Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Active | | Core Processor | PIC | | Core Size | 8-Bit | | Speed | 10MHz | | Connectivity | I ² C, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, POR, PWM, WDT | | Number of I/O | 33 | | Program Memory Size | 14KB (8K x 14) | | Program Memory Type | OTP | | EEPROM Size | - | | RAM Size | 368 x 8 | | Voltage - Supply (Vcc/Vdd) | 4V ~ 6V | | Data Converters | A/D 8x8b | | Oscillator Type | External | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 44-LCC (J-Lead) | | Supplier Device Package | 44-PLCC (16.59x16.59) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic16c77-10i-l | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong TABLE 3-3: PIC16C74/74A/77 PINOUT DESCRIPTION (Cont.'d) | Pin Name | DIP
Pin# | PLCC
Pin# | QFP
Pin# | I/O/P
Type | Buffer
Type | Description | |-----------------|-------------|----------------|-----------------|---------------|-----------------------|--| | | | | | | | PORTC is a bi-directional I/O port. | | RC0/T1OSO/T1CKI | 15 | 16 | 32 | I/O | ST | RC0 can also be the Timer1 oscillator output or a Timer1 clock input. | | RC1/T1OSI/CCP2 | 16 | 18 | 35 | I/O | ST | RC1 can also be the Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output. | | RC2/CCP1 | 17 | 19 | 36 | I/O | ST | RC2 can also be the Capture1 input/Compare1 output/PWM1 output. | | RC3/SCK/SCL | 18 | 20 | 37 | I/O | ST | RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes. | | RC4/SDI/SDA | 23 | 25 | 42 | I/O | ST | RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode). | | RC5/SDO | 24 | 26 | 43 | I/O | ST | RC5 can also be the SPI Data Out (SPI mode). | | RC6/TX/CK | 25 | 27 | 44 | I/O | ST | RC6 can also be the USART Asynchronous Transmit or Synchronous Clock. | | RC7/RX/DT | 26 | 29 | 1 | I/O | ST | RC7 can also be the USART Asynchronous Receive or Synchronous Data. | | | | | | | | PORTD is a bi-directional I/O port or parallel slave port | | RD0/PSP0 | 19 | 21 | 38 | I/O | ST/TTL ⁽³⁾ | when interfacing to a microprocessor bus. | | RD1/PSP1 | 20 | 22 | 39 | 1/0 | ST/TTL ⁽³⁾ | | | RD2/PSP2 | 21 | 23 | 40 | 1/0 | ST/TTL ⁽³⁾ | | | RD3/PSP3 | 22 | 24 | 41 | 1/0 | ST/TTL ⁽³⁾ | | | RD4/PSP4 | 27 | 30 | 2 | I/O | ST/TTL ⁽³⁾ | | | RD5/PSP5 | 28 | 31 | 3 | 1/0 | ST/TTL ⁽³⁾ | | | RD6/PSP6 | 29 | 32 | 4 | 1/0 | ST/TTL ⁽³⁾ | | | RD7/PSP7 | 30 | 33 | 5 | I/O | ST/TTL ⁽³⁾ | | | | | | | | | PORTE is a bi-directional I/O port. | | RE0/RD/AN5 | 8 | 9 | 25 | I/O | ST/TTL ⁽³⁾ | RE0 can also be read control for the parallel slave port, or analog input5. | | RE1/WR/AN6 | 9 | 10 | 26 | I/O | ST/TTL ⁽³⁾ | RE1 can also be write control for the parallel slave port, or analog input6. | | RE2/CS/AN7 | 10 | 11 | 27 | I/O | ST/TTL ⁽³⁾ | RE2 can also be select control for the parallel slave port, or analog input7. | | Vss | 12,31 | 13,34 | 6,29 | Р | _ | Ground reference for logic and I/O pins. | | VDD | 11,32 | 12,35 | 7,28 | Р | _ | Positive supply for logic and I/O pins. | | NC | _ | 1,17,28,
40 | 12,13,
33,34 | | _ | These pins are not internally connected. These pins should be left unconnected. | Legend: I = input i = input C O = output — = Not used I/O = input/output TTL = TTL input = input/output P = power ST = Schmitt Trigger input - Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt. - 2: This buffer is a Schmitt Trigger input when used in serial programming mode. - 3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus). - 4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise. ## PIC16C7X NOTES: ## PIC16C7X **NOTES:** #### 5.3 PORTC and TRISC Registers **Applicable Devices** 72 73 73 A 74 74 