

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c77-04i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C7X

NOTES:

FIGURE 4-6: PIC16C76/77 REGISTER FILE MAP

ndirect addr. ^(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	18
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	18
PCL	02h	PCL	82h	PCL	102h	PCL	18
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	18
FSR	04h	FSR	84h	FSR	104h	FSR	18
PORTA	05h	TRISA	85h		105h		18
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	18
PORTC	07h	TRISC	87h		107h		18
PORTD (1)	08h	TRISD (1)	88h		108h		18
PORTE ⁽¹⁾	09h	TRISE (1)	89h		109h		18
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18
PIR1	0Ch	PIE1	8Ch		10Ch		18
PIR2	0Dh	PIE2	8Dh		10Dh		18
TMR1L	0Eh	PCON	8Eh		10Eh		18
TMR1H	0Fh		8Fh		10Fh		18
T1CON	10h		90h		110h		19
TMR2	11h		91h		111h		19
T2CON	12h	PR2	92h		112h		19
SSPBUF	13h	SSPADD	93h		113h		19
SSPCON	14h	SSPSTAT	94h		114h		19
CCPR1L	15h		95h		115h		19
CCPR1H	16h		96h		116h		19
CCP1CON	17h		97h	General	117h	General	19
RCSTA	18h	TXSTA	98h	Purpose	118h	Purpose	19
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	19
RCREG	1Ah		9Ah	,	11Ah	, , , , , , , , , , , , , , , , , , , ,	19
CCPR2L	1Bh		9Bh		11Bh		19
CCPR2H	1Ch		9Ch		11Ch		19
CCP2CON	1Dh		9Dh		11Dh		19
ADRES	1Eh		9Eh		11Eh		19
ADCON0	1Fh	ADCON1	9Fh		11Fh		19
	20h		A0h		120h		1A
General Purpose Register 96 Bytes		General Purpose Register 80 Bytes	EFh	General Purpose Register 80 Bytes	16Fh	General Purpose Register 80 Bytes	1E
	7Fh	accesses 70h-7Fh	F0h	accesses 70h-7Fh	170h 17Fh	accesses 70h - 7Fh	1F
Bank 0		Bank 1		Bank 2		Bank 3	

Note: The upper 16 bytes of data memory in banks 1, 2, and 3 are mapped in Bank 0. This may require relocation of data memory usage in the user application code if upgrading to the PIC16C76/77.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (2)		
Bank 0													
00h ⁽⁴⁾	INDF	Addressing	this location	uses conten	ts of FSR to a	ddress data r	memory (not	a physical re	gister)	0000 0000	0000 0000		
01h	TMR0	Timer0 mod	imer0 module's register x										
02h ⁽⁴⁾	PCL	Program Co	ounter's (PC)		0000 0000	0000 0000							
03h ⁽⁴⁾	STATUS	IRP	RP1	RP0	RPO TO PD Z DC C 0						000q quuu		
04h ⁽⁴⁾	FSR	Indirect data	a memory ac		xxxx xxxx	uuuu uuuu							
05h	PORTA	—	—		0x 0000	0u 0000							
06h	PORTB	PORTB Dat	a Latch whe	n written: PC	ORTB pins whe	en read				xxxx xxxx	uuuu uuuu		
07h	PORTC	PORTC Da	ta Latch whe	en written: PC	ORTC pins whe	en read				xxxx xxxx	uuuu uuuu		
08h ⁽⁵⁾	PORTD	PORTD Da	ta Latch whe	en written: PC	ORTD pins whe	en read		1	,	xxxx xxxx	uuuu uuuu		
09h ⁽⁵⁾	PORTE	—		_	_	-	RE2	RE1	RE0	xxx	uuu		
0Ah ^(1,4)	PCLATH	—		—	Write Buffer fo	or the upper	5 bits of the I	Program Cou	inter	0 0000	0 0000		
0Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u		
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000		
0Dh	PIR2	_			-		_	_	CCP2IF	0	0		
0Eh	TMR1L	Holding reg	ister for the l		xxxx xxxx	uuuu uuuu							
0Fh	TMR1H	Holding reg	ister for the I	Most Signific	ant Byte of the	16-bit TMR1	register			xxxx xxxx	uuuu uuuu		
10h	T1CON	—	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu		
11h	TMR2	Timer2 mod	lule's registe	r				-		0000 0000	0000 0000		
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000		
13h	SSPBUF	Synchronou	is Serial Por	t Receive Bu	ffer/Transmit R	egister				xxxx xxxx	uuuu uuuu		
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000		
15h	CCPR1L	Capture/Co	mpare/PWM	Register1 (L	_SB)					xxxx xxxx	uuuu uuuu		
16h	CCPR1H	Capture/Co	mpare/PWM	Register1 (N	MSB)					XXXX XXXX	uuuu uuuu		
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000		
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x		
19h	TXREG	USART Tra	nsmit Data R	legister						0000 0000	0000 0000		
1Ah	RCREG	USART Red	ceive Data R	egister						0000 0000	0000 0000		
1Bh	CCPR2L	Capture/Co	mpare/PWM	Register2 (L	_SB)					xxxx xxxx	uuuu uuuu		
1Ch	CCPR2H	Capture/Co	mpare/PWM	Register2 (M	MSB)					XXXX XXXX	uuuu uuuu		
1Dh	CCP2CON	_	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000		
1Eh	ADRES	A/D Result	Register							xxxx xxxx	uuuu uuuu		
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0		

