E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c77-20-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-2:PIC16C73/73A/76 PINOUT DESCRIPTION

Pin Name	DIP Pin#	SOIC Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	9	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	1	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
					PORTA is a bi-directional I/O port.
RA0/AN0	2	2	I/O	TTL	RA0 can also be analog input0
RA1/AN1	3	3	I/O	TTL	RA1 can also be analog input1
RA2/AN2	4	4	I/O	TTL	RA2 can also be analog input2
RA3/AN3/VREF	5	5	I/O	TTL	RA3 can also be analog input3 or analog reference voltage
RA4/T0CKI	6	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
RA5/SS/AN4	7	7	I/O	TTL	RA5 can also be analog input4 or the slave select for the synchronous serial port.
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	21	21	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	22	22	I/O	TTL	
RB2	23	23	I/O	TTL	
RB3	24	24	I/O	TTL	
RB4	25	25	I/O	TTL	Interrupt on change pin.
RB5	26	26	I/O	TTL	Interrupt on change pin.
RB6	27	27	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming clock.
RB7	28	28	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
					PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	11	11	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input.
RC1/T1OSI/CCP2	12	12	I/O	ST	RC1 can also be the Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output.
RC2/CCP1	13	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	14	14	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	15	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	16	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK	17	17	I/O	ST	RC6 can also be the USART Asynchronous Transmit or Synchronous Clock.
RC7/RX/DT	18	18	I/O	ST	RC7 can also be the USART Asynchronous Receive or Synchronous Data.
Vss	8, 19	8, 19	Р	_	Ground reference for logic and I/O pins.
VDD	20	20	Р	_	Positive supply for logic and I/O pins.
Legend: I = input	O = outp	but	I/O =	input/output	P = power
-	- = Not	used	TTI =	TTI input	ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

PIC16C7X

NOTES:

4.2.2.1 STATUS REGISTER Applicable Devices 72|73|73A|74|74A|76|77

The STATUS register, shown in Figure 4-7, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- **Note 1:** For those devices that do not use bits IRP and RP1 (STATUS<7:6>), maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

R/W-0	R/W-0	R/W-0	<u>R-1</u>	<u>R-1</u>	R/W-x	R/W-x	R/W-x	
IRP bit7	RP1	RP0	TO	PD	Z	DC	C bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	IRP : Regis 1 = Bank 2 0 = Bank 0	ster Bank \$ 2, 3 (100h 0, 1 (00h -	Select bit (- 1FFh) FFh)	(used for ir	ndirect addr	essing)		
bit 6-5:	RP1:RP0 : 11 = Bank 10 = Bank 01 = Bank 00 = Bank Each bank	Register I 3 (180h - 2 (100h - 3 (80h - F 3 (0 (00h - 7 4 is 128 by	3ank Sele 1FFh) 17Fh) FFh) 7Fh) ⁄tes	ct bits (use	ed for direct	addressin	g)	
bit 4:	$\overline{\mathbf{TO}}$: Time- 1 = After p 0 = A WD	out bit ower-up, o T time-out	CLRWDT in	struction,	or sleep in	struction		
bit 3:	PD : Power 1 = After p 0 = By exe	r-down bit ower-up c ecution of t	or by the C the SLEEF	LRWDT ins	truction n			
bit 2:	Z : Zero bit 1 = The re 0 = The re	sult of an	arithmetic arithmetic	or logic or or logic or	peration is z	ero not zero		
bit 1:	DC : Digit of 1 = A carry 0 = No car	carry/borrc y-out from rry-out froi	w bit (ADD the 4th lo m the 4th ł	WF, ADDLW W order bit	N, SUBLW, S t of the resu bit of the res	UBWF instr Ilt occurred Sult	uctions) (fo I	r $\overline{\mathrm{borrow}}$ the polarity is reversed)
bit 0:	C: Carry/b 1 = A carr 0 = No car Note: For second op the source	orrow bit (y-out from rry-out fror borrow the perand. Fo e register.	ADDWF, AI the most n the mos polarity is r rotate (R:	DLW , SUB significant t significar s reversed RF, RLF) ir	LW, SUBWF bit of the rent bit of the A subtract structions,	instruction esult occurr result occu ion is exec this bit is lo	ns) red irred uted by add baded with	ding the two's complement of the either the high or low order bit of

FIGURE 4-7: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

8.1 <u>Timer1 Operation in Timer Mode</u>

Applicable Devices

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is FOSC/4. The synchronize control bit T1SYNC (T1CON<2>) has no effect since the internal clock is always in sync.