A 76 77 PORTC is an 8-bit bi-directional port. Each pin is individually configurable as an input or output through the TRISC register. PORTC is multiplexed with several peripheral functions (Table 5-5). PORTC pins have Schmitt Trigger input buffers. When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modify-write instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings. #### **EXAMPLE 5-3: INITIALIZING PORTC** STATUS, RPO ; Select Bank 0 BCF BCF STATUS, RP1 ; PIC16C76/77 only CLRF PORTC ; Initialize PORTC by ; clearing output ; data latches BSF STATUS, RPO ; Select Bank 1 MOVLW 0xCF ; Value used to ; initialize data ; direction MOVWF TRISC ; Set RC<3:0> as inputs ; RC<5:4> as outputs ; RC<7:6> as inputs FIGURE 5-6: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE) - Note 1: I/O pins have diode protection to VDD and Vss. - 2: Port/Peripheral select signal selects between port data and peripheral output. - 3: Peripheral OE (output enable) is only activated if peripheral select is active. TABLE 5-5: PORTC FUNCTIONS | Name | Bit# | Buffer Type | Function | |-------------------------------|------|-------------|--| | RC0/T1OSO/T1CKI | bit0 | ST | Input/output port pin or Timer1 oscillator output/Timer1 clock input | | RC1/T1OSI/CCP2 ⁽¹⁾ | bit1 | ST | Input/output port pin or Timer1 oscillator input or Capture2 input/
Compare2 output/PWM2 output | | RC2/CCP1 | bit2 | ST | Input/output port pin or Capture1 input/Compare1 output/PWM1 output | | RC3/SCK/SCL | bit3 | ST | RC3 can also be the synchronous serial clock for both SPI and PC modes. | | RC4/SDI/SDA | bit4 | ST | RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode). | | RC5/SDO | bit5 | ST | Input/output port pin or Synchronous Serial Port data output | | RC6/TX/CK ⁽²⁾ | bit6 | ST | Input/output port pin or USART Asynchronous Transmit, or USART Synchronous Clock | | RC7/RX/DT ⁽²⁾ | bit7 | ST | Input/output port pin or USART Asynchronous Receive, or USART Synchronous Data | Legend: ST = Schmitt Trigger input Note 1: The CCP2 multiplexed function is not enabled on the PIC16C72. 2: The TX/CK and RX/DT multiplexed functions are not enabled on the PIC16C72. ## PIC16C7X **NOTES:** #### 11.5 SSP I²C Operation The SSP module in I²C mode fully implements all slave functions, except general call support, and provides interrupts on start and stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing. Two pins are used for data transfer. These are the RC3/SCK/SCL pin, which is the clock (SCL), and the RC4/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSP-CON<5>). FIGURE 11-24: SSP BLOCK DIAGRAM (I²C MODE) The SSP module has five registers for I^2C operation. These are the: - SSP Control Register (SSPCON) - SSP Status Register (SSPSTAT) - · Serial Receive/Transmit Buffer (SSPBUF) - SSP Shift Register (SSPSR) Not directly accessible - SSP Address Register (SSPADD) The SSPCON register allows control of the I²C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I²C modes to be selected: - I²C Slave mode (7-bit address) - I²C Slave mode (10-bit address) - I²C Slave mode (7-bit address), with start and stop bit interrupts enabled - I²C Slave mode (10-bit address), with start and stop bit interrupts enabled - I²C Firmware controlled Master Mode, slave is idle Selection of any I²C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits. The SSPSTAT register gives the status of the data transfer. This information includes detection of a START or STOP bit, specifies if the received byte was data or address if the next byte is the completion of 10-bit address, and if this will be a read or write data transfer. The SSPSTAT register is read only. The SSPBUF is the register to which transfer data is written to or read from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSPBUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and bit SSPOV (SSPCON<6>) is set and the byte in the SSPSR is lost. The SSPADD register holds the slave address. In 10-bit mode, the user first needs to write the high byte of the address (1111 $\,^{\,}$ 0 $\,^{\,}$ A9 $\,^{\,}$ A8 $\,^{\,}$ 0). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0). #### 11.5.2 MASTER MODE Master mode of operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I²C bus may be taken when the P bit is set, or the bus is idle and both the S and P bits are In master mode the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit. The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled): - · START condition - STOP condition - · Data transfer byte transmitted/received Master mode of operation can be done with either the slave mode idle (SSPM3:SSPM0 = 1011) or with the slave active. When both master and slave modes are enabled, the software needs to differentiate the source(s) of the interrupt. #### 11.5.3 MULTI-MASTER MODE In multi-master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I²C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs. In multi-master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are: - Address Transfer - · Data Transfer When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed an \overline{ACK} pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time. TABLE 11-5: REGISTERS ASSOCIATED WITH I²C OPERATION | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | PC | e on
DR,
DR | | on all
resets | |------------------------|---------|----------------------|------------------------------|--------------------------|-----------|------------|----------|--------|--------|------|-------------------|------|------------------| | 0Bh, 8Bh,
10Bh,18Bh | INTCON | GIE | PEIE | T0IE | INTE | RBIE | T0IF | INTF | RBIF | 0000 | 000x | 0000 | 000u | | 0Ch | PIR1 | PSPIF ⁽¹⁾ | ADIF | RCIF | TXIF | SSPIF | CCP1IF | TMR2IF | TMR1IF | 0000 | 0000 | 0000 | 0000 | | 8Ch | PIE1 | PSPIE ⁽¹⁾ | ADIE | RCIE | TXIE | SSPIE | CCP1IE | TMR2IE | TMR1IE | 0000 | 0000 | 0000 | 0000 | | 13h | SSPBUF | Synchrono | us Serial | Port Rece | ive Buffe | r/Transmit | Register | | | xxxx | xxxx | uuuu | uuuu | | 93h | SSPADD | Synchrono | us Serial | Port (I ² C ı | mode) Ad | ldress Re | gister | | | 0000 | 0000 | 0000 | 0000 | | 14h | SSPCON | WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 | 0000 | 0000 | 0000 | 0000 | | 94h | SSPSTAT | SMP ⁽²⁾ | CKE ⁽²⁾ | D/Ā | Р | S | R/W | UA | BF | 0000 | 0000 | 0000 | 0000 | | 87h | TRISC | PORTC Da | ORTC Data Direction register | | | | | | | 1111 | 1111 | 1111 | 1111 | Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in SPI mode. Note 1: PSPIF and PSPIE are reserved on the PIC16C73/73A/76, always maintain these bits clear. 2: The SMP and CKE bits are implemented on the PIC16C76/77 only. All other PIC16C7X devices have these two bits unimplemented, read as '0'. #### 14.3 Reset Applicable Devices 72 73 73 A 74 74 A 76 77 The PIC16CXX differentiates between various kinds of reset: - Power-on Reset (POR) - MCLR reset during normal operation - MCLR reset during SLEEP - · WDT Reset (normal operation) - Brown-out Reset (BOR) (PIC16C72/73A/74A/76/ 77) Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and WDT Reset, on $\overline{\text{MCLR}}$ reset during SLEEP, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different reset situations as indicated in Table 