

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 × 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c77-20i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture in which program and data are fetched from the same memory using the same bus. Separating program and data buses further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The table below lists program memory (EPROM) and data memory (RAM) for each PIC16C7X device.

Device	Program Memory	Data Memory
PIC16C72	2K x 14	128 x 8
PIC16C73	4K x 14	192 x 8
PIC16C73A	4K x 14	192 x 8
PIC16C74	4K x 14	192 x 8
PIC16C74A	4K x 14	192 x 8
PIC16C76	8K x 14	368 x 8
PIC16C77	8K x 14	386 x 8

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.

PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

4.2.2.8 PCON REGISTER Applicable Devices 72/73/73A/74/74A/76/77

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external $\overline{\text{MCLR}}$ Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 4-16: PCON REGISTER (ADDRESS 8Eh)

7.0 TIMER0 MODULE Applicable Devices 727373A7474A7677

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit TOCS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS (OPTION<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0

FIGURE 7-1: TIMER0 BLOCK DIAGRAM

Source Edge Select bit TOSE (OPTION<4>). Clearing bit TOSE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

7.1 <u>Timer0 Interrupt</u>

Applicable Devices

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP. See Figure 7-4 for Timer0 interrupt timing.

9.0 TIMER2 MODULE

Applicable Devices 72|73|73A|74|74A|76|77

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time-base for PWM mode of the CCP module(s). The TMR2 register is readable and writable, and is cleared on any device reset.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit period register PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon reset.

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

Timer2 can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Figure 9-2 shows the Timer2 control register.

9.1 <u>Timer2 Prescaler and Postscaler</u> Applicable Devices

72 73 73A 74 74A 76 77

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- a write to the T2CON register
- any device reset (Power-on Reset, MCLR reset, Watchdog Timer reset, or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

FIGURE 9-1: TIMER2 BLOCK DIAGRAM

TABLE 10-5:	REGISTERS	ASSOCIATED	WITH PWM	AND TIMER2
-------------	-----------	------------	----------	------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh ⁽²⁾	PIR2	—	_	_	—	—	—	_	CCP2IF	0	0
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh ⁽²⁾	PIE2	—			—	—	—		CCP2IE	0	0
87h	TRISC	PORTC Da	ata Directio	n Register						1111 1111	1111 1111
11h	TMR2	Timer2 mod	dule's regist	er						0000 0000	0000 0000
92h	PR2	Timer2 mod	dule's period	l register						1111 1111	1111 1111
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/Co	mpare/PWI	V register1 ((LSB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWI	V register1 ((MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh ⁽²⁾	CCPR2L	Capture/Co	mpare/PWI	V register2 ((LSB)					xxxx xxxx	uuuu uuuu
1Ch ⁽²⁾	CCPR2H	Capture/Co	mpare/PWI	V register2 ((MSB)					xxxx xxxx	uuuu uuuu
1Dh ⁽²⁾	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

2: The PIC16C72 does not have a Parallel Slave Port, USART or CCP2 module, these bits are unimplemented, read as '0'.

