E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c77-20-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture in which program and data are fetched from the same memory using the same bus. Separating program and data buses further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The table below lists program memory (EPROM) and data memory (RAM) for each PIC16C7X device.

Device	Program Memory	Data Memory
PIC16C72	2K x 14	128 x 8
PIC16C73	4K x 14	192 x 8
PIC16C73A	4K x 14	192 x 8
PIC16C74	4K x 14	192 x 8
PIC16C74A	4K x 14	192 x 8
PIC16C76	8K x 14	368 x 8
PIC16C77	8K x 14	386 x 8

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.

PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (3)
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	то	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ac	Idress pointe	er					XXXX XXXX	uuuu uuuu
85h	TRISA	_	_	PORTA Dat	a Direction F	Register				11 1111	11 1111
86h	TRISB	PORTB Dat	ta Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Dat	ta Direction F	Register						1111 1111	1111 1111
88h	_	Unimpleme	nted							_	_
89h	_	Unimpleme	nted							_	—
8Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	r for the uppe	er 5 bits of the	e PC		0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	_	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
8Dh	_	Unimpleme	nted							_	_
8Eh	PCON	_	_	_	_	—	_	POR	BOR	dd	uu
8Fh	-	Unimpleme	nted							-	_
90h	_	Unimpleme	nted							_	_
91h	-	Unimpleme	nted							-	_
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Port	(I ² C mode)	Address Reg	gister				0000 0000	0000 0000
94h	SSPSTAT	—	-	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
95h	—	Unimpleme	nted							—	—
96h	—	Unimpleme	nted							—	—
97h	-	Unimpleme	nted							-	_
98h	_	Unimpleme	nted							—	_
99h	—	Unimpleme	Unimplemented —							—	
9Ah	-	Unimpleme	Unimplemented —							_	
9Bh	-	Unimpleme	nted							-	_
9Ch	_	Unimplemented —							_		
9Dh	_	Unimpleme	Unimplemented —							—	
9Eh	_	Unimpleme	nted							_	—
9Fh	ADCON1	-	-	_	—	_	PCFG2	PCFG1	PCFG0	000	000

TABLE 4-1: PIC16C72 SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C72, always maintain these bits clear.

5.2 PORTB and TRISB Registers

Applicable Devices
72 73 73A 74 74A 76 77

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance input mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

EXAMPLE 5-2: INITIALIZING PORTB

BCF	STATUS,	RP0	;	
CLRF	PORTB		;	Initialize PORTB by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISB		;	Set RB<3:0> as inputs
			;	RB<5:4> as outputs
			;	RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\text{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 5-3: BLOCK DIAGRAM OF RB3:RB0 PINS

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a keypad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, *"Implementing Wake-Up on Key Stroke"* (AN552).

Note:	For the PIC16C73/74, if a change on the
	I/O pin should occur when the read opera-
	tion is being executed (start of the Q2
	cycle), then interrupt flag bit RBIF may not
	get set.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

TABLE 5-4:	SUMMARY OF REGISTERS	ASSOCIATED WITH PORTB

Address	Name	Bit 7 Bit 6		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	PORTB	PORTB Data Direction Register								1111 1111
81h, 181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

TABLE 5-0. SUIVINIANT OF REGISTERS ASSOCIATED WITH FORT	BLE 5-6:	JMMARY OF REGISTERS ASSOCIATED WITH PORTO
---	----------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	PORTC I	PORTC Data Direction Register								1111 1111

Legend: x = unknown, u = unchanged.

8.5 <u>Resetting Timer1 using a CCP Trigger</u> Output

Applicable Devices

The CCP2 module is not implemented on the PIC16C72 device.

If the CCP1 or CCP2 module is configured in compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The special event triggers from the CCP1
	and CCP2 modules will not set interrupt
	flag bit TMR1IF (PIR1<0>).

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for Timer1.

8.6 Resetting of Timer1 Register Pair (TMR1H, TMR1L) Applicable Devices 72|73|73A|74|74A|76|77

TMR1H and TMR1L registers are not reset to 00h on a POR or any other reset except by the CCP1 and CCP2 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other resets, the register is unaffected.