8.2 <u>Timer1 Operation in Synchronized</u> Counter Mode Applicable Devices 72 73 73A 74 74A 76 77

Counter mode is selected by setting bit TMR1CS. In this mode the timer increments on every rising edge of clock input on pin RC1/T1OSI/CCP2 when bit T1OSCEN is set or pin RC0/T1OSO/T1CKI when bit T1OSCEN is cleared.

If T1SYNC is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple-counter.

In this configuration, during SLEEP mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut off. The prescaler however will continue to increment.

8.2.1 EXTERNAL CLOCK INPUT TIMING FOR SYNCHRONIZED COUNTER MODE

When an external clock input is used for Timer1 in synchronized counter mode, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of TMR1 after synchronization.

When the prescaler is 1:1, the external clock input is the same as the prescaler output. The synchronization of T1CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T1CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the appropriate electrical specifications, parameters 45, 46, and 47.

When a prescaler other than 1:1 is used, the external clock input is divided by the asynchronous ripplecounter type prescaler so that the prescaler output is symmetrical. In order for the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for T1CKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on T1CKI high and low time is that they do not violate the minimum pulse width requirements of 10 ns). Refer to the appropriate electrical specifica-tions, parameters 40, 42, 45, 46, and 47.

FIGURE 8-2: TIMER1 BLOCK DIAGRAM

8.5 <u>Resetting Timer1 using a CCP Trigger</u> Output

Applicable Devices

The CCP2 module is not implemented on the PIC16C72 device.

If the CCP1 or CCP2 module is configured in compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The special event triggers from the CCP1
	and CCP2 modules will not set interrupt
	flag bit TMR1IF (PIR1<0>).

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for Timer1.

8.6 Resetting of Timer1 Register Pair (TMR1H, TMR1L) Applicable Devices 72|73|73A|74|74A|76|77

TMR1H and TMR1L registers are not reset to 00h on a POR or any other reset except by the CCP1 and CCP2 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other resets, the register is unaffected.

8.7 <u>Timer1 Prescaler</u> Applicable Devices

72 73 73A 74 74A 76 77

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Eh	TMR1L	Holding reg	gister fo		XXXX XXXX	uuuu uuuu					
0Fh	TMR1H	Holding reg	gister fo		xxxx xxxx	uuuu uuuu					
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

TABLE 8-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

2: The PIC16C72 does not have a Parallel Slave Port or a USART, these bits are unimplemented, read as '0'.

