E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c77-04-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	DIP Pin#	SSOP Pin#	SOIC Pin#	l/O/P Type	Buffer Type	Description
OSC1/CLKIN	9	9	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	10	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	1	1	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	2	2	I/O	TTL	RA0 can also be analog input0
RA1/AN1	3	3	3	I/O	TTL	RA1 can also be analog input1
RA2/AN2	4	4	4	I/O	TTL	RA2 can also be analog input2
RA3/AN3/VREF	5	5	5	I/O	TTL	RA3 can also be analog input3 or analog reference voltage
RA4/T0CKI	6	6	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
RA5/SS/AN4	7	7	7	I/O	TTL	RA5 can also be analog input4 or the slave select for the synchronous serial port.
						PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	21	21	21	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	22	22	22	I/O	TTL	
RB2	23	23	23	I/O	TTL	
RB3	24	24	24	I/O	TTL	
RB4	25	25	25	I/O	TTL	Interrupt on change pin.
RB5	26	26	26	I/O	TTL	Interrupt on change pin.
RB6	27	27	27	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	28	28	28	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
						PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	11	11	11	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input.
RC1/T1OSI	12	12	12	I/O	ST	RC1 can also be the Timer1 oscillator input.
RC2/CCP1	13	13	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	14	14	14	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	15	15	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	16	16	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6	17	17	17	I/O	ST	
RC7	18	18	18	I/O	ST	
Vss	8, 19	8, 19	8, 19	Р		Ground reference for logic and I/O pins.
Vdd	20	20	20	Р		Positive supply for logic and I/O pins.
Legend: I = input	0 =	output	1	I/O = i	nput/output	P = power
	— =	Not used	1	TTI =	TTI input	ST = Schmitt Trigger input

TABLE 3-1:	PIC16C72	PINOUT	DESCRIPTION
------------	-----------------	--------	-------------

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt. 2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (3)	
Bank 0												
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000	
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu	
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000	
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu	
04h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	er					XXXX XXXX	uuuu uuuu	
05h	PORTA	—	—	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read		0x 0000	0u 0000	
06h	PORTB	PORTB Dat	a Latch whe	n written: PC	ORTB pins wh	nen read				xxxx xxxx	uuuu uuuu	
07h	PORTC	PORTC Dat	ta Latch whe	n written: PC	ORTC pins w	nen read				xxxx xxxx	uuuu uuuu	
08h	_	Unimpleme	nted							—	—	
09h	_	Unimpleme	nted							_	_	
0Ah ^(1,2)	PCLATH	_	_	—	Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000	
0Bh (1)	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u	
0Ch	PIR1	—	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000	
0Dh	_	Unimpleme	nted							—	_	
0Eh	TMR1L	Holding reg	ister for the L	east Signific	ant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu	
0Fh	TMR1H	Holding reg	ister for the N	Aost Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu	
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu	
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000	
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000	
13h	SSPBUF	Synchronou	is Serial Port	Receive Bu	ffer/Transmit	Register				xxxx xxxx	uuuu uuuu	
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000	
15h	CCPR1L	Capture/Co	mpare/PWM	Register (LS	SB)					xxxx xxxx	uuuu uuuu	
16h	CCPR1H	Capture/Co	mpare/PWM	Register (M	SB)					XXXX XXXX	uuuu uuuu	
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000	
18h	_	Unimpleme	nted							_	_	
19h	_	Unimpleme	Unimplemented								_	
1Ah	-	Unimpleme	Unimplemented —									
1Bh	_	Unimpleme	Unimplemented —									
1Ch	_	Unimpleme	Jnimplemented —									
1Dh	_	Unimpleme	nimplemented —									
1Eh	ADRES	A/D Result	Register							xxxx xxxx	uuuu uuuu	
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0	

TABLE 4-1: PIC16C72 SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C72, always maintain these bits clear.