8.7 <u>Timer1 Prescaler</u> Applicable Devices

72 73 73A 74 74A 76 77

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Eh	TMR1L	Holding reg	Holding register for the Least Significant Byte of the 16-bit TMR1 register								
0Fh	TMR1H	Holding reg	blding register for the Most Significant Byte of the 16-bit TMR1 register								
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

TABLE 8-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

2: The PIC16C72 does not have a Parallel Slave Port or a USART, these bits are unimplemented, read as '0'.

The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set for the synchronous slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. If the \overline{SS} pin is taken low without resetting SPI mode, the transmission will continue from the point at which it was taken high. External pull-up/ pull-down resistors may be desirable, depending on the application.

Note:	When the SPI is in Slave Mode with \overline{SS} pin
	the SPI module will reset if the \overline{SS} pin is set
	to VDD.
Note:	If the SPI is used in Slave Mode with

CKE = '1', then the SS pin control must be enabled. To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as

be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 11-11: SPI MODE TIMING, MASTER MODE (PIC16C76/77)

FIGURE 11-12: SPI MODE TIMING (SLAVE MODE WITH CKE = 0) (PIC16C76/77)

FIGURE 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R-0	R-x	
SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	SPEN : Ser 1 = Serial p 0 = Serial p	ial Port Ena port enable port disable	able bit d (Configu ed	es RC7/R	X/DT and	RC6/TX/CI	K pins as se	rial port pins)
bit 6:	RX9 : 9-bit I 1 = Selects 0 = Selects	Receive Er 9-bit rece 8-bit rece	nable bit ption ption					
bit 5:	SREN: Sing	gle Receive	e Enable bi	t				
	Asynchrone Don't care	<u>ous mode</u>						
	$\frac{\text{Synchrono}}{1 = \text{Enable}}$ $0 = \text{Disable}$ This bit is c	<u>us mode -</u> s single rec es single re cleared afte	<u>master</u> ceive ceive er receptior	is comple	ete.			
	Synchrono Unused in t	<u>us mode -</u> this mode	<u>slave</u>					
bit 4:	CREN: Cor	ntinuous Re	eceive Ena	ble bit				
	Asynchron 1 = Enable 0 = Disable	<u>ous mode</u> s continuo es continuo	us receive us receive					
	Synchrono 1 = Enable 0 = Disable	<u>us mode</u> s continuo es continuo	us receive us receive	until enable	e bit CREN	l is cleared	I (CREN ove	errides SREN)
bit 3:	Unimplem	ented: Rea	ad as '0'					
bit 2:	FERR: Fran 1 = Framing 0 = No fran	ming Error g error (Ca ning error	bit n be updat	ed by reac	ling RCRE	G register	and receive	next valid byte)
bit 1:	OERR : Over 1 = Overrue 0 = No ove	errun Error n error (Ca rrun error	bit n be cleare	ed by clear	ing bit CRI	EN)		
bit 0:	RX9D : 9th	bit of recei	ved data (C	an be par	ity bit)			

13.2 <u>Selecting the A/D Conversion Clock</u> Applicable Devices

72 73 73A 74 74A 76 77

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 13-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

13.3 Configuring Analog Port Pins Applicable Devices 72/73/73A/74/74A/76/77

The ADCON1, TRISA, and TRISE registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
- **Note 2:** Analog levels on any pin that is defined as a digital input (including the AN7:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.

AD Clock S	ource (TAD)	Device Frequency								
Operation	ADCS1:ADCS0	20 MHz	5 MHz	1.25 MHz	333.33 kHz					
2Tosc	00	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 µs					
8Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾					
32Tosc	10	1.6 μs	6.4 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾					
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾					

TABLE 13-1: TAD vs. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.

- 2: These values violate the minimum required TAD time.
- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.
- 5: For extended voltage devices (LC), please refer to Electrical Specifications section.

Note 1: The RC source has a typical TAD time of 4 μ s.