٦

FIGURE 11-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	WCOL: WI	rite Collisio	n Detect	bit				
	1 = The SS(must be c $0 = No col$	SPBUF reg leared in s lision	jister is wi oftware)	itten while	it is still tr	ansmitting	the previou	us word
bit 6:	SSPOV: R	eceive Ove	erflow Det	ect bit				
	$\frac{\text{In SPI mod}}{1 = A \text{ new I}}$ the data in BUF, even since each 0 = No over	de byte is rece i SSPSR re if only trai n new rece erflow	eived while egister is l nsmitting ption (and	e the SSPE ost. Overfl data, to av I transmiss	BUF registo ow can on roid setting ion) is initi	er is still ho ly occur in g overflow. ated by wi	olding the pr slave mod In master riting to the	revious data. In case of overflow, e. The user must read the SSP- mode the overflow bit is not set SSPBUF register.
	$\frac{\ln I^2 C \mod}{1 = A \text{ byte}}$ in transmit 0 = No over	<u>le</u> is received mode. SS erflow	while the POV mus	SSPBUF I t be cleare	register is ed in softwa	still holding are in eithe	g the previo er mode.	us byte. SSPOV is a "don't care"
bit 5:	SSPEN: S	ynchronou	s Serial P	ort Enable	bit			
	$\frac{\text{In SPI mod}}{1 = \text{Enable}}$ $0 = \text{Disable}$	<u>de</u> es serial po es serial po	ort and col ort and co	nfigures S0 nfigures th	CK, SDO, lese pins a	and SDI a as I/O port	s serial por pins	t pins
	$\frac{\ln l^2 C \mod}{1 = \text{Enable}}$ $0 = \text{Disable}$ $\ln \text{ both mod}$	<u>le</u> es the seria es serial po odes, when	al port and ort and co enabled,	l configure nfigures th these pins	s the SDA nese pins a s must be p	and SCL as I/O port properly co	pins as seri pins onfigured as	ial port pins s input or output.
bit 4:	CKP: Cloc	k Polarity	Select bit					
	$\frac{\text{In SPI mod}}{1 = \text{Idle sta}}$ $0 = \text{Idle sta}$	<u>de</u> ate for cloc ate for cloc	k is a higł k is a low	n level. Tran level. Tran	nsmit happ smit happe	ens on fal ens on risi	ling edge, r ng edge, re	eceive on rising edge. ceive on falling edge.
	$\frac{\ln l^2 C \mod}{SCK \text{ release}}$ $1 = \text{Enable}$ $0 = \text{Holds}$	<u>le</u> se control e clock clock low (clock stre	tch) (Used	to ensure	data setu	p time)	
bit 3-0:	$\begin{array}{l} \textbf{SSPM3:SS}\\ 0000 &= SF\\ 0001 &= SF\\ 0010 &= SF\\ 0100 &= SF\\ 0100 &= SF\\ 0101 &= SF\\ 0110 &= SF\\ 0110 &= SF\\ 0111 &= SF$	SPM0: Syn Pl master n Pl master n Pl master n Pl master n Pl slave mo C slave mo C slave mo C slave mo C slave mo C slave mo C slave mo	chronous node, cloc node, cloc node, cloc node, clock de, clock de, clock de, 7-bit controllec de, 7-bit de, 10-bit	Serial Por k = Fosc/4 k = Fosc/4 k = Fosc/6 k = TMR2 = SCK pin address address d Master M address wit address wit	rt Mode Se 4 6 6 0 utput/2 1. SS pin co 1. SS pin co 10 de (slave th start an vith start an	elect bits ontrol enat ontrol disa e idle) d stop bit i nd stop bit	bled. bled. SS ca nterrupts ei interrupts e	n be used as I/O pin. nabled enabled

Г

Г

FIGURE 11-8: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)(PIC16C76/77)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit				
bit7		· ·					bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset				
bit 7:	WCOL: We 1 = The SS (must be c 0 = No col	VCOL: Write Collision Detect bit = The SSPBUF register is written while it is still transmitting the previous word must be cleared in software)) = No collision										
bit 6:	SSPOV: R	eceive Ove	erflow Indi	cator bit								
	$\frac{\text{In SPI mod}}{1 = A \text{ new}}$ the data in if only tran new recep 0 = No over	de byte is rece SSPSR is smitting da tion (and to erflow	eived while lost. Over ata, to avo ransmissio	e the SSPE flow can o bid setting on) is initia	BUF regist nly occur overflow. I ted by wri	er is still ho in slave mo n master r ting to the	olding the pr ode. The use mode the ov SSPBUF re	evious data. In case of overflow, er must read the SSPBUF, even verflow bit is not set since each egister.				
	$\frac{\ln l^2 C \mod}{1 = A \text{ byte}}$ in transmit 0 = No over	<u>le</u> is received mode. SS erflow	while the POV mus	SSPBUF I t be cleare	register is d in softwa	still holding are in eithe	g the previou er mode.	us byte. SSPOV is a "don't care"				
bit 5:	SSPEN: S	ynchronou	s Serial P	ort Enable	bit							
	$\frac{\text{In SPI mod}}{1 = \text{Enable}}$ $0 = \text{Disable}$	<u>de</u> es serial po es serial po	ort and cor	nfigures So nfigures th	CK, SDO, lese pins a	and SDI as as I/O port	s serial port pins	pins				
	$\frac{\ln l^2 C \mod}{1 = \text{Enable}}$ $0 = \text{Disable}$ $\ln \text{ both model}$	<u>le</u> es the seria es serial po odes, when	al port and ort and co enabled,	l configure nfigures th these pins	s the SDA lese pins a s must be	and SCL as I/O port properly co	pins as seri pins onfigured as	al port pins s input or output.				
bit 4:	CKP : Cloc In SPI mod 1 = Idle sta 0 = Idle sta In I^2 C mod SCK relea 1 = Enable 0 = Holds	k Polarity \$ de ate for cloc ate for cloc de se control e clock clock low (Select bit k is a high k is a low clock stre	n level level tch) (Used	to ensure	data setu	p time)					
bit 3-0:	$\begin{array}{l} \textbf{SSPM3:S3} \\ 0000 = SF \\ 0001 = SF \\ 0010 = SF \\ 0100 = SF \\ 0100 = SF \\ 0101 = SF \\ 0110 = I^2 \\ 0111 = I^2 \\ 1011 = I^2 \\ 1110 = I^2 \\ 1111 = I^2 \\ \end{array}$	SPM0: Syn PI master n PI master n PI master n PI master n PI slave mc CI slave mc CI slave mo CI slave mo CI slave mo CI slave mo CI slave mo CI slave mo	chronous node, cloc node, cloc node, cloc ode, clock ode, clock de, 7-bit a de, 10-bit controlled de, 7-bit a de, 10-bit	Serial Por k = Fosc/ ² k = Fosc/ ² k = Fosc/ ⁶ k = TMR2 = SCK pin = SCK pin ddress address t master m ddress wit address w	t Mode Se 4 16 64 0. <u>SS</u> pin c 1. <u>SS</u> pin c 1. <u>SS</u> pin c 1. th start an vith start a	elect bits ontrol enat ontrol disa e idle) d stop bit i nd stop bit	bled. bled. SS ca nterrupts er interrupts e	n be used as I/O pin nabled enabled				