FIGURE 4-11: PIE1 REGISTER PIC16C73/73A/74/74A/76/77 (ADDRESS 8Ch)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	R	= Readable bit
bit7							bit0	W	= Writable bit = Unimplemented bit
									read as '0'
	(1)							- n	= Value at POR reset
bit 7:	PSPIE ⁽¹⁾ :	Parallel S	lave Port	Read/Writ	e Interrupt	Enable bit			
	1 = Enabl	es the PS	P read/wr	ite interrup	ot •••				
	0 = Disab	les the PS	P read/wi		pt				
bit 6:	ADIE: A/E	Converte	er Interrup	t Enable b	oit				
	1 = Enable 0 = Disable 0	les the Α/L) interrupt	ŀ					
hit E.				.nt Enchla	hit				
DIL D.	1 – Enabl	AKI KECE		ve interru) DIL Dt				
	0 = Disab	les the US	SART rece	ive interru	ipt				
bit 4:	TXIE: US	ART Trans	mit Interru	upt Enable	e bit				
	1 = Enabl	es the US	ART trans	mit interru	upt				
	0 = Disab	les the US	SART trans	smit interr	upt				
bit 3:	SSPIE: S	ynchronou	is Serial F	ort Interru	pt Enable b	oit			
	1 = Enabl	es the SS	P interrup	t					
	0 = Disab	les the SS	SP interrup	ot					
bit 2:	CCP1IE:	CCP1 Inte	rrupt Ena	ble bit					
	1 = Enabl	es the CC	P1 interru	pt					
	0 = Disab	les the CC	P1 Interru	lpt					
bit 1:	TMR2IE:	TMR2 to F	PR2 Match	Interrupt	Enable bit				
	1 = Enable 0 = Disable 1	es the TM		2 match in 2 match ir	terrupt				
L:4 0.									
DIT U:	1 MR11E:	IMR1 OVE	R1 overflo	rrupt Enat					
	0 = Disab	les the TM	IR1 overfl	ow interru	Dt				
	2.2.0				1				
Note 1:	PIC16C7	3/73A/76 d	devices do	not have	a Parallel S	Slave Port i	implemente	d, t	his bit location is reserved
	on these	devices, a	lways mai	ntain this l	bit clear.				

FIGURE 5-12: PARALLEL SLAVE PORT WRITE WAVEFORMS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1 Bit 0		Value on: POR, BOR	Value on all other resets
08h	PORTD	Port dat	a latch	when w	ritten: Port pi	ns when	read			xxxx xxxx	uuuu uuuu
09h	PORTE	—	—	—	—	—	RE2 RE1 RE0		xxx	uuu	
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE D	ata Direction	n Bits	0000 -111	0000 -111
0Ch	PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
9Fh	ADCON1	_	—	—	—	—	PCFG2 PCFG1 PCFG0		PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Parallel Slave Port.

FIGURE 9-2: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	R	= Readable bit
bit7						•	bit0	W	= Writable bit
biti							bito	U	= Unimplemented bit,
									read as '0'
								- n	= Value at POR reset
bit 7:	Unimplem	ented: Rea	id as '0'						
hit 6-3.	TOUTPS		Timer2 Ou	itnut Postsos	ala Salact hi	te			
bit 0 0.		Postscale		1001000		13			
	0000 = 1.1	Postscale							
	•								
	• 1111 - 1·1	6 Postecolo							
	<u> </u>	IO FUSISCAIE	5						
bit 2:	TMR2ON:	Timer2 On I	bit						
	1 = Timer2	is on							
	0 = Timer2	is off							
bit 1-0:	T2CKPS1:	T2CKPS0:	Timer2 Clo	ock Prescale	Select bits				
	0.0 = Presc	aler is 1							
	01 = Presc	caler is 4							
	$1 \times = Presc$	caler is 16							
	111 11000								

TABLE 9-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111

 Legend:
 x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module.

 Note
 1:
 Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

 2:
 The PIC16C72 does not have a Parallel Slave Port or a USART, these bits are unimplemented, read as '0'.

TABLE 10-5:	REGISTERS	ASSOCIATED	WITH PWM	AND TIMER2
-------------	-----------	------------	----------	------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh ⁽²⁾	PIR2	—	_	_	—	—	—	_	CCP2IF	0	0
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh ⁽²⁾	PIE2	—			—	—	—		CCP2IE	0	0
87h	TRISC	PORTC Da	ata Directio	n Register						1111 1111	1111 1111
11h	TMR2	Timer2 mod	dule's regist	er						0000 0000	0000 0000
92h	PR2	Timer2 mod	dule's period	l register						1111 1111	1111 1111
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/Co	mpare/PWI	V register1 ((LSB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWI	V register1 ((MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh ⁽²⁾	CCPR2L	Capture/Co	mpare/PWI		xxxx xxxx	uuuu uuuu					
1Ch ⁽²⁾	CCPR2H	Capture/Co	mpare/PWI	V register2 ((MSB)					xxxx xxxx	uuuu uuuu
1Dh ⁽²⁾	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

2: The PIC16C72 does not have a Parallel Slave Port, USART or CCP2 module, these bits are unimplemented, read as '0'.