TABLE 4-3: PIC16C76/77 SPECIAL FUNCTION REGISTER SUMMARY

 $\label{eq:legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.$ Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the PIC16C76, always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD and PORTE are not physically implemented on the PIC16C76, read as '0'.

4.2.2.5 PIR1 REGISTER

Applicable Devices

This register contains the individual flag bits for the Peripheral interrupts.

FIGURE 4-12: PIR1 REGISTER PIC16C72 (ADDRESS 0Ch)

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

U-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 ADIF SSPIF CCP1IF TMR2IF TMR1IF = Readable bit R = Writable bit W bit0 bit7 = Unimplemented bit, U read as '0' n = Value at POR reset bit 7: Unimplemented: Read as '0' bit 6: ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed (must be cleared in software) 0 = The A/D conversion is not complete bit 5-4: Unimplemented: Read as '0' bit 3: SSPIF: Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive bit 2: CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode TMR2IF: TMR2 to PR2 Match Interrupt Flag bit bit 1: 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred bit 0: TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register did not overflow Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

TABLE 5-0. SUIVINIANT OF REGISTERS ASSOCIATED WITH FORT	BLE 5-6:	JMMARY OF REGISTERS ASSOCIATED WITH PORTO
---	----------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
07h	PORTC	RC7	RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0								uuuu uuuu
87h	TRISC	PORTC I	Data Direct	ion Regist	ter					1111 1111	1111 1111

Legend: x = unknown, u = unchanged.

NOTES:

7.2 Using Timer0 with an External Clock Applicable Devices 72 73 73A 74 74A 76 77

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK

10.0 CAPTURE/COMPARE/PWM MODULE(s)

 Applicable Devices

 72
 73
 73A
 74
 74A
 76
 77
 CCP1

 72
 73
 73A
 74
 74A
 76
 77
 CCP2

Each CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register or as a PWM master/slave Duty Cycle register. Both the CCP1 and CCP2 modules are identical in operation, with the exception of the operation of the special event trigger. Table 10-1 and Table 10-2 show the resources and interactions of the CCP module(s). In the following sections, the operation of a CCP module is described with respect to CCP1. CCP2 operates the same as CCP1, except where noted.

CCP1 module:

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

CCP2 module:

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

For use of the CCP modules, refer to the Embedded Control Handbook, "Using the CCP Modules" (AN594).

TABLE 10-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource				
Capture	Timer1				
Compare	Timer1				
PWM	Timer2				

TABLE 10-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time-base.
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1.
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1.
PWM	PWM	The PWMs will have the same frequency, and update rate (TMR2 interrupt).
PWM	Capture	None
PWM	Compare	None

12.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 12-10. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a

FIGURE 12-10: USART RECEIVE BLOCK DIAGRAM

double buffered register, i.e. it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG register is still full then overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited, so it is essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a stop bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG, will load bits RX9D and FERR with new values, therefore it is essential for the user to read the RCSTA register before reading RCREG register in order not to lose the old FERR and RX9D information.

12.4 USART Synchronous Slave Mode

Applicable Devices 72 73 73A 74 74A 76 77

Synchronous slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

12.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

12.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the synchronous master and slave modes is identical except in the case of the SLEEP mode. Also, bit SREN is a don't care in slave mode.

If receive is enabled, by setting bit CREN, prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

- 1. Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	ansmit Re		0000 0000	0000 0000					
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	ТХ9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG Baud Rate Generator Register									0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 - 000x
1Ah	RCREG	USART Re	eceive Re		0000 0000	0000 0000					
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat		0000 0000	0000 0000					

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

13.5 A/D Operation During Sleep

Applicable Devices
72 73 73A 74 74A 76 77

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

13.6 <u>A/D Accuracy/Error</u> Applicable Devices 72 73 73A 74 74A 76 77

The absolute accuracy specified for the A/D converter includes the sum of all contributions for quantization error, integral error, differential error, full scale error, offset error, and monotonicity. It is defined as the maximum deviation from an actual transition versus an ideal transition for any code. The absolute error of the A/D converter is specified at < \pm 1 LSb for VDD = VREF (over the device's specified operating range). However, the accuracy of the A/D converter will degrade as VDD diverges from VREF.

