

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc73a-04-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		PIC16C710	PIC16C71	PIC16C711	PIC16C715	PIC16C72	PIC16CR72 ⁽¹⁾
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	EPROM Program Memory (x14 words)	512	1K	1K	2К	2К	—
lemory	ROM Program Memory (14K words)	_	_	_	_	_	2К
	Data Memory (bytes)	36	36	68	128	128	128
	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
eripherals	Capture/Compare/ PWM Module(s)	—	_	—	—	1	1
	Serial Port(s) (SPI/I ² C, USART)	_	—	—	—	SPI/I ² C	SPI/I ² C
	Parallel Slave Port	_	—	—	_	_	—
	A/D Converter (8-bit) Channels	4	4	4	4	5	5
	Interrupt Sources	4	4	4	4	8	8
	I/O Pins	13	13	13	13	22	22
	Voltage Range (Volts)	3.0-6.0	3.0-6.0	3.0-6.0	3.0-5.5	2.5-6.0	3.0-5.5
atures	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	Yes	—	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC, SSOP

TABLE 1-1: PIC16C7XX FAMILY OF DEVCES

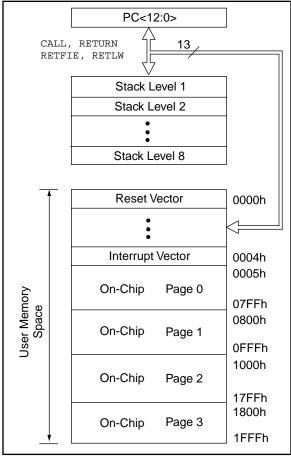
		PIC16C73A	PIC16C74A	PIC16C76	PIC16C77
Clock	Maximum Frequency of Oper- ation (MHz)	20	20	20	20
Memory	EPROM Program Memory (x14 words)	4K	4K	8K	8K
	Data Memory (bytes)	192	192	368	368
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/PWM Mod- ule(s)	2	2	2	2
	Serial Port(s) (SPI/I ² C, US- ART)	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART
	Parallel Slave Port	—	Yes	—	Yes
	A/D Converter (8-bit) Channels	5	8	5	8
	Interrupt Sources	11	12	11	12
	I/O Pins	22	33	22	33
	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
eatures	In-Circuit Serial Programming	Yes	Yes	Yes	Yes
	Brown-out Reset	Yes	Yes	Yes	Yes
	Packages	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C7XX Family devices use serial programming with clock pin RB6 and data pin RB7.

Note 1: Please contact your local Microchip sales office for availability of these devices.

TABLE 3-3: PIC16C74/74A/77 PINOUT DESCRIPTION (Cont.'d)

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
						PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	15	16	32	I/O	ST	RC0 can also be the Timer1 oscillator output or a Timer1 clock input.
RC1/T1OSI/CCP2	16	18	35	I/O	ST	RC1 can also be the Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output.
RC2/CCP1	17	19	36	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	18	20	37	I/O	ST	RC3 can also be the synchronous serial clock input/ output for both SPI and I ² C modes.
RC4/SDI/SDA	23	25	42	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2 C mode).
RC5/SDO	24	26	43	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK	25	27	44	I/O	ST	RC6 can also be the USART Asynchronous Transmit or Synchronous Clock.
RC7/RX/DT	26	29	1	I/O	ST	RC7 can also be the USART Asynchronous Receive or Synchronous Data.
						PORTD is a bi-directional I/O port or parallel slave port when interfacing to a microprocessor bus.
RD0/PSP0	19	21	38	I/O	ST/TTL ⁽³⁾	when interfacing to a microprocessor bus.
RD1/PSP1	20	21	39	1/0	ST/TTL ⁽³⁾	
RD2/PSP2	20	22	40	1/0	ST/TTL ⁽³⁾	
RD3/PSP3	22	23	41	1/0	ST/TTL ⁽³⁾	
RD4/PSP4	27	30	2	1/0	ST/TTL ⁽³⁾	
RD5/PSP5	28	31	3	1/0	ST/TTL ⁽³⁾	
RD6/PSP6	29	32	4	1/O	ST/TTL ⁽³⁾	
RD7/PSP7	30	33	5	1/0	ST/TTL ⁽³⁾	
				1/0	OI/ITE	PORTE is a bi-directional I/O port.
RE0/RD/AN5	8	9	25	I/O	ST/TTL ⁽³⁾	RE0 can also be read control for the parallel slave port, or analog input5.
RE1/WR/AN6	9	10	26	I/O	ST/TTL ⁽³⁾	RE1 can also be write control for the parallel slave port, or analog input6.
RE2/CS/AN7	10	11	27	I/O	ST/TTL ⁽³⁾	RE2 can also be select control for the parallel slave port, or analog input7.
Vss	12,31	13,34	6,29	Р		Ground reference for logic and I/O pins.
Vdd	11,32	12,35	7,28	Р	_	Positive supply for logic and I/O pins.
NC	—	1,17,28,	12,13,			These pins are not internally connected. These pins should
		40	33,34			be left unconnected.
Legend: I = input	0 = oi	•			put/output	P = power
		lot used			TL input	ST = Schmitt Trigger input external interrupt.


Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

This buffer is a Schmitt Trigger input when used in serial programming mode.
 This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel

Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

FIGURE 4-3: PIC16C76/77 PROGRAM MEMORY MAP AND STACK

4.2 Data Memory Organization

 Applicable Devices

 72
 73
 73
 74
 74
 76
 77

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1:RP0 (STATUS<6:5>)

- = 00 \rightarrow Bank0
- = 01 \rightarrow Bank1
- = $10 \rightarrow \text{Bank2}$
- = 11 \rightarrow Bank3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain special function registers. Some "high use" special function registers from one bank may be mirrored in another bank for code reduction and quicker access.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 4.5).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (2)
Bank 1											
80h ⁽⁴⁾	INDF	Addressing	this location	uses conter	nts of FSR to ac	dress data	memory (not	a physical re	egister)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽⁴⁾	PCL	Program Co	ounter's (PC)		0000 0000	0000 0000					
83h (4)	STATUS	IRP	RP1	С	0001 1xxx	000q quuu					
84h ⁽⁴⁾	FSR	Indirect data	a memory ac	dress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	_	_	PORTA Dat	ta Direction Re	gister				11 1111	11 1111
86h	TRISB	PORTB Dat	ta Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Dat	ta Direction I	Register						1111 1111	1111 1111
88h (5)	TRISD	PORTD Dat	ta Direction F	Register						1111 1111	1111 1111
89h (5)	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Dat	a Direction E	Bits	0000 -111	0000 -111
8Ah ^(1,4)	PCLATH	_	—	_	Write Buffer fo	or the upper	5 bits of the l	Program Cou	Inter	0 0000	0 0000
8Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	_	_	—	_	_	—	—	CCP2IE	0	0
8Eh	PCON	_	_	_	_	_	_	POR	BOR	dd	uu
8Fh	_	Unimpleme	nted	•		•		•	•	_	_
90h	_	Unimpleme	nted							_	_
91h	_	Unimpleme	nted							-	_
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Por	t (I ² C mode)	Address Regis	ter				0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000
95h	_	Unimpleme	nted	•					•	_	_
96h	_	Unimpleme	nted							_	_
97h	_	Unimpleme	nted							_	_
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generator R	egister						0000 0000	0000 0000
9Ah	_	Unimpleme	nted							_	_
9Bh	_	Unimpleme	nted							_	_
9Ch	_	Unimpleme	nted							_	_
9Dh	-	Unimpleme	nted							_	—
9Eh	-	Unimpleme	nted							-	—
9Fh	ADCON1	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	000

TABLE 4-3: PIC16C76/77 SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the PIC16C76, always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD and PORTE are not physically implemented on the PIC16C76, read as '0'.