12.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is reset by the hardware. In this case it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register, i.e. it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register, will load bit RX9D with a new value, therefore it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. (Section 12.1)
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Re	eceive Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Genera	0000 0000	0000 0000						

TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

14.3 <u>Reset</u> Applicable Devices 72|73|73A|74|74A|76|77

The PIC16CXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR) (PIC16C72/73A/74A/76/ 77)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and WDT Reset, on $\overline{\text{MCLR}}$ reset during SLEEP, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different reset situations as indicated in Table 14-5 and Table 14-6. These bits are used in software to determine the nature of the reset. See Table 14-8 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 14-8.

The PIC16C72/73A/74A/76/77 have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

14.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 14.8 for details on SLEEP mode.

14.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 7.0)

14.5.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 5.2)

Note:	For the PIC16C73/74, if a change on the
	I/O pin should occur when the read opera-
	tion is being executed (start of the Q2
	cycle), then the RBIF interrupt flag may not
	get set.

14.6 <u>Context Saving During Interrupts</u> Applicable Devices

72 73 73A 74 74A 76 77

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 14-1 stores and restores the STATUS, W, and PCLATH registers. The register, W_TEMP, must be defined in each bank and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Stores the PCLATH register.
- d) Executes the ISR code.
- e) Restores the STATUS register (and bank select bit).
- f) Restores the W and PCLATH registers.

EXAMPLE 14-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

MOVWF	W_TEMP	;Copy W to TEMP register, could be bank one or zero
SWAPF	STATUS,W	;Swap status to be saved into W
CLRF	STATUS	; bank 0, regardless of current bank, Clears IRP, RP1, RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
MOVF	PCLATH, W	;Only required if using pages 1, 2 and/or 3
MOVWF	PCLATH_TEMP	;Save PCLATH into W
CLRF	PCLATH	;Page zero, regardless of current page
BCF	STATUS, IRP	;Return to Bank 0
MOVF	FSR, W	;Copy FSR to W
MOVWF	FSR_TEMP	;Copy FSR from W to FSR_TEMP
:		
:(ISR)		
:		
MOVF	PCLATH_TEMP, W	;Restore PCLATH
MOVWF	PCLATH	;Move W into PCLATH
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

SUBWF	Subtract	W from f								
Syntax:	[label]	SUBWF	f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	7								
Operation:	(f) - (W) \rightarrow (destination)									
Status Affected:	C, DC, Z									
Encoding:	00	0010	dfff	ffff						
Description:	Subtract (2's complement method) W reg- ister from register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.									
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process data	Write to destination						
Example 1:	SUBWF	reg1,1								
	Before Ins	struction								
	REG1	=	3							
	W C	=	2							
	Z	=	?							
	After Instr	uction								
	REG1	=	1							
	C	=	∠ 1; result is	positive						
	Z	=	0							
Example 2:	Before Ins	struction								
	REG1	=	2							
	W C	=	2							
	Z	=	?							
	After Instr	uction								
	REG1	=	0							
	W	=	2 1: result is	7010						
	z	=	1, 10301113	2010						
Example 3:	Before Ins	struction								
	REG1	=	1							
	W	=	2							
	Z	=	?							
	After Instr	uction								
	REG1	=	0xFF							
	W C	=	2 0: result is	negative						
	7	_	0	guivo						

SWAPF	Swap Nibbles in f								
Syntax:	[label]	[label] SWAPF f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	27							
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$								
Status Affected:	None								
Encoding:	00	1110	dffi	E ffff					
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Proces data	ss Write to destination					
Example	SWAPF	REG,	0						
	Before In	struction							
	REG1 = 0xA5								
	After Inst	ruction							
	REG1 = 0xA5 W = 0x5A								

TRIS	Load TR	IS Regis	ster			
Syntax:	[label]	TRIS	f			
Operands:	$5 \leq f \leq 7$					
Operation:	$(W) \rightarrow TF$	RIS regis	ster f;			
Status Affected:	None					
Encoding:	00	0000	0110	Offf		
Description:	The instruction is supported for code compatibility with the PIC16C5X prod- ucts. Since TRIS registers are read- able and writable, the user can directly address them.					
Words:	1					
Cycles:	1					
Example						
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.					

