

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	$4V \sim 6V$
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c77-20i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-6: PIC16C76/77 REGISTER FILE MAP

Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	181
PCL	02h	PCL	82h	PCL	102h	PCL	182
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183
FSR	04h	FSR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h		105h		185
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
PORTC	07h	TRISC	87h		107h		187
PORTD (1)	08h	TRISD ⁽¹⁾	88h		108h		188
PORTE (1)	09h	TRISE (1)	89h		109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18A
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18B
PIR1	0Ch	PIE1	8Ch		10Ch		1 18C
PIR2	0Dh	PIE2	8Dh		10Dh		18D
TMR1L	0Eh	PCON	8Eh		10Eh		18E
TMR1H	0Fh		8Fh		10Fh		18F
T1CON	10h		90h		110h		190
TMR2	11h		91h		111h		191
T2CON	12h	PR2	92h		112h		192
SSPBUF	13h	SSPADD	93h		113h		193
SSPCON	14h	SSPSTAT	94h		114h		194
CCPR1L	15h		95h		115h		195
CCPR1H	16h		96h		116h		196
CCP1CON	17h		97h	General	117h	General	197
RCSTA	18h	TXSTA	98h	Purpose Register	118h	Purpose Register	198
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199
RCREG	1Ah		9Ah		11Ah		19A
CCPR2L	1Bh		9Bh		11Bh		19B
CCPR2H	1Ch		9Ch		11Ch		19C
CCP2CON	1Dh		9Dh		11Dh		19D
ADRES	1Eh		9Eh		11Eh		19E
ADCON0	1Fh	ADCON1	9Fh		11Fh		19F
	20h		A0h		120h		1A0
General Purpose Register 96 Bytes		General Purpose Register 80 Bytes	EFh	General Purpose Register 80 Bytes	16Fh	General Purpose Register 80 Bytes	1EF
-	7Fh	accesses 70h-7Fh	F0h FFh	accesses 70h-7Fh	170h 17Fh	accesses 70h - 7Fh] 1F0
Bank 0		Bank 1		Bank 2		Bank 3	
_	nted data	memory locations, re				Bank 3	

Note: The upper 16 bytes of data memory in banks 1, 2, and 3 are mapped in Bank 0. This may require relocation of data memory usage in the user application code if upgrading to the PIC16C76/77.

4.2.2.3 INTCON REGISTER

Applicable Devices

72 73 73A 74 74A 76 77

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

FIGURE 4-9: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	R = Readable bit
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset
bit 7:		obal Interi es all un-r les all inte	nasked in					
bit 6:		ipheral Int es all un-r les all peri	nasked pe	ripheral ir	iterrupts			
bit 5:		R0 Overflo es the TM les the TM	R0 interru	pt	bit			
bit 4:		0/INT Exte es the RB les the RE	0/INT exte	ernal interr	upt			
bit 3:	1 = Enabl	Port Char es the RB les the RE	port char	ge interru	pt			
bit 2:	1 = TMR0	R0 Overflo) register h) register c	has overflo	wed (mus	t be cleare	d in softwa	are)	
bit 1:			ternal inte	errupt occu	urred (must	be cleare	d in softwa	re)
bit 0:		st one of t	he RB7:R	B4 pins cł			e cleared in	software)
Note 1:	may be u		ally re-ena	bled by th	e RETFIE			it is being cleared, the GIE bit 's Interrupt Service Routine.
global		GIE (INTCO						corresponding enable bit or the rupt flag bits are clear prior to

4.2.2.4 PIE1 REGISTER

Applicable Devices

72 73 73A 74 74A 76 77

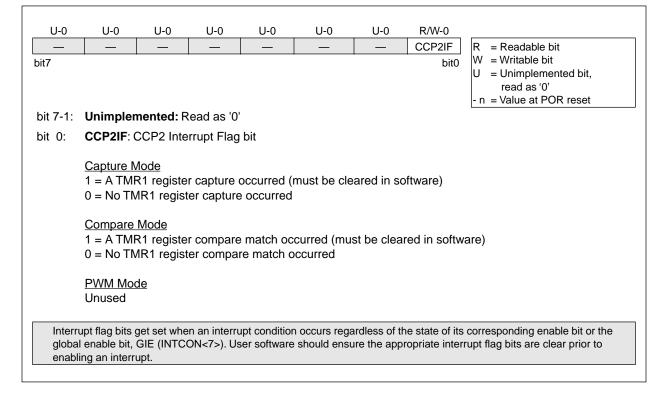
Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

This register contains the individual enable bits for the peripheral interrupts.