The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set for the synchronous slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. If the \overline{SS} pin is taken low without resetting SPI mode, the transmission will continue from the point at which it was taken high. External pull-up/ pull-down resistors may be desirable, depending on the application.

Note:	When the SPI is in Slave Mode with \overline{SS} pin
	the SPI module will reset if the \overline{SS} pin is set
	to VDD.
Note:	If the SPI is used in Slave Mode with

CKE = '1', then the SS pin control must be enabled. To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as

be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 11-11: SPI MODE TIMING, MASTER MODE (PIC16C76/77)

FIGURE 11-12: SPI MODE TIMING (SLAVE MODE WITH CKE = 0) (PIC16C76/77)

11.5.2 MASTER MODE

Master mode of operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when the P bit is set, or the bus is idle and both the S and P bits are clear.

In master mode the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the slave mode idle (SSPM3:SSPM0 = 1011) or with the slave active. When both master and slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

11.5.3 MULTI-MASTER MODE

In multi-master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR BOR	on ., १	Value other	on all resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 0	00x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0	000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0	000	0000	0000
13h	SSPBUF	Synchrono	us Serial	Port Rece	eive Buffe	r/Transmit	Register	•		xxxx x	xxx	uuuu	uuuu
93h	SSPADD	Synchrono	us Serial	Port (I ² C	mode) Ad	ldress Re	gister			0000 0	000	0000	0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0	000	0000	0000
94h	SSPSTAT	SMP ⁽²⁾	CKE ⁽²⁾	D/Ā	Р	S	R/W	UA	BF	0000 0	000	0000	0000
87h	TRISC	PORTC Da	ORTC Data Direction register									1111	1111

TABLE 11-5: REGISTERS ASSOCIATED WITH I²C OPERATION

 $\label{eq:Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in SPI mode.$

Note 1: PSPIF and PSPIE are reserved on the PIC16C73/73A/76, always maintain these bits clear.

2: The SMP and CKE bits are implemented on the PIC16C76/77 only. All other PIC16C7X devices have these two bits unimplemented, read as '0'.