PIC16C7X

XORLW	Exclusive OR Literal with V								
Syntax:	[label]	XORLV	V k						
Operands:	$0 \le k \le 255$								
Operation:	(W) .XO	$R.k \rightarrow (N)$	N)						
Status Affected:	Z								
Encoding:	11	1010	kkkk	kkkk					
Description:	The conte XOR'ed v The resulter.	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W regis- ter.							
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read literal 'k'	Process data	Write to W					
Example:	XORLW	0xAF							
	Before II	nstruction	n						
		W =	0xB5						
	After Ins	truction							
		W =	0x1A						

XORWF	Exclusive OR W with f								
Syntax:	[label]	XORWF	f,d						
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]								
Operation:	(W) .XOR. (f) \rightarrow (destination)								
Status Affected:	Z								
Encoding:	00	0110	dfff	ffff					
Description:	Exclusive register wi result is st 1 the resul	OR the co th registe ored in the It is stored	ontents of r 'f'. If 'd' is e W registe d back in r	the W 5 0 the er. If 'd' is egister 'f'.					
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write to destination					
Example	XORWF	REG	1						
	Before In	struction	1						
		REG W	= 0x = 0x	AF B5					
	After Inst	ruction							
		REG W	= 0x = 0x	1A B5					

Applicable Devices 72 73 73A 74 74A 76 77

17.4 **Timing Parameter Symbology**

The timing parameter symbols have been created following one of the following formats:

1. TppS2pp	S	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercas	e letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercas	e letters and their meanings:		
S			
F	Fall	P	Period
н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st (l	² C specifications only)	1	
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
FIGURE 17	7-1: LOAD CONDITIONS		
	Load condition 1		Load condition 2
	VDD/2		
	Ĭ		
	\leq RL		
	<	F	
	↓		
		E	
	• • • • • • • • • • • • • • • • • • • •	•	··· ↓
	Vss		Vss
	$R_{1} = 464\Omega$		
	$C_1 = 50 \text{ pE}$ for all pipe except (<u> </u>	
	$OL = 50 \mu$ r tor all plus except 0	0002	

15 pF for OSC2 output

Applicable Devices 72 73 73A 74 74A 76 77

17.5 <u>Timing Diagrams and Specifications</u>

FIGURE 17-2: EXTERNAL CLOCK TIMING

TABLE 17-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	—	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			100	—	—	ns	HS osc mode (-10)
			50	—	—	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
		Oscillator Period	250	—	-	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			100	—	250	ns	HS osc mode (-10)
			50	—	250	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	—	DC	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1) High or	100	—	-	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			15	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	_	—	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applic	Applicable Devices 72 73 73A 74 76 77								
19.3 DC Characteristics: PIC16C73A/74A-04 (Commercial, Industrial, Extended) PIC16C73A/74A-10 (Commercial, Industrial, Extended) PIC16C73A/74A-20 (Commercial, Industrial, Extended) PIC16LC73A/74A-04 (Commercial, Industrial)									
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$									
		Operati Section	ing voltage 19.2.	e Vd	D range a	is desc	ribed in DC spec Section 19.1 and		
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions		
No.				1					
	Input Low Voltage								
	I/O ports	VIL							
D030	with TTL buffer		Vss	-	0.15Vdd	V	For entire VDD range		
D030A			Vss	-	0.8V		$4.5V \le VDD \le 5.5V$		
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V			
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2VDD	V			
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1		
	Input High Voltage								
D0.40	I/O ports	VIH		-	1/22				
D040 D040A			2.0 0.25VDD + 0.8V	-	VDD VDD	V	For entire VDD snge		
D041	with Schmitt Trigger buffer		0.8VDD	-	VDD	v	For entire VDD range		
D042	MCLR		0.8VDD	-	VDD	V			
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	VDD	V	Note1		
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V			
D070	PORTB weak pull-up current	I PURB	50	250	400	μA	VDD = 5V, VPIN = VSS		
	Input Leakage Current (Notes 2, 3)								
D060	I/O ports	lı∟	-	-	±1	μA	$Vss \le VPIN \le VDD$, Pin at hi-impedance		
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \le VPIN \le VDD$		
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration		
	Output Low Voltage								
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C		
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C		
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C		
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C		
*									

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 19-3: CLKOUT AND I/O TIMING

TABLE 19-3: CLKOUT AND I/O TIMING REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckl			75	200	ns	Note 1	
11*					75	200	nc	Note 1
11					75	200	115	NOLE I
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		—	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out value	d	_	_	0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOL	JT ↑	Tosc + 200	—	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	0	-	—	ns	Note 1	
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		_	50	150	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to	PIC16 C 73A/74A	100	_	_	ns	
		Port input invalid (I/O in hold time)	PIC16 LC 73A/74A	200	-		ns	
19*	TioV2osH	Port input valid to OSC1	(I/O in setup time)	0	—	—	ns	
20*	TioR	Port output rise time	PIC16 C 73A/74A	—	10	40	ns	
			PIC16 LC 73A/74A		—	80	ns	
21*	TioF	Port output fall time	PIC16 C 73A/74A	_	10	40	ns	
			PIC16 LC 73A/74A	—	—	80	ns	
22††*	Tinp	INT pin high or low time		Тсү	—	—	ns	
23††*	Trbp	RB7:RB4 change INT high	or low time	Тсү	-	—	ns	

* These parameters are characterized but not tested.