Г

FIGURE 11-8: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)(PIC16C76/77)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit
bit7		· ·					bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	WCOL: We 1 = The SS (must be c 0 = No col	rite Collisic SPBUF reg leared in s lision	on Detect l jister is wi oftware)	bit itten while	it is still tr	ansmitting	the previou	is word
bit 6:	SSPOV: R	eceive Ove	erflow Indi	cator bit				
	$\frac{\text{In SPI mod}}{1 = A \text{ new}}$ the data in if only tran new recep 0 = No over	de byte is rece SSPSR is smitting da tion (and to erflow	eived while lost. Over ata, to avo ransmissio	e the SSPE flow can o bid setting bn) is initia	BUF regist nly occur overflow. I ted by wri	er is still ho in slave mo n master r ting to the	olding the pr ode. The use mode the ov SSPBUF re	evious data. In case of overflow, er must read the SSPBUF, even verflow bit is not set since each egister.
	$\frac{\ln l^2 C \mod}{1 = A \text{ byte}}$ in transmit 0 = No over	<u>le</u> is received mode. SS erflow	while the POV mus	SSPBUF i t be cleare	register is d in softwa	still holding are in eithe	g the previou er mode.	us byte. SSPOV is a "don't care"
bit 5:	SSPEN: S	ynchronou	s Serial P	ort Enable	bit			
	$\frac{\text{In SPI mod}}{1 = \text{Enable}}$ $0 = \text{Disable}$	<u>de</u> es serial po es serial po	ort and cor	nfigures So nfigures th	CK, SDO, lese pins a	and SDI as as I/O port	s serial port pins	pins
	$\frac{\ln l^2 C \mod}{1 = \text{Enable}}$ $0 = \text{Disable}$ $\ln \text{ both model}$	<u>le</u> es the seria es serial po odes, when	al port and ort and co enabled,	l configure nfigures th these pins	s the SDA lese pins a s must be	and SCL as I/O port properly co	pins as seri pins onfigured as	al port pins s input or output.
bit 4:	CKP : Cloc In SPI mod 1 = Idle sta 0 = Idle sta In I^2 C mod SCK relea 1 = Enable 0 = Holds	k Polarity \$ de ate for cloc ate for cloc de se control e clock clock low (Select bit k is a high k is a low clock stre	n level level tch) (Used	to ensure	data setu	p time)	
bit 3-0:	$\begin{array}{l} \textbf{SSPM3:S3} \\ 0000 = SF \\ 0001 = SF \\ 0010 = SF \\ 0100 = SF \\ 0100 = SF \\ 0101 = SF \\ 0110 = I^2 \\ 0111 = I^2 \\ 1011 = I^2 \\ 1110 = I^2 \\ 1111 = I^2 \\ \end{array}$	SPM0: Syn PI master n PI master n PI master n PI master n PI slave mc CI slave mc CI slave mo CI slave mo CI slave mo CI slave mo CI slave mo CI slave mo	chronous node, cloc node, cloc node, cloc ode, clock ode, clock de, 7-bit a de, 10-bit controlled de, 7-bit a de, 10-bit	Serial Por k = Fosc/ ² k = Fosc/ ² k = Fosc/ ⁶ k = TMR2 = SCK pin = SCK pin ddress address t master m ddress wit address w	t Mode Se 4 16 64 0. <u>SS</u> pin c 1. <u>SS</u> pin c 1. <u>SS</u> pin c 1. th start an vith start a	elect bits ontrol enat ontrol disa e idle) d stop bit i nd stop bit	bled. bled. SS ca nterrupts er interrupts e	n be used as I/O pin nabled enabled

TABLE 12-3: BAUD RATES FOR SYNCHRONOUS MODE

BAUD	Fosc = 2	20 MHz	SPBRG	16 MHz		SPBRG	10 MHz		SPBRG	7.15909	MHz	SPBRG
RATE (K)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-
9.6	NA	-	-	NA	-	-	9.766	+1.73	255	9.622	+0.23	185
19.2	19.53	+1.73	255	19.23	+0.16	207	19.23	+0.16	129	19.24	+0.23	92
76.8	76.92	+0.16	64	76.92	+0.16	51	75.76	-1.36	32	77.82	+1.32	22
96	96.15	+0.16	51	95.24	-0.79	41	96.15	+0.16	25	94.20	-1.88	18
300	294.1	-1.96	16	307.69	+2.56	12	312.5	+4.17	7	298.3	-0.57	5
500	500	0	9	500	0	7	500	0	4	NA	-	-
HIGH	5000	-	0	4000	-	0	2500	-	0	1789.8	-	0
LOW	19.53	-	255	15.625	-	255	9.766	-	255	6.991	-	255

	Fosc =	5.0688 MI	Hz	4 MHz			3.57954	5 MHz		1 MHz			32.768 k	Hz	
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-	0.303	+1.14	26
1.2	NA	-	-	NA	-	-	NA	-	-	1.202	+0.16	207	1.170	-2.48	6
2.4	NA	-	-	NA	-	-	NA	-	-	2.404	+0.16	103	NA	-	-
9.6	9.6	0	131	9.615	+0.16	103	9.622	+0.23	92	9.615	+0.16	25	NA	-	-
19.2	19.2	0	65	19.231	+0.16	51	19.04	-0.83	46	19.24	+0.16	12	NA	-	-
76.8	79.2	+3.13	15	76.923	+0.16	12	74.57	-2.90	11	83.34	+8.51	2	NA	-	-
96	97.48	+1.54	12	1000	+4.17	9	99.43	+3.57	8	NA	-	-	NA	-	-
300	316.8	+5.60	3	NA	-	-	298.3	-0.57	2	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	1267	-	0	100	-	0	894.9	-	0	250	-	0	8.192	-	0
LOW	4.950	-	255	3.906	-	255	3.496	-	255	0.9766	-	255	0.032	-	255