FIGURE 4-10: PIE1 REGISTER PIC16C72 (ADDRESS 8Ch)

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
	ADIE	—	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit				
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset 				
bit 7:	Unimpler	Unimplemented: Read as '0'										
bit 6:	ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt											
bit 5-4:	Unimpler	nented: R	ead as '0'									
bit 3:	SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt											
bit 2:	CCP1IE : CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt											
bit 1:	TMR2IE : TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt											
bit 0:	1 = Enabl	es the TM	erflow Inte R1 overflo IR1 overflo	w interrup	ot							

4.2.2.7 PIR2 REGISTER


Applicable Devices

72 73 73A 74 74A 76 77

This register contains the CCP2 interrupt flag bit.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-15: PIR2 REGISTER (ADDRESS 0Dh)

5.6 <u>I/O Programming Considerations</u> Applicable Devices 72 73 73A 74 74A 76 77

5.6.1 BI-DIRECTIONAL I/O PORTS

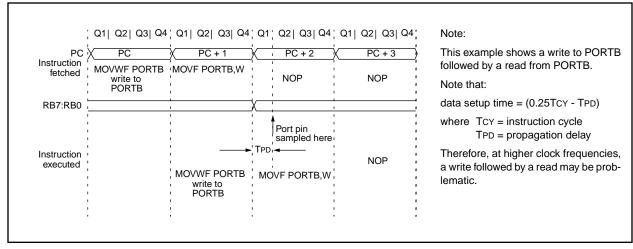
Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched to an output, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-4 shows the effect of two sequential readmodify-write instructions on an I/O port.

EXAMPLE 5-4: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs
; PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
;not connected to other circuitry


i								
;					PORT	latch	PORT pins	
;								
	BCF	PORTB,	7	;	01pp	pppp	11pp pppp	
	BCF	PORTB,	6	;	10pp	pppp	llpp pppp	
	BSF	STATUS,	RP0	;				
	BCF	TRISB,	7	;	10pp	pppp	11pp pppp	
	BCF	TRISB,	6	;	10pp	pppp	10pp pppp	
;								

;Note that the user may have expected the ;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

5.6.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-10). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/ O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-10: SUCCESSIVE I/O OPERATION

7.0 TIMER0 MODULE Applicable Devices 727373A7474A7677

The Timer0 module timer/counter has the following features:

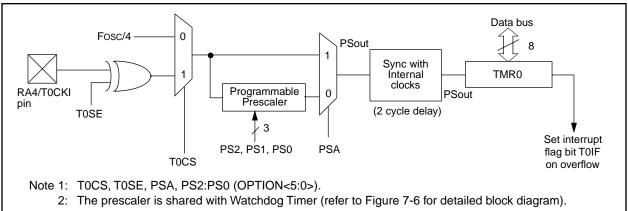
- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

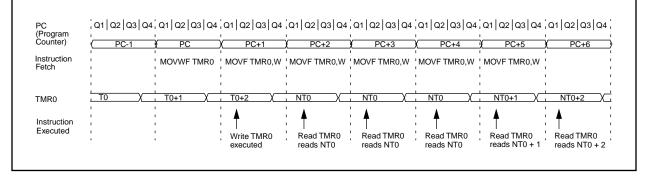
Timer mode is selected by clearing bit TOCS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS (OPTION<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0

FIGURE 7-1: TIMER0 BLOCK DIAGRAM


Source Edge Select bit TOSE (OPTION<4>). Clearing bit TOSE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.

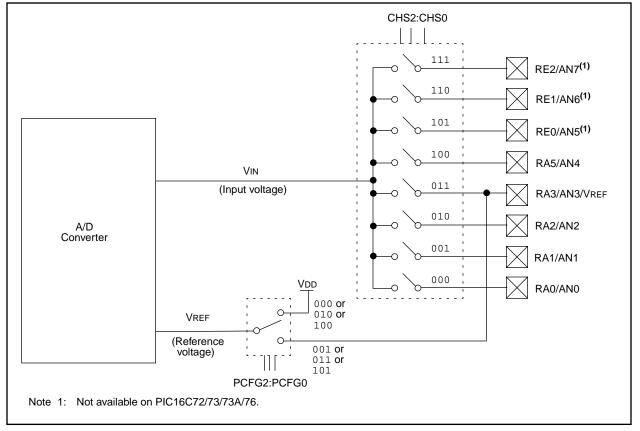
The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.