14-5 and Table 14-6. These bits are used in software to determine the nature of the reset. See Table 14-8 for a full description of reset states of all registers. A simplified block diagram of the on-chip reset circuit is shown in Figure 14-8. The PIC16C72/73A/74A/76/77 have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will detect and ignore small pulses. It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low. FIGURE 14-8: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT #### 14.8 Power-down Mode (SLEEP) Applicable Devices 72 73 73 A 74 74 A 76 77 Power-down mode is entered by executing a ${\tt SLEEP}$ instruction. If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance). For lowest current consumption in this mode, place all I/O pins at either VDD, or Vss, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered. The MCLR pin must be at a logic high level (VIHMC). #### 14.8.1 WAKE-UP FROM SLEEP The device can wake up from SLEEP through one of the following events: - External reset input on MCLR pin. - 2. Watchdog Timer Wake-up (if WDT was enabled). - Interrupt from INT pin, RB port change, or some Peripheral Interrupts. External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up). The following peripheral interrupts can wake the device from SLEEP: - TMR1 interrupt. Timer1 must be operating as an asynchronous counter. - 2. SSP (Start/Stop) bit detect interrupt. - SSP transmit or receive in slave mode (SPI/I²C). - 4. CCP capture mode interrupt. - 5. Parallel Slave Port read or write. - 6. A/D conversion (when A/D clock source is RC). - Special event trigger (Timer1 in asynchronous mode using an external clock). - 8. USART TX or RX (synchronous slave mode). Other peripherals cannot generate interrupts since during SLEEP, no on-chip Q clocks are present. When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction. #### 14.8.2 WAKE-UP USING INTERRUPTS When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur: - If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared. - If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared. Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP. To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction. #### 17.5 <u>Timing Diagrams and Specifications</u> #### FIGURE 17-2: EXTERNAL CLOCK TIMING TABLE 17-2: EXTERNAL CLOCK TIMING REQUIREMENTS | Parameter
No. | Sym | Characteristic | Min | Тур† | Max | Units | Conditions | |------------------|-------|--|-----|------|----------|-------|--------------------| | | Fosc | External CLKIN Frequency | DC | | 4 | MHz | XT and RC osc mode | | | | (Note 1) | DC | _ | 4 | MHz | HS osc mode (-04) | | | | | DC | _ | 10 | MHz | HS osc mode (-10) | | | | | DC | _ | 20 | MHz | HS osc mode (-20) | | | | | DC | _ | 200 | kHz | LP osc mode | | | | Oscillator Frequency | DC | | 4 | MHz | RC osc mode | | | | (Note 1) | 0.1 | _ | 4 | MHz | XT osc mode | | | | | 4 | _ | 20 | MHz | HS osc mode | | | | | 5 | _ | 200 | kHz | LP osc mode | | 1 | Tosc | External CLKIN Period | 250 | _ | _ | ns | XT and RC osc mode | | | | (Note 1) | 250 | _ | _ | ns | HS osc mode (-04) | | | | | 100 | _ | _ | ns | HS osc mode (-10) | | | | | 50 | _ | _ | ns | HS osc mode (-20) | | | | | 5 | _ | _ | μs | LP osc mode | | | | Oscillator Period | 250 | _ | _ | ns | RC osc mode | | | | (Note 1) | 250 | _ | 10,000 | ns | XT osc mode | | | | | 250 | _ | 250 | ns | HS osc mode (-04) | | | | | 100 | _ | 250 | ns | HS osc mode (-10) | | | | | 50 | _ | 250 | ns | HS osc mode (-20) | | | | | 5 | | _ | μs | LP osc mode | | 2 | Tcy | Instruction Cycle Time (Note 1) | 200 | | DC | ns | Tcy = 4/Fosc | | 3 | TosL, | External Clock in (OSC1) High or | 100 | _ | _ | ns | XT oscillator | | | TosH | Low Time | 2.5 | _ | _ | μs | LP oscillator | | | | | 15 | | <u> </u> | ns | HS oscillator | | 4 | TosR, | External Clock in (OSC1) Rise or | _ | _ | 25 | ns | XT oscillator | | | TosF | Fall Time | - | _ | 50 | ns | LP oscillator | | | | and the second s | _ | _ | 15 | ns | HS oscillator | [†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. FIGURE 17-8: SPI MODE TIMING TABLE 17-7: SPI MODE REQUIREMENTS | Parameter