TABLE 12-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	Fosc = 2	20 MHz	SPBRG	16 MHz		SPBRG	10 MHz		SPBRG	7.15909	MHz	SPBRG
RATE		%	value		%	value		%	value		%	value
(K)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	1.221	+1.73	255	1.202	+0.16	207	1.202	+0.16	129	1.203	+0.23	92
2.4	2.404	+0.16	129	2.404	+0.16	103	2.404	+0.16	64	2.380	-0.83	46
9.6	9.469	-1.36	32	9.615	+0.16	25	9.766	+1.73	15	9.322	-2.90	11
19.2	19.53	+1.73	15	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5
76.8	78.13	+1.73	3	83.33	+8.51	2	78.13	+1.73	1	NA	-	-
96	104.2	+8.51	2	NA	-	-	NA	-	-	NA	-	-
300	312.5	+4.17	0	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	312.5	-	0	250	-	0	156.3	-	0	111.9	-	0
LOW	1.221	-	255	0.977	-	255	0.6104	-	255	0.437	-	255

	Fosc =	5.0688 MI	Hz	4 MHz			3.57954	5 MHz		1 MHz			32.768 k	Hz	
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	0.31	+3.13	255	0.3005	-0.17	207	0.301	+0.23	185	0.300	+0.16	51	0.256	-14.67	1
1.2	1.2	0	65	1.202	+1.67	51	1.190	-0.83	46	1.202	+0.16	12	NA	-	-
2.4	2.4	0	32	2.404	+1.67	25	2.432	+1.32	22	2.232	-6.99	6	NA	-	-
9.6	9.9	+3.13	7	NA	-	-	9.322	-2.90	5	NA	-	-	NA	-	-
19.2	19.8	+3.13	3	NA	-	-	18.64	-2.90	2	NA	-	-	NA	-	-
76.8	79.2	+3.13	0	NA	-	-	NA	-	-	NA	-	-	NA	-	-
96	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	79.2	-	0	62.500	-	0	55.93	-	0	15.63	-	0	0.512	-	0
LOW	0.3094	-	255	3.906	-	255	0.2185	-	255	0.0610	-	255	0.0020	-	255

BAUD RATE (K)	Fosc = 2 KBAUD	20 MHz % ERROR	SPBRG value (decimal)	16 MHz KBAUD	% ERROR	SPBRG value (decimal)	10 MHz KBAUD	% ERROR	SPBRG value (decimal)	7.16 MH: KBAUD	z % ERROR	SPBRG value (decimal)
9.6	9.615	+0.16	129	9.615	+0.16	103	9.615	+0.16	64	9.520	-0.83	46
19.2	19.230	+0.16	64	19.230	+0.16	51	18.939	-1.36	32	19.454	+1.32	22
38.4	37.878	-1.36	32	38.461	+0.16	25	39.062	+1.7	15	37.286	-2.90	11
57.6	56.818	-1.36	21	58.823	+2.12	16	56.818	-1.36	10	55.930	-2.90	7
115.2	113.636	-1.36	10	111.111	-3.55	8	125	+8.51	4	111.860	-2.90	3
250	250	0	4	250	0	3	NA	-	-	NA	-	-
625	625	0	1	NA	-	-	625	0	0	NA	-	-
1250	1250	0	0	NA	-	-	NA	-	-	NA	-	-