7.1 <u>Timer0 Interrupt</u>

Applicable Devices

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP. See Figure 7-4 for Timer0 interrupt timing.

NOTES:


The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagrams of the A/D module are shown in Figure 13-3.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 13.1. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit

FIGURE 13-3: A/D BLOCK DIAGRAM

- 3. Wait the required acquisition time.
- 4. Start conversion:Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 Polling for the GO/DONE bit to be cleared
 - OR
 - Waiting for the A/D interrupt
- Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

15.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 15-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 15-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 15-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
∈	In the set of
italics	User defined term (font is courier)

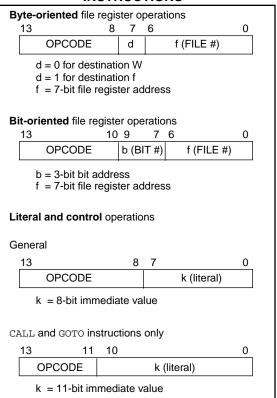
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 15-2 lists the instructions recognized by the MPASM assembler.

Figure 15-1 shows the general formats that the instructions can have.


Note: To maintain upward compatibility with future PIC16CXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

INCFSZ	Increment f, Skip if 0	IORLW	Inclusive OR Literal with W
Syntax:	[<i>label</i>] INCFSZ f,d	Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \le f \le 127$	Operands:	$0 \le k \le 255$
	d ∈ [0,1]	Operation:	(W) .OR. $k \rightarrow$ (W)
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0	Status Affected:	Z
Status Affected:	None	Encoding:	11 1000 kkkk kkkk
Encoding:	00 1111 dfff fff	Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in		result is placed in the W register.
	the W register. If 'd' is 1 the result is	Words:	1
	placed back in register 'f'. If the result is 1, the next instruction is	Cycles:	1
	executed. If the result is 0, a NOP is executed instead making it a 2Tcy	Q Cycle Activity:	Q1 Q2 Q3 Q4
Words:	instruction.		Decode Read Process Write to literal 'k' data W
Cycles:	1(2)	F ormula	
Q Cycle Activity:	Q1 Q2 Q3 Q4	Example	IORLW 0x35
	Decode Read register 'f' Process Write to destination		Before Instruction W = 0x9A After Instruction
If Skip:	(2nd Cycle)		W = 0xBF
	Q1 Q2 Q3 Q4		Z = 1
	No- OperationNo- OperationNo- Operation		
Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • • Before Instruction PC = address HERE After Instruction CNT = CNT + 1 if CNT= 0, PC = address CONTINUE if CNT \neq 0, PC = address HERE +1		

RLF	Rotate Left f th	rough Ca	rry	RRF	Rotate Rig	ght f through	Carry
Syntax:	[<i>label</i>] RLF	f,d		Syntax:	[label] R	RRF f,d	
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]			Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$		
Operation:	See description	below		Operation:	See descrip	iption below	
Status Affected:	С			Status Affected:	С		
Encoding:	00 1101	dfff	ffff	Encoding:	00	1100 dfff	ffff
Description:	The contents of r one bit to the left Flag. If 'd' is 0 the W register. If 'd' is back in register 'f	through the result is pla 1 the result	Carry ced in the	Description:	one bit to the Flag. If 'd' is (s of register 'f' a e right through t 0 the result is p f 'd' is 1 the resu ster 'f'. → Registe	he Carry aced in the Ilt is placed
Words:	1			Words:	1		
Cycles:	1			Cycles:	1		
Q Cycle Activity:	Q1 Q2	Q3	Q4	Q Cycle Activity:	Q1	Q2 Q3	Q4
	Decode Read registe 'f'	r Process r data	Write to destination			Read Procest register data	s Write to destination
Example	RLF R	EG1,0		Example	RRF	REG1,0	
	Before Instructi REG1 C After Instructior REG1 W C	= 111 = 0 = 111	0 0110 0 0110 0 1100		C After Instru	EG1 = 11 = 0 uction EG1 = 11 / = 01	10 0110 10 0110 11 0011

16.0 DEVELOPMENT SUPPORT

16.1 <u>Development Tools</u>

The PIC16/17 microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER/PICMASTER CE Real-Time In-Circuit Emulator
- ICEPIC Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB-SIM Software Simulator
- MPLAB-C (C Compiler)
- Fuzzy logic development system (*fuzzy*TECH[®]–MP)

16.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC12C5XX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX families. PICMASTER is supplied with the MPLAB[™] Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new Microchip microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows[®] 3.x environment were chosen to best make these features available to you, the end user.