FIGURE 4-11: PIE1 REGISTER PIC16C73/73A/74/74A/76/77 (ADDRESS 8Ch)

PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	R	= Readable bit
bit7	1						bit0	U	 Writable bit Unimplemented bit, read as '0' Value at POR reset
bit 7:	1 = Enabl	Parallel S es the PS les the PS	P read/wr	te interrup		Enable bit			
bit 6:	1 = Enabl	D Converte les the A/E les the A/I) interrupt		it				
bit 5:	1 = Enabl	ART Rece es the US les the US	ART recei	ve interrup	ot				
bit 4:	1 = Enabl	ART Trans es the US les the US	ART trans	mit interru	ıpt				
bit 3:	1 = Enabl	ynchronou es the SS les the SS	P interrup	t	pt Enable b	bit			
bit 2:	1 = Enabl	CCP1 Inte es the CC les the CC	P1 interru	pt					
bit 1:	1 = Enabl	TMR2 to F es the TM les the TM	R2 to PR2	2 match in	•				
bit 0:	1 = Enabl	TMR1 Ove es the TM les the TM	R1 overflo	w interrup	ot				
Note 1:	PIC16C73					Slave Port i	mplemente	ed, tl	his bit location is reserved

6.0 OVERVIEW OF TIMER MODULES

Applicable Devices

The PIC16C72, PIC16C73/73A, PIC16C74/74A, PIC16C76/77 each have three timer modules.

Each module can generate an interrupt to indicate that an event has occurred (i.e. timer overflow). Each of these modules is explained in full detail in the following sections. The timer modules are:

- Timer0 Module (Section 7.0)
- Timer1 Module (Section 8.0)
- Timer2 Module (Section 9.0)

6.1 <u>Timer0 Overview</u> Applicable Devices 72|73|73A|74|74A|76|77

The Timer0 module is a simple 8-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock. When the clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

The Timer0 module also has a programmable prescaler option. This prescaler can be assigned to either the Timer0 module or the Watchdog Timer. Bit PSA (OPTION<3>) assigns the prescaler, and bits PS2:PS0 (OPTION<2:0>) determine the prescaler value. Timer0 can increment at the following rates: 1:1 (when prescaler assigned to Watchdog timer), 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, and 1:256 (Timer0 only).

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

6.2 <u>Timer1 Overview</u> Applicable Devices 72 73 73 74 74 76 77

Timer1 is a 16-bit timer/counter. The clock source can be either the internal system clock (Fosc/4), an external clock, or an external crystal. Timer1 can operate as either a timer or a counter. When operating as a counter (external clock source), the counter can either operate synchronized to the device or asynchronously to the device. Asynchronous operation allows Timer1 to operate during sleep, which is useful for applications that require a real-time clock as well as the power savings of SLEEP mode.

Timer1 also has a prescaler option which allows Timer1 to increment at the following rates: 1:1, 1:2, 1:4, and 1:8. Timer1 can be used in conjunction with the Capture/Compare/PWM module. When used with a CCP module, Timer1 is the time-base for 16-bit Capture or the 16-bit Compare and must be synchronized to the device.

6.3 <u>Timer2 Overview</u> Applicable Devices

				evic		_
72	73	73A	74	74A	76	77

Timer2 is an 8-bit timer with a programmable prescaler and postscaler, as well as an 8-bit period register (PR2). Timer2 can be used with the CCP1 module (in PWM mode) as well as the Baud Rate Generator for the Synchronous Serial Port (SSP). The prescaler option allows Timer2 to increment at the following rates: 1:1, 1:4, 1:16.

The postscaler allows the TMR2 register to match the period register (PR2) a programmable number of times before generating an interrupt. The postscaler can be programmed from 1:1 to 1:16 (inclusive).

6.4 <u>CCP Overview</u>

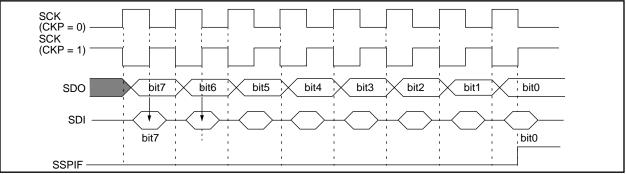
 Applicable Devices

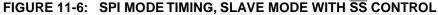
 72
 73
 73
 74
 74
 76
 77

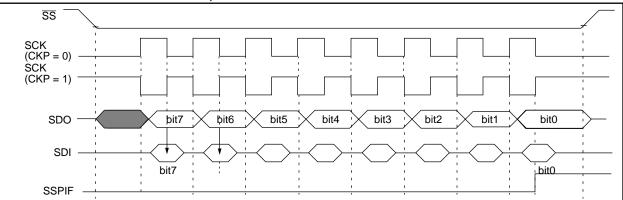
The CCP module(s) can operate in one of these three modes: 16-bit capture, 16-bit compare, or up to 10-bit Pulse Width Modulation (PWM).