†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 20-9: SPI MASTER MODE TIMING (CKE = 0)

FIGURE 20-10: SPI MASTER MODE TIMING (CKE = 1)

PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77

TABLE 20-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz mode	4700		—	ns	Only relevant for repeated START
		Setup time	400 kHz mode	600	—	-		condition
91	THD:STA	START condition	100 kHz mode	4000	—	—	ne	After this period the first clock
		Hold time	400 kHz mode	600	—	—	113	pulse is generated
92	TSU:STO	STOP condition	100 kHz mode	4700	—	—	ne	
		Setup time	400 kHz mode	600	—	—	113	
93	THD:STO	STOP condition	100 kHz mode	4000	—	—	ne	
		Hold time	400 kHz mode	600	—	—	115	

 Applicable Devices
 72
 73
 73A
 74
 74A
 76
 77

FIGURE 21-3: TYPICAL IPD vs. VDD @ 25°C (WDT ENABLED, RC MODE)

FIGURE 21-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 21-7: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

22.3 28-Lead Plastic Dual In-line (300 mil) (SP)

Package Group: Plastic Dual In-Line (PLA)							
	Millimeters			Inches			
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	10°		0°	10°		
Α	3.632	4.572		0.143	0.180		
A1	0.381	_		0.015	_		
A2	3.175	3.556		0.125	0.140		
В	0.406	0.559		0.016	0.022		
B1	1.016	1.651	Typical	0.040	0.065	Typical	
B2	0.762	1.016	4 places	0.030	0.040	4 places	
B3	0.203	0.508	4 places	0.008	0.020	4 places	
С	0.203	0.331	Typical	0.008	0.013	Typical	
D	34.163	35.179		1.385	1.395		
D1	33.020	33.020	Reference	1.300	1.300	Reference	
E	7.874	8.382		0.310	0.330		
E1	7.112	7.493		0.280	0.295		
e1	2.540	2.540	Typical	0.100	0.100	Typical	
eA	7.874	7.874	Reference	0.310	0.310	Reference	
eB	8.128	9.652		0.320	0.380		
L	3.175	3.683		0.125	0.145		
N	28	-		28	-		
S	0.584	1.220		0.023	0.048		

E.8 PIC16C8X Family of Devices

		PIC16F83	PIC16CR83	PIC16F84	PIC16CR84
Clock	Maximum Frequency of Operation (MHz)	10	10	10	10
Memory	Flash Program Memory	512	—	1K	_
	EEPROM Program Memory	—	—	—	—
	ROM Program Memory	—	512	—	1K
	Data Memory (bytes)	36	36	68	68
	Data EEPROM (bytes)	64	64	64	64
Peripher- als	Timer Module(s)	TMR0	TMR0	TMR0	TMR0
Features	Interrupt Sources	4	4	4	4
	I/O Pins	13	13	13	13
	Voltage Range (Volts)	2.0-6.0	2.0-6.0	2.0-6.0	2.0-6.0
	Packages	18-pin DIP, SOIC	18-pin DIP, SOIC	18-pin DIP, SOIC	18-pin DIP, SOIC

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C8X Family devices use serial programming with clock pin RB6 and data pin RB7.

E.9 PIC16C9XX Family Of Devices

		PIC16C923	PIC16C924
Clock	Maximum Frequency of Operation (MHz)	8	8
Momony	EPROM Program Memory	4K	4K
Memory	Data Memory (bytes)	176	176
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/PWM Module(s)	1	1
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C
	Parallel Slave Port	—	—
	A/D Converter (8-bit) Channels	—	5
	LCD Module	4 Com, 32 Seg	4 Com, 32 Seg
Features	Interrupt Sources	8	9
	I/O Pins	25	25
	Input Pins	27	27
	Voltage Range (Volts)	3.0-6.0	3.0-6.0
	In-Circuit Serial Programming	Yes	Yes
	Brown-out Reset	—	—
	Packages	64-pin SDIP ⁽¹⁾ , TQFP; 68-pin PLCC, Die	64-pin SDIP ⁽¹⁾ , TQFP; 68-pin PLCC, Die

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C9XX Family devices use serial programming with clock pin RB6 and data pin RB7.