A CE compliant version of PICMASTER is available for European Union (EU) countries.

16.3 ICEPIC: Low-cost PIC16CXXX In-Circuit Emulator

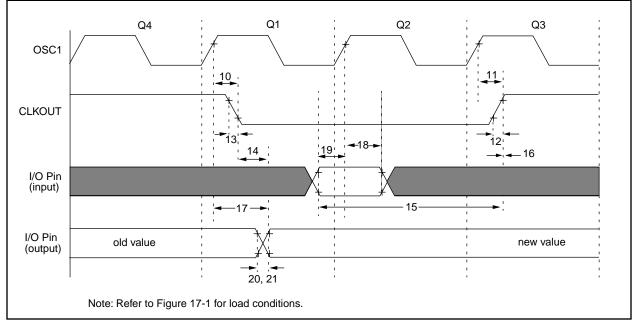
ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 286-AT[®] through Pentium[™] based machines under Windows 3.x environment. ICEPIC features real time, non-intrusive emulation.

16.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC16C5X, PIC16CXXX, PIC17CXX and PIC14000 devices. It can also set configuration and code-protect bits in this mode.


16.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923 and PIC16C924 may be supported with an adapter socket.

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 17-3: CLKOUT AND I/O TIMING

TABLE 17-3: CLKOUT AND I/O TIMING REQUIREMENTS	ГABLE 17-3:
--	-------------

Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 [↑] to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out vali	d	_	—	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOU	T ↑	Tosc + 200	-	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	\uparrow	0	-	-	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid	_	50	150	ns		
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to	PIC16 C 72	100	-	-	ns	
		Port input invalid (I/O in hold time)	PIC16 LC 72	200	-	_	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	0	-	_	ns	
20*	TioR	Port output rise time	PIC16 C 72	—	10	40	ns	
			PIC16 LC 72	_	—	80	ns	
21*	TioF	Port output fall time	PIC16 C 72	_	10	40	ns	
			PIC16 LC 72	_	-	80	ns	
22††*	Tinp	INT pin high or low time		Тсү	-	_	ns	
23††*	Trbp	RB7:RB4 change INT high	n or low time	Тсү	-	_	ns	

 * These parameters are characterized but not tested.

†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 72 73 73A 74 74A 76 77

19.1 DC Characteristics: PIC16C73A/74A-04 (Commercial, Industrial, Extended) PIC16C73A/74A-10 (Commercial, Industrial, Extended) PIC16C73A/74A-20 (Commercial, Industrial, Extended)

DC CHA	ARACTERISTICS		$\begin{array}{l lllllllllllllllllllllllllllllllllll$					
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions	
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration	
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V		
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details	
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details	
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled	
			3.7	4.0	4.4	V	Extended Range Only	
D010	Supply Current (Note 2,5)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)	
D013			-	10	20	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V	
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V	
D020 D021 D021A D021B	Power-down Current (Note 3,5)	IPD	- - - -	10.5 1.5 1.5 2.5	42 16 19 19	μΑ μΑ μΑ μΑ	$\label{eq:VDD} \begin{array}{l} VDD = 4.0V, WDT \text{ enabled}, -40^\circC \text{ to } +85^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -0^\circC \text{ to } +70^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -40^\circC \text{ to } +85^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -40^\circC \text{ to } +125^\circC \end{array}$	
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled VDD = 5.0V	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

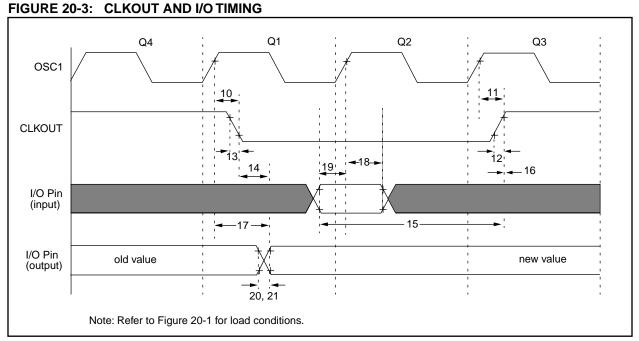
PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77

20.0 ELECTRICAL CHARACTERISTICS FOR PIC16C76/77

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	0 to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, liк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	200 mA
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD - VO	H) x IOH} + Σ (VOI x IOL)
Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, ma	ay cause latch-up. Thus,


lote 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. I hus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to VSS.