FIGURE 14-2: CONFIGURATION WORD FOR PIC16C72/73A/74A/76/77

CP1 (CP0	CP1	CP0	CP1	CP0	—	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register: Address	CONFIG 2007h
bit 13-8 5-4:	CP1 11 = 10 = 01 = 00 =	1:CP0 : = Code = Uppe = Uppe = All m	Code e protec er half o er 3/4th nemory	Protect ction of of progr of prog i of prog	ion bits f am mei gram m e protec	(2) mory o emory ted	code prot v code pro	ected otected	I				DITU		
bit 7:	Uni	mplen	nented	: Read	as '1'										
bit 6:	BO 1 = 0 =	DEN: E BOR 6 BOR 0	Brown-o enableo disableo	out Res 1 d	et Enat	ole bit	(1)								
bit 3:	PW 1 = 0 =	rte : F Pwrt Pwrt	Power-u disabl enabl	up Time ed ed	r Enabl	e bit (1)								
bit 2:	WD 1 = 0 =	TE: Wa WDT e WDT o	atchdo enableo disable	g Timer d d	Enable	e bit									
bit 1-0:	FO 11 = 10 = 01 = 00 =	SC1:F (= RC c = HS c = XT o = LP o	OSCO: oscillato oscillato oscillato scillato	Oscillat or or r r	tor Sele	ction	bits								
Note 1: 2:	Ena Ens All c	abling E sure the of the (Brown- e Powe CP1:CF	out Res er-up Tir P0 pairs	et auto ner is e have te	matica nable o be g	ally enabl d anytime iven the	les Pov e Brow same v	ver-up n-out F value to	Timer (P Reset is e o enable	WRT) r enabled the cod	egardle I. le prote	ess of the	value of bit F eme listed.	PWRTE.

14.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 14-5 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 14-5: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 14-6 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 14-6: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

14.2.4 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 14-7 shows how the R/C combination is connected to the PIC16CXX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-4 for waveform).

FIGURE 14-7: RC OSCILLATOR MODE

Register		Δ	nnlica	hle	Device	20112		Power-on Reset	MCLR Resets	Wake-up via WDT
Register	Applicable Devices					.3		Brown-out Reset	WDT Reset	or
										Interrupt
INTCON	72	73	73A	74	74A	76	77	0000 000x	0000 000u	uuuu uuuu (1)
	72	73	73A	74	74A	76	77	-0 0000	-0 0000	-u uuuu (1)
PIR1	72	73	73A	74	74A	76	77	-000 0000	-000 0000	-uuu uuuu (1)
	72	73	73A	74	74A	76	77	0000 0000	0000 0000	uuuu uuuu (1)
PIR2	72	73	73A	74	74A	76	77	0	0	(1)
TMR1L	72	73	73A	74	74A	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1H	72	73	73A	74	74A	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	72	73	73A	74	74A	76	77	00 0000	uu uuuu	uu uuuu
TMR2	72	73	73A	74	74A	76	77	0000 0000	0000 0000	uuuu uuuu
T2CON	72	73	73A	74	74A	76	77	-000 0000	-000 0000	-uuu uuuu
SSPBUF	72	73	73A	74	74A	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSPCON	72	73	73A	74	74A	76	77	0000 0000	0000 0000	uuuu uuuu
CCPR1L	72	73	73A	74	74A	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1H	72	73	73A	74	74A	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON	72	73	73A	74	74A	76	77	00 0000	00 0000	uu uuuu
RCSTA	72	73	73A	74	74A	76	77	0000 -00x	0000 -00x	uuuu -uuu
TXREG	72	73	73A	74	74A	76	77	0000 0000	0000 0000	uuuu uuuu
RCREG	72	73	73A	74	74A	76	77	0000 0000	0000 0000	uuuu uuuu
CCPR2L	72	73	73A	74	74A	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR2H	72	73	73A	74	74A	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP2CON	72	73	73A	74	74A	76	77	0000 0000	0000 0000	uuuu uuuu
ADRES	72	73	73A	74	74A	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	72	73	73A	74	74A	76	77	0000 00-0	0000 00-0	uuuu uu-u
OPTION	72	73	73A	74	74A	76	77	1111 1111	1111 1111	uuuu uuuu
TRISA	72	73	73A	74	74A	76	77	11 1111	11 1111	uu uuuu
TRISB	72	73	73A	74	74A	76	77	1111 1111	1111 1111	uuuu uuuu
TRISC	72	73	73A	74	74A	76	77	1111 1111	1111 1111	uuuu uuuu
TRISD	72	73	73A	74	74A	76	77	1111 1111	1111 1111	uuuu uuuu
TRISE	72	73	73A	74	74A	76	77	0000 -111	0000 -111	uuuu -uuu
	72	73	73A	74	74A	76	77	-0 0000	-0 0000	-u uuuu
PIE1	72	73	73A	74	74A	76	77	-000 0000	-000 0000	-uuu uuuu
	72	73	73A	74	74A	76	77	0000 0000	0000 0000	uuuu uuuu
PIE2	72	73	73A	74	74A	76	77	0	0	u
DOON	72	73	73A	74	74A	76	77	0-	u-	u-
PCON	72	73	73A	74	74A	76	77	Ou	uu	uu
PR2	72	73	73A	74	74A	76	77	1111 1111	1111 1111	1111 1111

TABLE 14-8:	INITIALIZATION CONDITIONS FOR ALL REGISTERS	(Cont.'d)
-------------	---	-----------

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 14-7 for reset value for specific condition.

