1.143		0.016	0.045	
Ν	28	28		28	28	
CP	-	0.102		—	0.004	

APPENDIX E: PIC16/17 MICROCONTROLLERS

E.1 PIC12CXXX Family of Devices

		PIC12C508	PIC12C509	PIC12C671	PIC12C672
Clock	Maximum Frequency of Operation (MHz)	4	4	4	4
lomony	EPROM Program Memory	512 x 12	1024 x 12	1024 x 14	2048 x 14
lemory	Data Memory (bytes)	25	41	128	128
	Timer Module(s)	TMR0	TMR0	TMR0	TMR0
eripherals	A/D Converter (8-bit) Channels	—	—	4	4
	Wake-up from SLEEP on pin change	Yes	Yes	Yes	Yes
	I/O Pins	5	5	5	5
	Input Pins	1	1	1	1
eatures	Internal Pull-ups	Yes	Yes	Yes	Yes
	Voltage Range (Volts)	2.5-5.5	2.5-5.5	2.5-5.5	2.5-5.5
	In-Circuit Serial Programming	Yes	Yes	Yes	Yes
	Number of Instructions	33	33	35	35
	Packages	8-pin DIP, SOIC	8-pin DIP, SOIC	8-pin DIP, SOIC	8-pin DIP, SOIC

All PIC12C5XX devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC12C5XX devices use serial programming with data pin GP1 and clock pin GP0.

E.2 PIC14C000 Family of Devices

		PIC14C000
Clock	Maximum Frequency of Operation (MHz)	20
	EPROM Program Memory (x14 words)	4K
Memory	Data Memory (bytes)	192
Memory	Timer Module(s)	TMR0 ADTMR
Peripherals	Serial Port(s) (SPI/I ² C, USART)	I ² C with SMBus Support
	Slope A/D Converter Channels	8 External; 6 Internal
	Interrupt Sources	11
	I/O Pins	22
	Voltage Range (Volts)	2.7-6.0
Features	In-Circuit Serial Programming	Yes
	Additional On-chip Features	Internal 4MHz Oscillator, Bandgap Reference, Temperature Sensor, Calibration Factors, Low Voltage Detector, SLEEP, HIBERNATE, Comparators with Programmable References (2)
	Packages	28-pin DIP (.300 mil), SOIC, SSOP

PIC16C7X

Registers
FSR
Summary29 INDF
Summary
Initialization Conditions136
Summary
Maps
PIC16C72
PIC16C73A
PIC16C74
PIC16C74A21
PIC16C76
PIC16C77
Summary
PCL
Summary
PCLATH Summary29
PORTB
Summary29
Reset Conditions
SSPBUF Section80
SSPCON
Diagram79
SSPSR
Section
Diagram
Section
STATUS
Summary
TMR0
Summary29
TRISB
Summary
Reset Conditions for Special Registers
RP0 bit
RP1 bit
RX9 bit
S
S
SCR
SDI
SDO80
Serial Communication Interface (SCI) Module, See USART
Services One-Time-Programmable (OTP)7
Quick-Turnaround-Production (QTP)7
Serialized Quick-Turnaround Production (SQTP)7
Slave Mode
SCL
SLEEP
SMP
Software Simulator (MPSIM)
SPBRG

SPBRG Register	26 28
Special Event Trigger	
Special Features of the CPU	129
Special Function Registers	
PIC16C72	23
PIC16C73	25, 27
PIC16C73A	25 27
PIC16C74	
PIC16C74A	,
PIC16C76	
PIC16C77	
Special Function Registers, Section	23
SPEN bit	
SPI	
Block Diagram	00.05
-	
Master Mode	
Master Mode Timing	87
Mode	80
Serial Clock	
Serial Data In	
Serial Data Out	
Slave Mode Timing	
Slave Mode Timing Diagram	87
Slave Select	85
SPI clock	86
SPI Mode	85
SSPCON	
SSPSTAT	
SPI Clock Edge Select bit, CKE	83
SPI Data Input Sample Phase Select bit, SMP	83
SPI Mode	80
SREN bit	
SS	
660	
SSP	
Module Overview	77
	77
Module Overview	77
Module Overview Section SSPBUF	77 77 86
Module Overview Section SSPBUF SSPCON	77 77 86 84
Module Overview Section SSPBUF SSPCON SSPSR	77
Module Overview Section SSPBUF SSPCON SSPSR SSPSTAT	77
Module Overview Section SSPBUF SSPCON SSPSR SSPSTAT SSP in I ² C Mode - See I ² C	
Module Overview Section SSPBUF SSPCON SSPSR SSPSTAT SSP in I ² C Mode - See I ² C SSPADD	
Module Overview Section SSPBUF SSPCON SSPSR SSPSTAT SSP in I ² C Mode - See I ² C	
Module Overview Section SSPBUF SSPCON SSPSR SSPSTAT SSP in I ² C Mode - See I ² C SSPADD	
Module Overview Section SSPBUF SSPCON SSPSR SSPSTAT SSP in I ² C Mode - See I ² C SSPADD SSPADD Register	
Module Overview Section SSPBUF SSPCON SSPSR SSPSTAT SSP in I ² C Mode - See I ² C SSPADD SSPADD Register	
Module Overview Section SSPBUF SSPCON SSPSR SSPSTAT SSP in I ² C Mode - See I ² C SSPADD SSPADD Register	
Module Overview Section	
Module Overview	
Module Overview	
Module Overview Section SSPBUF SSPCON SSPSR SSPSTAT SSP in 1 ² C Mode - See 1 ² C SSPADD SSPADD Register SSPADD Register SSPBUF Register SSPEN SSPCON Register SSPEN SSPEN SSPIE bit SSPIE bit SSPIF bit SSPIF bit SSPM3:SSPM0 SSPOV SSPSTAT SSPSTAT	
Module Overview	