FIGURE 14-2: CONFIGURATION WORD FOR PIC16C72/73A/74A/76/77

CP1 (CP0	CP1	CP0	CP1	CP0	—	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register: Address	CONFIG 2007h
bit 13-8 5-4:	CP1 11 = 10 = 01 = 00 =	1:CP0: = Code = Uppe = Uppe = All m	Code e protec er half o er 3/4th nemory	Protect ction of of progr of prog i of prog	ion bits f am mei gram m e protec	(2) mory o emory ted	code prot v code pro	ected otected	I				DITU		
bit 7:	Uni	mplen	nented	: Read	as '1'										
bit 6:	BO 1 = 0 =	DEN: E BOR 6 BOR 0	Brown-o enableo disableo	out Res 1 d	et Enat	ole bit	(1)								
bit 3:	PW 1 = 0 =	rte : F Pwrt Pwrt	Power-u disabl enabl	up Time ed ed	r Enabl	e bit (1)								
bit 2:	WD 1 = 0 =	TE: Wa WDT e WDT o	atchdo enableo disable	g Timer d d	Enable	e bit									
bit 1-0:	FOS 11 = 10 = 01 = 00 =	SC1:F (= RC c = HS c = XT o = LP o	OSCO: oscillato oscillato oscillato scillato	Oscillat or or r r	tor Sele	ction	bits								
Note 1: 2:	Ena Ens All c	abling E sure the of the (Brown- e Powe CP1:CF	out Res er-up Tir P0 pairs	et auto ner is e have te	matica nable o be g	ally enabl d anytime iven the	les Pov e Brow same v	ver-up n-out F value to	Timer (P Reset is e o enable	WRT) r enabled the cod	egardle I. le prote	ess of the	value of bit F eme listed.	PWRTE.

PIC16C7X

Register	Applicable Devices							Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
SSPADD	72	73	73A	74	74A	76	77	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	72	73	73A	74	74A	76	77	00 0000	00 0000	uu uuuu
TXSTA	72	73	73A	74	74A	76	77	0000 -010	0000 -010	uuuu -uuu
SPBRG	72	73	73A	74	74A	76	77	0000 0000	0000 0000	uuuu uuuu
ADCON1	72	73	73A	74	74A	76	77	000	000	uuu

TABLE 14-8: INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.'d)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 14-7 for reset value for specific condition.

PIC16C7X

BCF	Bit Clear	r f			BTFSC	E	Bit Test,	Skip if Cl	ear	
Syntax:	[<i>label</i>] B0	CF f,b			Syntax:	[<i>label</i>] BT	FSC f,b		
Operands:	$0 \le f \le 12$ $0 \le b \le 7$	27			Operands:	() ≤ f ≤ 12) ≤ b ≤ 7	7		
Operation:	$0 \rightarrow (f < b)$	>)			Operation:	5	skip if (f<	b>) = 0		
Status Affected:	None				Status Affecte	ed: N	None			
Encoding:	01	00bb	bfff	ffff	Encoding:	Γ	01	10bb	bfff	ffff
Description:	Bit 'b' in re	egister 'f' is	s cleared.		Description:	l	f bit 'b' in i	register 'f' is	'1' then th	ne next
Words:	1					ii It	nstruction f bit 'b', in	is executed register 'f'.	d. is '0' then '	the next
Cycles:	1					i	nstruction	is discarde	d, and a N	IOP is
Q Cycle Activity:	Q1	Q2	Q3	Q4		e	executed in	king this a	I 2TCY	
	Decode	Read register 'f'	Process data	Write register 'f'	Words: Cycles:		l 1(2)			
Example	BCF	FLAG_	REG, 7		Q Cycle Activ	vity:	Q1	Q2	Q3	Q4
	Before In	struction					Decode	Read register 'f'	Process data	No- Operation
	After Inst	FLAG_RE	=G = 0xC7		lf Sk	kip: ((2nd Cyc	le)		
		FLAG_RE	EG = 0x47				Q1	Q2	Q3	Q4
							No- Operation	No- Operation	No- Operation	No- Operation
					Example		HERE FALSE TRUE	BTFSC GOTO •	FLAG,1 PROCESS_	_CODE