14.8 Power-down Mode (SLEEP) Applicable Devices 727373A7474A7677

Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or Vss, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

14.8.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on MCLR pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. SSP (Start/Stop) bit detect interrupt.
- 3. SSP transmit or receive in slave mode (SPI/ l^2 C).
- 4. CCP capture mode interrupt.
- 5. Parallel Slave Port read or write.
- 6. A/D conversion (when A/D clock source is RC).
- 7. Special event trigger (Timer1 in asynchronous mode using an external clock).
- 8. USART TX or RX (synchronous slave mode).

Other peripherals cannot generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

14.8.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

RLF	Rotate Left f through Carry		RRF	Rotate F	Rotate Right f through Carry				
Syntax:	[<i>label</i>] RLF f,d			Syntax:	[<i>label</i>] RRF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$			Operands:	$0 \le f \le 12$ $d \in [0,1]$				
Operation:	See description below		Operation:	See description below					
Status Affected:	С				Status Affected:	С			
Encoding:	00	1101	dfff	ffff	Encoding:	00	1100	dfff	ffff
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.		Description:	The conte one bit to Flag. If 'd' W register back in re	intents of register 'f' are rotated to the right through the Carry 'd' is 0 the result is placed in the ster. If 'd' is 1 the result is placed n register 'f'.				
Words:	1				Words:	1			
Cycles:	1				Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4	Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination		Decode	Read register 'f'	Process data	Write to destination
Example	RLF REG1,0				Example	RRF		REG1,0	
	Before Instruction					Before Instruction			
		REG1	= 111	0 0110			REG1	= 111	0 0110
	Aftor Inc	C	= 0			A (1 1	C	= 0	
	Aller IIIS	REG1	- 111	0 0110		After Inst		111	0 0110
		W	= 110	0 1100			W	= 111 = 011	1 0011
		С	= 1				C	= 0	

Applicable Devices 72 73 73A 74 74A 76 77

18.1 DC Characteristics: PIC16C73/74-04 (Commercial, Industrial) PIC16C73/74-10 (Commercial, Industrial) PIC16C73/74-20 (Commercial, Industrial)

DC CH		Standa Operat	ard Op ing terr	erating operati	g Cond ure -4 0°	litions (unless otherwise stated) $40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial and C $\leq TA \leq +70^{\circ}C$ for commercial	
Param No.	am Characteristic Sym 5.		Min	Тур†	Мах	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2,5)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D020 D021 D021A	Power-down Current (Note 3,5)	IPD		10.5 1.5 1.5	42 21 24	μΑ μΑ μΑ	$VDD = 4.0V, WDT enabled, -40^{\circ}C \text{ to } +85^{\circ}C$ $VDD = 4.0V, WDT \text{ disabled}, -0^{\circ}C \text{ to } +70^{\circ}C$ $VDD = 4.0V, WDT \text{ disabled}, -40^{\circ}C \text{ to } +85^{\circ}C$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