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	FOSC = 5	5.068 MHz	SPBRG	4 MHz		SPBRG	3.579 MI	Ηz	SPBRG	1 MHz		SPBRG	32.768	κHz	SPBRG
RATE		%	value		%	value		%	value		%	value		%	value
(K)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)
9.6	9.6	0	32	NA	-	-	9.727	+1.32	22	8.928	-6.99	6	NA	-	-
19.2	18.645	-2.94	16	1.202	+0.17	207	18.643	-2.90	11	20.833	+8.51	2	NA	-	-
38.4	39.6	+3.12	7	2.403	+0.13	103	37.286	-2.90	5	31.25	-18.61	1	NA	-	-
57.6	52.8	-8.33	5	9.615	+0.16	25	55.930	-2.90	3	62.5	+8.51	0	NA	-	-
115.2	105.6	-8.33	2	19.231	+0.16	12	111.860	-2.90	1	NA	-	-	NA	-	-
250	NA	-	-	NA	-	-	223.721	-10.51	0	NA	-	-	NA	-	-
625	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1250	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-

Note: For the PIC16C73/73A/74/74A, the asynchronous high speed mode (BRGH = 1) may experience a high rate of receive errors. It is recommended that BRGH = 0. If you desire a higher baud rate than BRGH = 0 can support, refer to the device errata for additional information, or use the PIC16C76/77.

FIGURE 12-14: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

NOTES:

13.4 A/D Conversions

 Applicable Devices

 72
 73
 73
 74
 74
 76
 77

Example 13-2 shows how to perform an A/D conversion. The RA pins are configured as analog inputs. The analog reference (VREF) is the device VDD. The A/D interrupt is enabled, and the A/D conversion clock is FRC. The conversion is performed on the RA0 pin (channel 0).

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, an acquisition is automatically started on the selected channel.

EXAMPLE 13-2: A/D CONVERSION

;

; ;

	BSF	STATUS,	rp0	;	Select Bank 1
	BCF	STATUS,	RP1	;	PIC16C76/77 only
	CLRF	ADCON1		;	Configure A/D inputs
	BSF	PIE1,	ADIE	;	Enable A/D interrupts
	BCF	STATUS,	RP0	;	Select Bank 0
	MOVLW	0xC1		;	RC Clock, A/D is on, Channel 0 is selected
	MOVWF	ADCON0		;	
	BCF	PIR1,	ADIF	;	Clear A/D interrupt flag bit
	BSF	INTCON,	PEIE	;	Enable peripheral interrupts
	BSF	INTCON,	GIE	;	Enable all interrupts
E T	nsure tha hen the o	at the re conversio	equired sampl on may be sta	li: ar	ng time for the selected input channel has elapsed. ted.

BSF	ADCON0, GO	;	; Start A/D Conversion
:		;	; The ADIF bit will be set and the GO/DONE bit
:		;	; is cleared upon completion of the $\ensuremath{A}\xspace/\ensuremath{D}\xspace$ Conversion.

13.8 Use of the CCP Trigger Applicable Devices 72 73 73A 74 74A 76 77

Note: In the PIC16C72, the "special event trigger" is implemented in the CCP1 module.

An A/D conversion can be started by the "special event trigger" of the CCP2 module (CCP1 on the PIC16C72 only). This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRES to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

13.9 Connection Considerations Applicable Devices 72/73/73A/74/74A/76/77

If the input voltage exceeds the rail values (VSS or VDD) by greater than 0.2V, then the accuracy of the conversion is out of specification.

An external RC filter is sometimes added for anti-aliasing of the input signal. The R component should be selected to ensure that the total source impedance is kept under the 10 k Ω recommended specification. Any external components connected (via hi-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

13.10 Transfer Function Applicable Devices 72 73 73 74 74 76 77

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is Analog VREF/256 (Figure 13-5).

FIGURE 13-5: A/D TRANSFER FUNCTION

13.11 References

A very good reference for understanding A/D converters is the "Analog-Digital Conversion Handbook" third edition, published by Prentice Hall (ISBN 0-13-03-2848-0).