BSF	Bit Set f								
Syntax:	[<i>label</i>] BS	SF f,b							
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$								
Operation:	$1 \rightarrow (f < b >)$								
Status Affected:	None								
Encoding:	01	01bb	bfff	ffff					
Description:	Bit 'b' in re	gister 'f' is	s set.						
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write register 'f'					
Example	BSF	FLAG_F	REG, 7						
	Before Instruction FLAG REG = 0x0A								
	After Inst	ruction FLAG_RE	EG = 0x8A	Ą					

Before Instruction PC = address HERE

•

	0	_	aaarooo	
After Insti	uct	ion		
i	f FL	AG<′	l > = 0,	
I	PC =	=	address	TRUE
i	f FL	AG<′	l>=1,	
I	PC =	=	address	FALSE

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5Tcy + 20	—	—	ns	Must also meet
				With Prescaler	10	_	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse Width		No Prescaler	0.5TCY + 20	—	—	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	-	—	ns	
				With Prescaler	Greater of:	-	-	ns	N = prescale value
					20 or <u>Tcy + 40</u>				(2, 4,, 256)
15*	T+1 LI	T1CKI High Time	Superropour, F	Proposlar 1					Must also most
40			Synchronous, P		0.5101 + 20	-	_	ns	narameter 47
			Prescaler –		15			115	
			2,4,8	FICTOLOTX	25	-		115	
			Asynchronous	PIC16 C 7X	30	-	—	ns	
				PIC16 LC 7X	50	_	—	ns]
46*	Tt1L	T1CKI Low Time	Synchronous, F	rescaler = 1	0.5Tcy + 20	—	—	ns	Must also meet
			Synchronous,	PIC16 C 7X	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 7X	25	-	_	ns	
			Asynchronous	PIC16 C 7X	30	—	—	ns]
				PIC16 LC 7X	50	—	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 7X	Greater of:	-	—	ns	N = prescale value
					30 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
				PIC16LC/X	Greater of:				N = prescale value
					50 OR <u>TCY + 40</u> N				(1, 2, 4, 0)
			Asynchronous	PIC16C7X	60	_		ns	
				PIC16LC7X	100	-		ns	-
	Ft1	Timer1 oscillator inc	ut frequency rar	nae	DC	- 1	200	kHz	
		(oscillator enabled b	(oscillator enabled by setting bit T1OSCEN)						
48	TCKEZtmr1	Delay from external	clock edge to tir	ner increment	2Tosc	- 1	7Tosc	—	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-10: I²C BUS DATA TIMING

TABLE 17-9: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Мах	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0	_	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	—	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
101	TLOW	Clock low time	100 kHz mode	4.7	_	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
102	Tr	SDA and SCL rise	100 kHz mode	_	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
103	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
90	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output valid from	100 kHz mode		3500	ns	Note 1
		CIOCK	400 kHz mode	_	—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3		μs	start
	Cb	Bus capacitive loading		-	400	pF	

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz)S I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

FIGURE 18-11: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 18-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)	PIC16 C 73/74		_	80	ns	
		Clock high to data out valid	PIC16 LC 73/74	—	-	100	ns	
121	Tckrf	Clock out rise time and fall time	PIC16 C 73/74	—	—	45	ns	
		(Master Mode)	PIC16 LC 73/74	—	—	50	ns	
122	Tdtrf	Data out rise time and fall time	PIC16 C 73/74	—	—	45	ns	
			PIC16 LC 73/74		—	50	ns	

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-12: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 18-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	$\frac{\text{SYNC RCV (MASTER \& SLAVE)}}{\text{Data setup before CK} \downarrow (\text{DT setup time})}$	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	—	ns	