Applicable Devices 72 73 74 74A 76 77											
18.3	DC Characteristics: PIC16 PIC16 PIC16 PIC16 PIC16	3C73/74 5C73/74 6C73/74 6LC73/	4-04 (Co 4-10 (Co 4-20 (Co 74-04 (C	omr omr omr omr	nercial, nercial, nercial, mercial,	Indust Indust Indust Indust	trial) trial) trial) trial)				
Standard Operating Conditions (unless otherwise stated)											
Operating temperature $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial andDC CHARACTERISTICS $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ for commercial											
		Operati Sectior	ing voltage	e Vd	D range a	s descr	ribed in DC spec Section 18.1 and				
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions				
No.		<u> </u>		<u> </u> †	<u> </u>	<u> </u>					
	Input Low Voltage	.,									
	I/O ports	VIL									
D030	with TTL buffer		Vss	-	0.15VDD	V	For entire VDD range				
D030A			Vss	-	0.8V	V	$4.5V \le VDD \le 5.5V$				
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	V					
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2VDD	V					
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1				
	Input High Voltage										
	I/O ports	VIH		-							
D040	with TTL buffer		2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$				
D040A			0.25VDD	-	Vdd	V	For entire VDD range				
			+ 0.8V								
						<u>,</u>					
D041	with Schmitt Irigger burrer			-	VDD	V	For entire VDD range				
D042	MCLR		0.8VDD	-	VDD	V					
D042A	OSC1 (XT, HS and LP)		0.7VDD	-	Vdd	V	Note1				
D043	OSC1 (in RC mode)		0.9VDD	-	VDD	V					
D070	PORTB weak pull-up current	IPURB	50	250	400	μA	VDD = 5V, VPIN = VSS				
	Input Leakage Current				T						
	(Notes 2, 3)										
D060	I/O ports	lı∟		-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi-imped-				
 					_	_	ance				
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \le VPIN \le VDD$				
D063	OSC1		-	-	±5	μA	$Vss \le VPIN \le VDD$, XT, HS and LP os				
		<u> </u>	i	<u> </u>		ļ	configuration				
	Output Low Voltage				-	<u>,</u>					
D080	I/O ports	VOL	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5 V,				
							-40°C to +85°C				
DU83	OSC2/CLKOUT (RC osc coniig)		-	-	0.0	V	IOL = 1.6 mA, VDD = 4.5 v,				
<u> </u>	Output Link Voltage	+	 	—		 					
2000											
D090	I/O ports (Note 3)	VOH	VDD - U./	-	-	V	10H = -3.0 mA, VDD = 4.5 V,				
D 000											
D092	OSC2/CLKOUT (RC osc coning)		VDD - U. /	-	-	V	10H = -1.3 mA, VDD = 4.5 v,				
D450*	Owen Drein Link Voltago		ļ	_	4.4						
D150	Open-Drain High voltage			-	14	V	RA4 pin				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 72 73 73A 74 74A 76 77

19.2 DC Characteristics: PIC16LC73A/74A-04 (Commercial, Industrial)

DC CHA	ARACTERISTICS		Standa Operat	ard Ope ing tem	erating peratu	g Cond i ire -40 0°0	itions (unless otherwise stated) $0^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial and C $\leq TA \leq +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μΑ	BOR enabled VDD = 5.0V
D020	Power-down Current	IPD	-	7.5	30	μΑ	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$
D021	(Note 3,5)		-	0.9	5	μA	VDD = $3.0V$, WDT disabled, 0°C to +70°C
D021A			-	0.9	5	μA	VDD = 3.0V, WDT disabled, -40°C to +85°C
D023*	Brown-out Reset Current (Note 6)	ΔIBOR	-	350	425	μA	BOR enabled VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 72 73 73A 74 74A 76 77

20.2 DC Characteristics: PIC16LC76/77-04 (Commercial, Industrial)

DC CHARACTERISTICS				ard Ope ing tem	erating peratu	g Cond ure -40 0°0	itions (unless otherwise stated) $0^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial and C $\leq TA \leq +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V
D020	Power-down Current	IPD	-	7.5	30	μΑ	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$
D021	(Note 3,5)		-	0.9	5	μA	VDD = $3.0V$, WDT disabled, 0°C to +70°C
D021A			-	0.9	5	μΑ	VDD = $3.0V$, WD1 disabled, $-40^{\circ}C$ to $+85^{\circ}C$
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSs.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

PIC16C7X

FIGURE 21-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO 85°C)

Data based on matrix samples. See first page of this section for details.

Package Group: Plastic SOIC (SO)										
		Millimeters		Inches						
Symbol	Min	Мах	Notes	Min	Мах	Notes				
α	0°	8°		0°	8°					
A	2.362	2.642		0.093	0.104					
A1	0.101	0.300		0.004	0.012					
В	0.355	0.483		0.014	0.019					
С	0.241	0.318		0.009	0.013					
D	17.703	18.085		0.697	0.712					
E	7.416	7.595		0.292	0.299					
е	1.270	1.270	Typical	0.050	0.050	Typical				
Н	10.007	10.643		0.394	0.419					
h	0.381	0.762		0.015	0.030					
L	0.406	1.143		0.016	0.045					
N	28	28		28	28					
CP	_	0.102		_	0.004					