No. | Sym | Characteristic | Min | Тур† | Max | Units | Conditions | |------------------|-----------------------|--|----------|------|-----|-------|------------| | 70 | TssL2scH,
TssL2scL | SS↓ to SCK↓ or SCK↑ input | Tcy | _ | _ | ns | | | 71 | TscH | SCK input high time (slave mode) | Tcy + 20 | | | ns | | | 72 | TscL | SCK input low time (slave mode) | Tcy + 20 | _ | _ | ns | | | 73 | TdiV2scH,
TdiV2scL | Setup time of SDI data input to SCK edge | 50 | _ | _ | ns | | | 74 | TscH2diL,
TscL2diL | Hold time of SDI data input to SCK edge | 50 | _ | _ | ns | | | 75 | TdoR | SDO data output rise time | _ | 10 | 25 | ns | | | 76 | TdoF | SDO data output fall time | _ | 10 | 25 | ns | | | 77 | TssH2doZ | SS↑ to SDO output hi-impedance | 10 | _ | 50 | ns | | | 78 | TscR | SCK output rise time (master mode) | _ | 10 | 25 | ns | | | 79 | TscF | SCK output fall time (master mode) | _ | 10 | 25 | ns | | | 80 | TscH2doV,
TscL2doV | SDO data output valid after SCK edge | _ | _ | 50 | ns | | [†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. FIGURE 18-9: I²C BUS START/STOP BITS TIMING TABLE 18-9: I²C BUS START/STOP BITS REQUIREMENTS | Parameter No. | Sym | Characteristic | | Min | Тур | Max | Units | Conditions | | |---------------|---------|-----------------|--------------|------|-----|-----|-------|--|--| | 90 | Tsu:sta | START condition | 100 kHz mode | 4700 | _ | _ | ns | Only relevant for repeated START | | | | | Setup time | 400 kHz mode | 600 | _ | _ | 115 | condition | | | 91 | THD:STA | START condition | 100 kHz mode | 4000 | _ | _ | nc | After this period the first clock pulse is generated | | | | | Hold time | 400 kHz mode | 600 | _ | _ | ns | | | | 92 | Tsu:sto | STOP condition | 100 kHz mode | 4700 | _ | _ | ns | | | | | | Setup time | 400 kHz mode | 600 | _ | _ | 115 | | | | 93 | THD:STO | STOP condition | 100 kHz mode | 4000 | _ | _ | ns | | | | | | Hold time | 400 kHz mode | 600 | _ | _ | 115 | | | #### 20.0 ELECTRICAL CHARACTERISTICS FOR PIC16C76/77 #### **Absolute Maximum Ratings †** | Ambient temperature under bias | 55 to +125°C | |---|----------------------------------| | Storage temperature | 65°C to +150°C | | Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4) | 0.3V to (VDD + 0.3V) | | Voltage on VDD with respect to Vss | -0.3 to +7.5V | | Voltage on MCLR with respect to Vss (Note 2) | 0 to +14V | | Voltage on RA4 with respect to Vss | 0 to +14V | | Total power dissipation (Note 1) | 1.0W | | Maximum current out of Vss pin | 300 mA | | Maximum current into VDD pin | 250 mA | | Input clamp current, lik (Vi < 0 or Vi > VDD) | ±20 mA | | Output clamp current, IOK (VO < 0 or VO > VDD) | ±20 mA | | Maximum output current sunk by any I/O pin | 25 mA | | Maximum output current sourced by any I/O pin | 25 mA | | Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3) | 200 mA | | Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3) | 200 mA | | Maximum current sunk by PORTC and PORTD (combined) (Note 3) | 200 mA | | Maximum current sourced by PORTC and PORTD (combined) (Note 3) | 200 mA | | Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD - VO) | H) x IOH} + Σ (VOI x IOL) | - **Note 2:** Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling this pin directly to Vss. - Note 3: PORTD and PORTE are not implemented on the PIC16C76. † NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. DC CHARACTERISTICS #### **Applicable Devices** 72 73 73A 74 74A 76 77 #### Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for extended, -40°C ≤ TA ≤ +85°C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial Operating voltage VDD range as described in DC spec Section 20.1 and Section 20.2. | Param | Characteristic | Sym | Min | Тур | Max | Units | Conditions | |-------|--|-------------------|-----------|-----|-----|-------|---| | No. | | _ | | † | | | | | | Output High Voltage | | | | | | | | D090 | I/O ports (Note 3) | Voн | VDD - 0.7 | - | - | V | IOH = -3.0 mA, VDD = 4.5 V, -40 °C to $+85$ °C | | D090A | | | VDD - 0.7 | - | - | V | IOH = -2.5 mA, VDD = 4.5 V,
-40°C to $+125$ °C | | D092 | OSC2/CLKOUT (RC osc config) | | VDD - 0.7 | - | - | V | IOH = -1.3 mA, VDD = 4.5 V, -40 °C to $+85$ °C | | D092A | | | VDD - 0.7 | - | - | V | IOH = -1.0 mA, VDD = $4.5V$,
-40°C to +125°C | | D150* | Open-Drain High Voltage | Vod | - | - | 14 | V | RA4 pin | | | Capacitive Loading Specs on
Output Pins | | | | | | | | D100 | OSC2 pin | Cosc ₂ | - | - | 15 | pF | In XT, HS and LP modes when external clock is used to drive OSC1. | | D101 | All I/O pins and OSC2 (in RC | Cio | - | - | 50 | pF | | | D102 | mode) SCL, SDA in I ² C mode | Св | - | - | 400 | pF | | - * These parameters are characterized but not tested. - † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. - Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode. - 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. - 3: Negative current is defined as current sourced by the pin. #### 20.5 <u>Timing Diagrams and Specifications</u> #### FIGURE 20-2: EXTERNAL CLOCK TIMING #### TABLE 20-2: EXTERNAL CLOCK TIMING REQUIREMENTS | Parameter No. | Sym | Characteristic | Min | Тур† | Max | Units | Conditions | |---------------|-------|--------------------------------------|-----|------|--------|-------|--------------------| | | Fosc | External CLKIN Frequency | DC | | 4 | MHz | XT and RC osc mode | | | | (Note 1) | DC | _ | 4 | MHz | HS osc mode (-04) | | | | | DC | _ | 10 | MHz | HS osc mode (-10) | | | | | DC | _ | 20 | MHz | HS osc mode (-20) | | | | | DC | _ | 200 | kHz | LP osc mode | | | | Oscillator Frequency | DC | _ | 4 | MHz | RC osc mode | | | | (Note 1) | 0.1 | _ | 4 | MHz | XT osc mode | | | | | 4 | _ | 20 | MHz | HS osc mode | | | | | 5 | 1 | 200 | kHz | LP osc mode | | 1 | Tosc | External CLKIN Period | 250 | _ | _ | ns | XT and RC osc mode | | | | (Note 1) | 250 | _ | _ | ns | HS osc mode (-04) | | | | | 100 | _ | _ | ns | HS osc mode (-10) | | | | | 50 | _ | _ | ns | HS osc mode (-20) | | | | | 5 | _ | _ | μs | LP osc mode | | | | Oscillator Period | 250 | | _ | ns | RC osc mode | | | | (Note 1) | 250 | _ | 10,000 | ns | XT osc mode | | | | | 250 | _ | 250 | ns | HS osc mode (-04) | | | | | 100 | _ | 250 | ns | HS osc mode (-10) | | | | | | | | | HS osc mode (-20) | | | | | 50 | _ | 250 | ns | | | | | | 5 | | _ | μs | LP osc mode | | 2 | Tcy | Instruction Cycle Time (Note 1) | 200 | Tcy | DC | ns | Tcy = 4/Fosc | | 3 | TosL, | External Clock in (OSC1) High or | 100 | _ | _ | ns | XT oscillator | | | TosH | Low Time | 2.5 | _ | _ | μs | LP oscillator | | | | | 15 | | _ | ns | HS oscillator | | 4 | TosR, | External Clock in (OSC1) Rise or | _ | _ | 25 | ns | XT oscillator | | | TosF | Fall Time | - | _ | 50 | ns | LP oscillator | | + Dots | | column is at EV 25°C unless athemais | _ | | 15 | ns | HS oscillator | [†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. **Applicable Devices** | 72 | 73 | 73A | 74 | 74A | 76 | 77 FIGURE 21-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C) FIGURE 21-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C) #### 1.0ø (0.039ø) Ref. 11°/13°(4x) Pin#1 Pin#1 2 == 0° Min Ε E1 11°/13°(4x) Detail B -3.0ø (0[.].118ø) Ref. R1 0.08 Min Option 1 (TOP side) R 0.08/0.20 Option 2 (TOP side) Gage Plane Base Metal Lead Finish 0.20 Min С · c1 **Detail A Detail B** 1.00 Ref 1.00 Ref. b1 **Detail B Detail A** #### 22.9 44-Lead Plastic Surface Mount (TQFP 10x10 mm Body 1.0/0.10 mm Lead Form) (TQ) | | Package Group: Plastic TQFP | | | | | | | | | | |--------|-----------------------------|-------------|-------|-------|--------|-------|--|--|--|--| | | | Millimeters | | | Inches | | | | | | | Symbol | Min | Max | Notes | Min | Max | Notes | | | | | | Α | 1.00 | 1.20 | | 0.039 | 0.047 | | | | | | | A1 | 0.05 | 0.15 | | 0.002 | 0.006 | | | | | | | A2 | 0.95 | 1.05 | | 0.037 | 0.041 | | | | | | | D | 11.75 | 12.25 | | 0.463 | 0.482 | | | | | | | D1 | 9.90 | 10.10 | | 0.390 | 0.398 | | | | | | | Е | 11.75 | 12.25 | | 0.463 | 0.482 | | | | | | | E1 | 9.90 | 10.10 | | 0.390 | 0.398 | | | | | | | L | 0.45 | 0.75 | | 0.018 | 0.030 | | | | | | | е | 0.80 | BSC | | 0.031 | BSC | | | | | | | b | 0.30 | 0.45 | | 0.012 | 0.018 | | | | | | | b1 | 0.30 | 0.40 | | 0.012 | 0.016 | | | | | | | С | 0.09 | 0.20 | | 0.004 | 0.008 | | | | | | | c1 | 0.09 | 0.16 | | 0.004 | 0.006 | | | | | | | N | 44 | 44 | | 44 | 44 | | | | | | | Θ | 0° | 7° | | 0° | 7° | | | | | | - Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010") per side. D1 and E1 dimensions including mold mismatch. - 2: Dimension "b" does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003")max. - 3: This outline conforms to JEDEC MS-026. #### 22.10 Package Marking Information # 28-Lead SSOP XXXXXXXXXXXX XXXXXXXXXX A AABBCAE #### 28-Lead PDIP (Skinny DIP) ### 28-Lead Side Brazed Skinny Windowed #### 28-Lead SOIC #### Example #### Example #### Example #### Example | Legend: | MMM | Microchip part number information | |---------|---------------|---| | | XXX | Customer specific information* | | | AA | Year code (last 2 digits of calender year) | | | BB | Week code (week of January 1 is week '01') | | | С | Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A. | | | D_1 | Mask revision number for microcontroller | | | E | Assembly code of the plant or country of origin in which part was assembled. | | Note: | line, it will | ent the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of characters for customer specific information. | ^{*} Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price. #### INDEX I²C Mode93 On-Chip Reset Circuit133 Α PIC16C7210 A/D PIC16C7311 PIC16C73A11 ADCON0 Register 117 PIC16C7412 ADCON1 Register 118 PIC16C74A12 ADIF bit119 PIC16C7611 Analog Input Model Block Diagram120 PIC16C7712 Analog-to-Digital Converter117 PORTC48 Block Diagram 119 PORTD (In I/O Port Mode)50 Configuring Analog Port Pins121 PORTD and PORTE as a Parallel Slave Port54 Configuring the Interrupt119 PORTE (In I/O Port Mode)51 Configuring the Module119 PWM74 Connection Considerations 125 RA3:RA0 and RA5 Port Pins43 RA4/T0CKI Pin43 Conversion Time 123 RB3:RB0 Port Pins45 Conversions 122 RB7:RB4 Port Pins46 Converter Characteristics 181, 199, 217, 238 SPI Master/Slave Connection81 Delays120 SSP in I²C Mode93 Effects of a Reset124 SSP in SPI Mode80, 85 Timer059 Faster Conversion - Lower Resolution Tradeoff 123 Timer0/WDT Prescaler62 