Note 3: PORTD and PORTE are not implemented on the PIC16C76.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

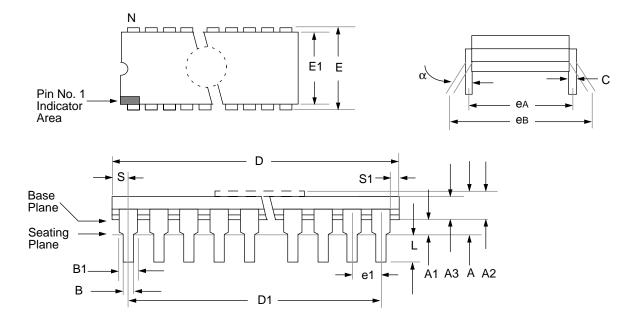
PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77

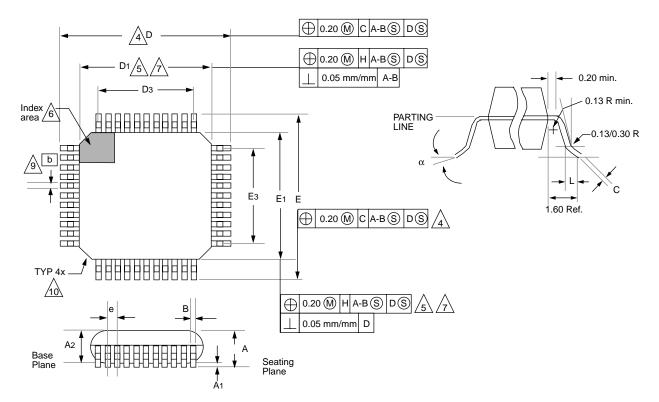
TABLE 20-3:	CLKOUT AND I/O TIMING REQUIREMENTS
IADEE 20-3.	

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 [↑] to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid	t	_	-	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOL	T ↑	Tosc + 200	-	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	\uparrow	0	—		ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		-	50	150	ns	
18*	TosH2iol	OSC1↑ (Q2 cycle) to	PIC16 C 76/77	100	-	_	ns	
		Port input invalid (I/O in hold time)	PIC16 LC 76/77	200	-	_	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	0	—	_	ns	
20*	TioR	Port output rise time	PIC16 C 76/77	_	10	40	ns	
			PIC16 LC 76/77	_	—	80	ns	
21*	TioF	Port output fall time	PIC16 C 76/77	_	10	40	ns	
			PIC16 LC 76/77	_	—	80	ns	
22††*	Tinp	INT pin high or low time		Тсү	-	-	ns	
23††*	Trbp	RB7:RB4 change INT high	or low time	Тсү	-	_	ns	

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are asynchronous events not related to any internal clock edges.


Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

PIC16C7X

22.2 40-Lead Ceramic CERDIP Dual In-line with Window (600 mil) (JW)

	Pa	ckage Group: (Ceramic CERDIP	Dual In-Line (C	DP)	
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	10°		0°	10°	
А	4.318	5.715		0.170	0.225	
A1	0.381	1.778		0.015	0.070	
A2	3.810	4.699		0.150	0.185	
A3	3.810	4.445		0.150	0.175	
В	0.355	0.585		0.014	0.023	
B1	1.270	1.651	Typical	0.050	0.065	Typical
С	0.203	0.381	Typical	0.008	0.015	Typical
D	51.435	52.705		2.025	2.075	
D1	48.260	48.260	Reference	1.900	1.900	Reference
E	15.240	15.875		0.600	0.625	
E1	12.954	15.240		0.510	0.600	
e1	2.540	2.540	Reference	0.100	0.100	Reference
eA	14.986	16.002	Typical	0.590	0.630	Typical
eB	15.240	18.034		0.600	0.710	
L	3.175	3.810		0.125	0.150	
Ν	40	40		40	40	
S	1.016	2.286		0.040	0.090	
S1	0.381	1.778		0.015	0.070	

22.8 44-Lead Plastic Surface Mount (MQFP 10x10 mm Body 1.6/0.15 mm Lead Form) (PQ)