For a given range of analog inputs, the output digital code will be the same. This is due to the quantization of the analog input to a digital code. Quantization error is typically \pm 1/2 LSb and is inherent in the analog to digital conversion process. The only way to reduce quantization error is to increase the resolution of the A/D converter.

Offset error measures the first actual transition of a code versus the first ideal transition of a code. Offset error shifts the entire transfer function. Offset error can be calibrated out of a system or introduced into a system through the interaction of the total leakage current and source impedance at the analog input.

Gain error measures the maximum deviation of the last actual transition and the last ideal transition adjusted for offset error. This error appears as a change in slope of the transfer function. The difference in gain error to full scale error is that full scale does not take offset error into account. Gain error can be calibrated out in software.

Linearity error refers to the uniformity of the code changes. Linearity errors cannot be calibrated out of the system. Integral non-linearity error measures the actual code transition versus the ideal code transition adjusted by the gain error for each code.

Differential non-linearity measures the maximum actual code width versus the ideal code width. This measure is unadjusted.

The maximum pin leakage current is \pm 1 μ A.

In systems where the device frequency is low, use of the A/D RC clock is preferred. At moderate to high frequencies, TAD should be derived from the device oscillator. TAD must not violate the minimum and should be $\leq 8 \ \mu s$ for preferred operation. This is because TAD, when derived from Tosc, is kept away from on-chip phase clock transitions. This reduces, to a large extent, the effects of digital switching noise. This is not possible with the RC derived clock. The loss of accuracy due to digital switching noise can be significant if many I/O pins are active.

In systems where the device will enter SLEEP mode after the start of the A/D conversion, the RC clock source selection is required. In this mode, the digital noise from the modules in SLEEP are stopped. This method gives high accuracy.

13.7 Effects of a RESET

 Applicable Devices

 72
 73
 73A
 74
 74A
 76
 77

A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted.

The value that is in the ADRES register is not modified for a Power-on Reset. The ADRES register will contain unknown data after a Power-on Reset.

14.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 14-5 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 14-5: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 14-6 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 14-6: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

14.2.4 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 14-7 shows how the R/C combination is connected to the PIC16CXX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-4 for waveform).

FIGURE 14-7: RC OSCILLATOR MODE

Applicable Devices 72 73 73A 74 74A 76 77

17.4 **Timing Parameter Symbology**

The timing parameter symbols have been created following one of the following formats:

1. TppS2pp	S	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercas	e letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercas	e letters and their meanings:		
S			
F	Fall	P	Period
н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st (l	² C specifications only)	1	
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
FIGURE 17	7-1: LOAD CONDITIONS		
	Load condition 1		Load condition 2
	VDD/2		
	Ĭ		
	\leq RL		
	<	F	
	↓ ↓ ↓		
		E	
	• • • • • • • • • • • • • • • • • • • •	•	··· ↓
	Vss		Vss
	$R_{1} = 464\Omega$		
	$C_1 = 50 \text{ pE}$ for all pipe except (<u> </u>	
	$OL = 50 \mu$ r tor all plus except 0	0002	

15 pF for OSC2 output

Applicable Devices 72 73 73A 74 74A 76 77

17.5 <u>Timing Diagrams and Specifications</u>

FIGURE 17-2: EXTERNAL CLOCK TIMING

TABLE 17-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	—	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			100	—	—	ns	HS osc mode (-10)
			50	—	—	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
		Oscillator Period	250	—	-	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			100	—	250	ns	HS osc mode (-10)
			50	—	250	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	—	DC	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1) High or	100	—	-	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			15	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	_	—	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 72 73 73A 74 74A 76 77

19.1 DC Characteristics: PIC16C73A/74A-04 (Commercial, Industrial, Extended) PIC16C73A/74A-10 (Commercial, Industrial, Extended) PIC16C73A/74A-20 (Commercial, Industrial, Extended)