GOTO	Uncondi	tional Br	anch		II	NCF	Increme	nt f		
Syntax:	[label]	GOTO	k		S	Syntax:	[label]	INCF f	,d	
Operands:	$0 \le k \le 20$	$0 \le k \le 2047$			C	Operands:	$0 \le f \le 127$			
Operation:	$k \rightarrow PC <$	10:0>					d ∈ [0,1]			
	PCLATH	$<4:3> \rightarrow 1$	PC<12:11	>	C	Operation:	(f) + 1 \rightarrow (destination)			
Status Affected:	None				S	Status Affected:	Z			
Encoding:	10	1kkk	kkkk	kkkk	E	ncoding:	00	1010	dfff	ffff
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>.				C	Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.			e incre- placed in esult is
Words:	1	-			V	Vords:	1			
Cycles:	2				C	Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4	C	Q Cycle Activity:	Q1	Q2	Q3	Q4
1st Cycle	Decode	Read literal 'k'	Process data	Write to PC			Decode	Read register 'f'	Process data	Write to destination
2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation						
					E	Example	INCF	CNT,	1	
Example	GOTO TI	HERE					Before Ir	struction	1	_
	After Inst	ruction						CNT 7	= 0xF	F
		PC =	Address	THERE			After Inst	ruction	= 0	
								CNT	= 0x0	0
								7	- 1	

Applicable Devices 72 73 73A 74 74A 76 77

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5Tcy + 20	—	—	ns	Must also meet
				With Prescaler	10	_	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	—	—	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	-	—	ns	
				With Prescaler	Greater of:	-	-	ns	N = prescale value
					20 or <u>Tcy + 40</u>				(2, 4,, 256)
15*	T+4 LJ		Superropour, F	Proposlar 1					Must also most
40			Synchronous, P		0.5101 + 20	-	_	ns	narameter 47
			Prescaler –		15			115	
			2,4,8	FICTOLOTX	25	-		115	
			Asynchronous	PIC16 C 7X	30	-	—	ns	
				PIC16 LC 7X	50	_	—	ns]
46*	Tt1L	T1CKI Low Time Synchronou		rescaler = 1	0.5Tcy + 20	—	—	ns	Must also meet
			Synchronous,	PIC16 C 7X	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 7X	25	-	_	ns	
			Asynchronous	PIC16 C 7X	30	—	—	ns]
				PIC16 LC 7X	50	—	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 7X	Greater of:	-	—	ns	N = prescale value
					30 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
				PIC16LC/X	Greater of:				N = prescale value
					50 OR <u>TCY + 40</u> N				(1, 2, 4, 0)
			Asynchronous		60	_		ns	
				PIC16LC7X	100	-		ns	-
	Ft1	Timer1 oscillator inr	ut frequency rar	nae	DC	- 1	200	kHz	
		(oscillator enabled b	y setting bit T1C	SCEN)					
48	TCKEZtmr	Delay from external	clock edge to tir	ner increment	2Tosc	- 1	7Tosc	—	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 72 73 73A 74 74A 76 77

18.5 <u>Timing Diagrams and Specifications</u>

FIGURE 18-2: EXTERNAL CLOCK TIMING

TABLE 18-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	10	MHz	HS osc mode (-10)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	—	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			100	—	-	ns	HS osc mode (-10)
			50	—	-	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			100	—	250	ns	HS osc mode (-10)
			50	—	250	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	—	DC	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1) High or	50	—	—	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			15			ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	_	—	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 18-6: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 18-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions		
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	_	_	ns	
		input low time		PIC16 C 73/74	10	_	_	ns	
			With Prescaler	PIC16 LC 73/74	20	_	_	ns	
51*	51* TccH CCP1		No Prescaler		0.5Tcy + 20	—	—	ns	
		input high time		PIC16 C 73/74	10	—	—	ns	
			With Prescaler	PIC16 LC 73/74	20	—	—	ns	
52*	TccP	CCP1 and CCP2 in	nput period		<u>3Tcy + 40</u> N	_	—	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 and CCP2 of	output fall time	PIC16 C 73/74	_	10	25	ns	
		PIC16 LC 73/74		PIC16 LC 73/74	_	25	45	ns	
54*	TccF CCP1 and CCP2 output fall time		PIC16 C 73/74		10	25	ns		
			PIC16LC73/74	_	25	45	ns		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 72 73 73A 74 74A 76 77

TABLE 18-13: A/D CONVERTER CHARACTERISTICS:

PIC16C73/74-04 (Commercial, Industrial) PIC16C73/74-10 (Commercial, Industrial) PIC16C73/74-20 (Commercial, Industrial) PIC16LC73/74-04 (Commercial, Industrial)

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
A01	Nr	Resolution		_	—	8-bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A02	Eabs	Total Absolute error		—	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A03	EIL	Integral linearity error		—		<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A04	Edl	Differential linearity error		—	_	< ± 1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A05	Efs	Full scale error		—	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A06	Eoff	Offset error		—		<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A10	_	Monotonicity		—	guaranteed	_		$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage		3.0V		Vdd + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3	_	Vref + 0.3	V	
A30	Zain	Recommended impedan analog voltage source	ce of	—	_	10.0	kΩ	
A40	IAD	A/D conversion current	PIC16 C 73/74	_	180	—	μΑ	Average current consump-
		(VDD)	PIC16 LC 73/74	—	90	_	μΑ	tion when A/D is on. (Note 1)
A50	IREF VREF input current (Note 2)		10		1000	μĀ	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 13.1.	
				—	—	10	μA	During A/D Conversion cycle

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

22.0 PACKAGING INFORMATION

22.1 28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil)(JW)

Package Group: Ceramic Side Brazed Dual In-Line (CER)											
O. mahad		Millimeters		Inches							
Symbol	Min	Мах	Notes	Min	Max	Notes					
α	0°	10°		0°	10°						
А	3.937	5.030		0.155	0.198						
A1	1.016	1.524		0.040	0.060						
A2	2.921	3.506		0.115	0.138						
A3	1.930	2.388		0.076	0.094						
В	0.406	0.508		0.016	0.020						
B1	1.219	1.321	Typical	0.048	0.052						
С	0.228	0.305	Typical	0.009	0.012						
D	35.204	35.916		1.386	1.414						
D1	32.893	33.147	Reference	1.295	1.305						
Е	7.620	8.128		0.300	0.320						
E1	7.366	7.620		0.290	0.300						
e1	2.413	2.667	Typical	0.095	0.105						
eA	7.366	7.874	Reference	0.290	0.310						
eB	7.594	8.179		0.299	0.322						
L	3.302	4.064		0.130	0.160						
N	28	28		28	28						
S	1.143	1.397		0.045	0.055						
S1	0.533	0.737		0.021	0.029						

PIC16C7X

22.4 40-Lead Plastic Dual In-line (600 mil) (P)

Package Group: Plastic Dual In-Line (PLA)											
		Millimeters		Inches							
Symbol	Min	Мах	Notes	Min	Max	Notes					
α	0°	10°		0°	10°						
A	-	5.080		-	0.200						
A1	0.381	_		0.015	_						
A2	3.175	4.064		0.125	0.160						
В	0.355	0.559		0.014	0.022						
B1	1.270	1.778	Typical	0.050	0.070	Typical					
С	0.203	0.381	Typical	0.008	0.015	Typical					
D	51.181	52.197		2.015	2.055						
D1	48.260	48.260	Reference	1.900	1.900	Reference					
E	15.240	15.875		0.600	0.625						
E1	13.462	13.970		0.530	0.550						
e1	2.489	2.591	Typical	0.098	0.102	Typical					
eA	15.240	15.240	Reference	0.600	0.600	Reference					
eB	15.240	17.272		0.600	0.680						
L	2.921	3.683		0.115	0.145						
N	40	40		40	40						
S	1.270	_		0.050	_						
S1	0.508	_		0.020	_						

22.6 28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)

Package Group: Plastic SSOP											
		Millimeters		Inches							
Symbol	Min	Max	Notes	Min	Мах	Notes					
α	0°	8°		0°	8 °						
А	1.730	1.990		0.068	0.078						
A1	0.050	0.210		0.002	0.008						
В	0.250	0.380		0.010	0.015						
С	0.130	0.220		0.005	0.009						
D	10.070	10.330		0.396	0.407						
E	5.200	5.380		0.205	0.212						
е	0.650	0.650	Reference	0.026	0.026	Reference					
Н	7.650	7.900		0.301	0.311						
L	0.550	0.950		0.022	0.037						
Ν	28	28		28	28						
CP	-	0.102		-	0.004						