		Packa	ge Group: Plastic	: MQFP		
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0 °	7°		0°	7 °	
А	2.000	2.350		0.078	0.093	
A1	0.050	0.250		0.002	0.010	
A2	1.950	2.100		0.768	0.083	
b	0.300	0.450	Typical	0.011	0.018	Typical
С	0.150	0.180		0.006	0.007	
D	12.950	13.450		0.510	0.530	
D1	9.900	10.100		0.390	0.398	
D3	8.000	8.000	Reference	0.315	0.315	Reference
E	12.950	13.450		0.510	0.530	
E1	9.900	10.100		0.390	0.398	
E3	8.000	8.000	Reference	0.315	0.315	Reference
е	0.800	0.800		0.031	0.032	
L	0.730	1.030		0.028	0.041	
Ν	44	44		44	44	
CP	0.102	-		0.004	_	

U

UA78, 83 Universal Synchronous Asynchronous Receiver Transmitter (USART)99 Update Address bit, UA78, 83 USART
Asynchronous Mode106
Asynchronous Receiver 108
Asynchronous Reception109
Asynchronous Transmission
Asynchronous Transmitter
Baud Rate Generator (BRG)101
Receive Block Diagram108
Sampling104
Synchronous Master Mode110
Synchronous Master Reception112
Synchronous Master Transmission
Synchronous Slave Mode114
Synchronous Slave Reception114
Synchronous Slave Transmit114
Transmit Block Diagram106
UV Erasable Devices7

W

W Register	
ALU	9
Wake-up from SLEEP	145
Watchdog Timer (WDT) 1	29, 133, 136, 144
WCOL	
WDT	
Block Diagram	144
Period	144
Programming Considerations	
Timeout	
Word	129
WR pin	54
Write Collision Detect bit, WCOL	

Х

XMIT_MODE	
7	

Z bit)
Zero	bit)

LIST OF EXAMPLES

Evernale 2.1	Instruction Dinaling Flow
Example 3-1:	Instruction Pipeline Flow17
Example 4-1:	Call of a Subroutine in Page 1
F 1 4 0	from Page 041
Example 4-2:	Indirect Addressing41
Example 5-1:	Initializing PORTA43
Example 5-2:	Initializing PORTB45
Example 5-3:	Initializing PORTC48
Example 5-4:	Read-Modify-Write Instructions
	on an I/O Port53
Example 7-1:	Changing Prescaler (Timer0→WDT)63
Example 7-2:	Changing Prescaler (WDT→Timer0)63
Example 8-1:	Reading a 16-bit Free-Running Timer67
Example 10-1:	Changing Between Capture
	Prescalers73
Example 10-2:	PWM Period and Duty Cycle
	Calculation75
Example 11-1:	Loading the SSPBUF (SSPSR)
•	Register
Example 11-2:	Loading the SSPBUF (SSPSR)
	Register (PIC16C76/77)85
Example 12-1:	Calculating Baud Rate Error101
Equation 13-1:	A/D Minimum Charging Time120
Example 13-1:	Calculating the Minimum Required
	Acquisition Time120
Example 13-2:	A/D Conversion122
Example 13-3:	4-bit vs. 8-bit Conversion Times
Example 14-1:	Saving STATUS, W, and PCLATH
	Registers in RAM143

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

RE: Reader Response From: Name Company
Company Address City / State / ZIP / Country Telephone: () FAX: () Application (optional): Would you like a reply?Y Mould you like a reply?Y Pevice: PIC16C6X Literature Number: DS30390E Questions: 1. What are the best features of this document?
Address City / State / ZIP / Country Telephone: () Telephone: () FAX: () Application (optional): Would you like a reply? Y Device: PIC16C6X Literature Number: DS30390E Questions: 1. What are the best features of this document?
City / State / ZIP / Country Telephone: () Telephone: () Application (optional): Would you like a reply? Y Device: PIC16C6X Literature Number: DS30390E Questions: 1. What are the best features of this document?
Telephone: ()
Application (optional): Would you like a reply?YN Device: PIC16C6X Literature Number: DS30390E Questions: 1. What are the best features of this document?
Would you like a reply? Y Device: PIC16C6X Questions: 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs?
Device: PIC16C6X Literature Number: DS30390E Questions:
Questions: 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs?
 What are the best features of this document? How does this document meet your hardware and software development needs?
2. How does this document meet your hardware and software development needs?
3. Do you find the organization of this data sheet easy to follow? If not, why?
3. Do you find the organization of this data sheet easy to follow? If not, why?
 Do you find the organization of this data sheet easy to follow? If not, why?
4. What additions to the data sheet do you think would enhance the structure and subject?
5. What deletions from the data sheet could be made without affecting the overall usefulness?
6. Is there any incorrect or misleading information (what and where)?
7. How would you improve this document?
8. How would you improve our software, systems, and silicon products?