DC CH	ARACTERISTICS		Standa Operat	ard Op ing terr	eratin perati	g Cond ure -4	litions (unless otherwise stated) $40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended,
						-4 0°	$10^{\circ}C \le TA \le +85^{\circ}C$ for industrial and $C \le TA \le +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled
			3.7	4.0	4.4	V	Extended Range Only
D010	Supply Current (Note 2,5)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	10	20	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V
D020	Power-down Current	IPD	-	10.5	42	μA	$VDD = 4.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$
D021	(Note 3,5)		-	1.5	16	μΑ	VDD = $4.0V$, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$
D021A			-	2.5	19	μΑ	VDD = 4.0V, WDT disabled, -40°C to +125°C
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

 Applicable Devices
 72
 73
 73A
 74
 74A
 76
 77

FIGURE 19-10: I²C BUS START/STOP BITS TIMING

TABLE 19-9. I C DUS START/STUP DITS REQUIREMENT	TABLE 19-9:	I ² C BUS START/STOP BITS REQUIREMENTS
---	-------------	---

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz mode	4700	-	—	ns	Only relevant for repeated START
		Setup time	400 kHz mode	600	—	—	113	condition
91	THD:STA	START condition	100 kHz mode	4000	—	—	ne	After this period the first clock
		Hold time	400 kHz mode	600	—	—	115	pulse is generated
92	Tsu:sto	STOP condition	100 kHz mode	4700	—	—	ne	
		Setup time	400 kHz mode	600	—	—	113	
93	THD:STO	STOP condition	100 kHz mode	4000	-	-	ne	
		Hold time	400 kHz mode	600	—	—	115	

Applicable Devices 72 73 73A 74 74A 76 77

TABLE 20-1:CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	P P	IC16C76-04 IC16C77-04	l	PIC16C76-10 PIC16C77-10		PIC16C76-20 PIC16C77-20	F	PIC16LC76-04 PIC16LC77-04		JW Devices
RC	VDD: IDD: IPD: Freq:	4.0V to 6.0V 5 mA max. at 5.5V 16 μA max. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	2.5V to 6.0V 3.8 mA max. at 3.0V 5 μA max. at 3V 4 MHz max.	VDD: IDD: IPD: Freq:	4.0V to 6.0V 5 mA max. at 5.5V 16 μA max. at 4V 4 MHz max.
хт	VDD: IDD: IPD: Freq:	4.0V to 6.0V 5 mA max. at 5.5V 16 μA max. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	2.5V to 6.0V 3.8 mA max. at 3.0V 5 μA max. at 3V 4 MHz max.	VDD: IDD: IPD: Freq:	4.0V to 6.0V 5 mA max. at 5.5V 16 μA max. at 4V 4 MHz max.
	Vdd: Idd:	4.5V to 5.5V 13.5 mA typ. at 5.5V	Vdd: Idd:	4.5V to 5.5V 10 mA max. at 5.5V	Vdd: Idd:	4.5V to 5.5V 20 mA max. at 5.5V	Not	recommended for	Vdd: Idd:	4.5V to 5.5V 20 mA max. at 5.5V
HS	IPD:	1.5 μA typ. at 4.5V	IPD:	1.5 μA typ. at 4.5V	IPD:	1.5 μA typ. at 4.5V	use in HS mode		IPD:	1.5 μA typ. at 4.5V
LP	VDD: IDD: IPD: Freq:	4.0V to 6.0V 52.5 μA typ. at 32 kHz, 4.0V 0.9 μA typ. at 4.0V 200 kHz max.	Not i	recommended for se in LP mode	Not i	recommended for se in LP mode	VDD: IDD: IPD: Freq:	2.5V to 6.0V 48 μA max. at 32 kHz, 3.0V 5.0 μA max. at 3.0V 200 kHz max.	IDD: IDD: IPD: Freq:	2.5V to 6.0V 48 μA max. at 32 kHz, 3.0V 5.0 μA max. at 3.0V 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

FIGURE 21-25: TYPICAL IDD vs. FREQUENCY (LP MODE, 25°C)