Flowchart of A/D Operation126 Timer166 Timer269 Internal Sampling Switch (Rss) Impedance 120 USART Receive108 Operation During Sleep124 USART Transmit106 Sampling Requirements120 Watchdog Timer144 BOR bit39, 135 Source Impedance 120 BRGH bit101 Time Delays120 Buffer Full Status bit, BF78, 83 Using the CCP Trigger125 Absolute Maximum Ratings 167, 183, 201, 219 C bit30 C Compiler165 Capture/Compare/PWM ADIF bit35 Capture ADRES Register23, 25, 27, 117, 119 Block Diagram72 ALU9 CCP1CON Register72 **Application Notes** CCP1IF72 AN546 (Using the Analog-to-Digital Converter) 117 CCPR172 AN552 (Implementing Wake-up on Key Strokes Using CCPR1H:CCPR1L72 PIC16CXXX)45 Mode72 AN556 (Table Reading Using PIC16CXX40 Prescaler73 AN578 (Use of the SSP Module in the I²C Multi-Master CCP Timer Resources71 Compare AN594 (Using the CCP Modules)71 Block Diagram73 AN607, Power-up Trouble Shooting134 Mode73 Software Interrupt Mode73 Special Event Trigger73 Overview9 Special Trigger Output of CCP173 von Neumann9 Special Trigger Output of CCP273 Assembler Interaction of Two CCP Modules71 MPASM Assembler164 Section71 Special Event Trigger and A/D Conversions73 В Capture/Compare/PWM (CCP) Baud Rate Error101 PWM Block Diagram74 Baud Rate Formula101 PWM Mode74 Raud Rates PWM, Example Frequencies/Resolutions75 Carry bit9 Synchronous Mode102 CCP1CON29 CCP1IE bit33 **Block Diagrams** CCP1IF bit35, 36 A/D119 Analog Input Model120 Capture72 ### WORLDWIDE SALES AND SERVICE #### **AMERICAS** #### **Corporate Office** 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com #### **Rocky Mountain** 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456 #### Atlanta 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307 #### **Boston** 2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821 #### Chicago 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075 #### **Dallas** 4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924 #### Detroit Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 #### Kokomo 2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 #### Los Angeles 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338 #### **New York** 150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335 #### San Jose Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955 #### Toronto 6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509 #### ASIA/PACIFIC #### Australia Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 #### China - Beijing Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104 #### China - Chengdu Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599 #### China - Fuzhou Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 #### China - Shanghai Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 #### China - Shenzhen Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 #### **Hong Kong** Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 #### India Microchip Technology Inc. India Liaison Office Divvasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062 #### Japan Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 #### Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 #### Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 #### Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 #### **EUROPE** #### Denmark Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 #### France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 **Germany** Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 #### Italy Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883 #### **United Kingdom** Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820 01/18/02