+: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 72 73 73A 74 76 77												
19.3	D.3 DC Characteristics: PIC16C73A/74A-04 (Commercial, Industrial, Extended) PIC16C73A/74A-10 (Commercial, Industrial, Extended) PIC16C73A/74A-20 (Commercial, Industrial, Extended) PIC16LC73A/74A-04 (Commercial, Industrial)											
DC CHA	ARACTERISTICS	Standa Operati	hless otherwise stated) ≤ TA ≤ +125°C for extended, ≤ TA ≤ +85°C for industrial and ≤ TA ≤ +70°C for commercial									
		Operati Section	ing voltage 19.2.	e Vd	D range a	ange as described in DC spec Section 1						
Param	Characteristic	Sym Min			Typ Max Unit		Conditions					
No.				1								
	Input Low Voltage											
	I/O ports	VIL										
D030	with TTL buffer		Vss	-	0.15Vdd	V	For entire VDD range					
D030A			Vss	-	0.8V		$4.5V \le VDD \le 5.5V$					
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V						
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V						
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1					
	Input High Voltage											
D0.40	I/O ports	VIH		-	1/22							
D040 D040A			2.0 0.25VDD + 0.8V	-	VDD VDD	V	For entire VDD snge					
D041	with Schmitt Trigger buffer		0.8VDD	-	VDD	v	For entire VDD range					
D042	MCLR		0.8VDD	-	VDD	V						
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	VDD	V	Note1					
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V						
D070	PORTB weak pull-up current	I PURB	50	250	400	μA	VDD = 5V, VPIN = VSS					
	Input Leakage Current (Notes 2, 3)											
D060	I/O ports	lı∟	-	-	±1	μA	$Vss \le VPIN \le VDD$, Pin at hi-impedance					
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \le VPIN \le VDD$					
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration					
	Output Low Voltage											
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C					
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C					
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C					
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C					
*												

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

FIGURE 19-8: PARALLEL SLAVE PORT TIMING (PIC16C74A)

TABLE 19-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C74A)

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before $\overline{WR}\uparrow$ or $\overline{CS}\uparrow$ (setup tir	20 25		_	ns ns	Extended Range Only	
63*	TwrH2dtl	\overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} to data–in invalid (hold time)	PIC16 C 74A	20	—	-	ns	
			PIC16 LC 74A	35	—	-	ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid	•	_	_	80 90	ns ns	Extended Range Only
65	TrdH2dtl	\overline{RD} or \overline{CS} to data–out invalid		10	—	30	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

20.5 <u>Timing Diagrams and Specifications</u>

FIGURE 20-2: EXTERNAL CLOCK TIMING

TABLE 20-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
NO.							
	Fosc	External CLKIN Frequency	DC	—	4	MHz	XT and RC osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	10	MHz	HS osc mode (-10)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	—	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			100	—	—	ns	HS osc mode (-10)
			50	—	—	ns	HS osc mode (-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			100	—	250	ns	HS osc mode (-10)
							HS osc mode (-20)
			50	—	250	ns	
			5	—	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1) High or	100	—	-	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			15			ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	_	_	25	ns	XT oscillator
	TosF	Fall Time	_	—	50	ns	LP oscillator
			_	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 20-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 20-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50* To	TccL	CCP1 and CCP2 input low time	No Prescaler		0.5Tcy + 20	-	—	ns	
			With Prescaler	PIC16 C 76/77	10	-	_	ns	
				PIC16 LC 76/77	20	_	_	ns	
51*	51* TccH	CCP1 and CCP2 input high time	No Prescaler		0.5Tcy + 20	—	—	ns	
			With Prescaler	PIC16 C 76/77	10	-	—	ns	
				PIC16 LC 76/77	20	_	—	ns	
52*	TccP	CCP1 and CCP2 in	CP1 and CCP2 input period			-	_	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 and CCP2 of	output rise time	PIC16 C 76/77	—	10	25	ns	
				PIC16 LC 76/77	—	25	45	ns	
54*	TccF	TccF CCP1 and CCP2 output fall time		PIC16 C 76/77	_	10	25	ns	
				PIC16 LC 76/77	—	25	45	ns	

* These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t