PIC16C7X

Figure 20-9:	SPI Master Mode Timing (CKE = 0)232
Figure 20-10:	SPI Master Mode Timing (CKE = 1) 232
Figure 20-11:	SPI Slave Mode Timing (CKE = 0)
Figure 20-12:	SPI Slave Mode Timing (CKE = 1)
Figure 20-13:	I ² C Bus Start/Stop Bits Timing
Figure 20-14:	I ² C Bus Data Timing236
Figure 20-15:	USART Synchronous Transmission
	(Master/Slave) Timing
Figure 20-16:	USART Synchronous Receive
	(Master/Slave) Timing 237
Figure 20-17:	A/D Conversion Timing
Figure 21-1:	Typical IPD vs. VDD (WDT Disabled,
	RC Mode)241
Figure 21-2:	Maximum IPD vs. VDD (WDT
	Disabled, RC Mode)241
Figure 21-3:	Typical IPD vs. VDD @ 25°C (WDT
	Enabled, RC Mode)242
Figure 21-4:	Maximum IPD vs. VDD (WDT
	Enabled, RC Mode)242
Figure 21-5:	Typical RC Oscillator
	Frequency vs. VDD242
Figure 21-6:	Typical RC Oscillator
	Frequency vs. VDD242
Figure 21-7:	Typical RC Oscillator
	Frequency vs. VDD242
Figure 21-8:	Typical IPD vs. VDD Brown-out
	Detect Enabled (RC Mode)
Figure 21-9:	Maximum IPD vs. VDD Brown-out
	Detect Enabled
	(85°C to -40°C, RC Mode)243
Figure 21-10:	Typical IPD vs. Timer1 Enabled
	(32 kHz, RC0/RC1= 33 pF/33 pF,
	RC Mode)243
Figure 21-11:	Maximum IPD vs. Timer1 Enabled
	(32 kHz, RC0/RC1 = 33
-	pF/33 pF, 85°C to -40°C, RC Mode) 243
Figure 21-12:	lypical IDD vs. Frequency
-	(RC Mode @ 22 pF, 25°C)244
Figure 21-13:	Maximum IDD vs. Frequency
E '	(RC Mode @ 22 pF, -40°C to 85°C)
Figure 21-14:	I ypical IDD vs. Frequency
	(RC Mode @ 100 pF, 25°C)
Figure 21-15:	Maximum IDD VS. Frequency (
Eigene 04 40	RC Mode @ 100 pF, -40°C to 85°C) 245
Figure 21-16:	(DC Mode @ 200 pE 25°C)
Figure 01 17	(RC Mode @ 300 pF, 25°C)
Figure 21-17.	(DC Made @ 200 pE 40°C to 85°C) 246
Eiguro 21 19:	(RC Mode @ 300 pF, -40°C to 85°C) 240
Figure 21-16.	FOO kHz (PC Mode)
Figure 21 10:	Sou KHZ (RC Mode)
Figure 21-19:	
	HS Occillator vo. Vpp 247
Eiguro 21 20.	HS Oscillator vs. VDD
Figure 21-20:	HS Oscillator vs. VDD
Figure 21-20:	HS Oscillator vs. VDD
Figure 21-20: Figure 21-21:	HS Oscillator vs. VDD
Figure 21-20: Figure 21-21:	HS Oscillator vs. VDD
Figure 21-20: Figure 21-21: Figure 21-22:	HS Oscillator vs. VDD
Figure 21-20: Figure 21-21: Figure 21-22: Figure 21-23:	HS Oscillator vs. VDD
Figure 21-20: Figure 21-21: Figure 21-22: Figure 21-23:	HS Oscillator vs. VDD
Figure 21-20: Figure 21-21: Figure 21-22: Figure 21-23: Figure 21-24:	HS Oscillator vs. VDD
Figure 21-20: Figure 21-21: Figure 21-22: Figure 21-23: Figure 21-24:	HS Oscillator vs. VDD
Figure 21-20: Figure 21-21: Figure 21-22: Figure 21-23: Figure 21-24: Figure 21-25:	HS Oscillator vs. VDD
Figure 21-20: Figure 21-21: Figure 21-22: Figure 21-23: Figure 21-24: Figure 21-25:	HS Oscillator vs. VDD
Figure 21-20: Figure 21-21: Figure 21-22: Figure 21-23: Figure 21-24: Figure 21-25: Figure 21-26:	HS Oscillator vs. VDD
Figure 21-20: Figure 21-21: Figure 21-22: Figure 21-23: Figure 21-24: Figure 21-25: Figure 21-26:	HS Oscillator vs. VDD 247 Transconductance(gm) of LP 247 Oscillator vs. VDD 247 Transconductance(gm) of XT 247 Oscillator vs. VDD 247 Typical XTAL Startup Time vs. VDD 247 (LP Mode, 25°C) 248 Typical XTAL Startup Time vs. VDD 248 Typical XTAL Startup Time vs. VDD 248 Typical XTAL Startup Time vs. VDD 248 Typical Idd vs. Frequency 248 Maximum IDD vs. Frequency 249 Maximum IDD vs. Frequency 249

Figure 21-27:	Typical IDD vs. Frequency	
	(XT Mode, 25°C)	249
Figure 21-28:	Maximum IDD vs. Frequency	
	(XT Mode, -40°C to 85°C)	249
Figure 21-29:	Typical IDD vs. Frequency	
	(HS Mode, 25°C)	250
Figure 21-30:	Maximum IDD vs. Frequency	
	(HS Mode, -40°C to 85°C)	250