Capture mode captures the 16-bit value of TMR1 into the CCPRxH:CCPRxL register pair. The capture event can be programmed for either the falling edge, rising edge, fourth rising edge, or the sixteenth rising edge of the CCPx pin.

Compare mode compares the TMR1H:TMR1L register pair to the CCPRxH:CCPRxL register pair. When a match occurs an interrupt can be generated, and the output pin CCPx can be forced to given state (High or Low), TMR1 can be reset (CCP1), or TMR1 reset and start A/D conversion (CCP2). This depends on the control bits CCPxM3:CCPxM0.


PWM mode compares the TMR2 register to a 10-bit duty cycle register (CCPRxH:CCPRxL<5:4>) as well as to an 8-bit period register (PR2). When the TMR2 register = Duty Cycle register, the CCPx pin will be forced low. When TMR2 = PR2, TMR2 is cleared to 00h, an interrupt can be generated, and the CCPx pin (if an output) will be forced high.


The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set the for synchronous slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. If the \overline{SS} pin is taken low without resetting SPI mode, the transmission will continue from the


point at which it was taken high. External pull-up/ pull-down resistors may be desirable, depending on the application.

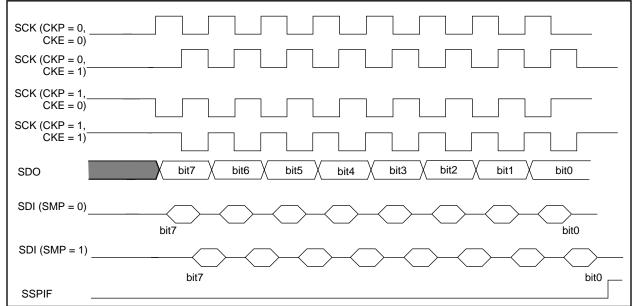
To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

	TABLE 11-1:	REGISTERS ASSOCIATED WITH SPI OPERATION
--	--------------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POF BOF	٦,	all o	e on ther ets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 0	200x	0000	000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0	0000	0000	0000
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0	0000	0000	0000
87h	TRISC	PORTC Da	ta Directio	on Registe	er					1111 1	1111	1111	1111
13h	SSPBUF	Synchronou	us Serial I	Port Rece	ive Buffer	/Transmit	Register			XXXX X	xxxx	uuuu	uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0	0000	0000	0000
85h	TRISA	_	_	PORTA I	PORTA Data Direction Register							11	1111
94h	SSPSTAT	—	—	D/Ā	Р	S	R/W	UA	BF	00 C	0000	00	0000

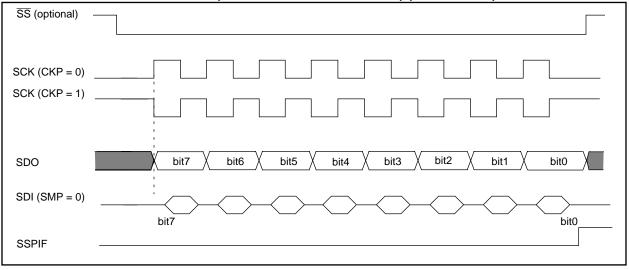
Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.


2: The PIC16C72 does not have a Parallel Slave Port or USART, these bits are unimplemented, read as '0'.

The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set for the synchronous slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. If the \overline{SS} pin is taken low without resetting SPI mode, the transmission will continue from the point at which it was taken high. External pull-up/ pull-down resistors may be desirable, depending on the application.

Note:	When the SPI is in Slave Mode with \overline{SS} pin control enabled, (SSPCON<3:0> = 0100) the SPI module will reset if the \overline{SS} pin is set to VDD.
Note:	If the SPI is used in Slave Mode with


CKE = '1', then the SS pin control must be enabled. To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as

be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 11-11: SPI MODE TIMING, MASTER MODE (PIC16C76/77)

FIGURE 11-12: SPI MODE TIMING (SLAVE MODE WITH CKE = 0) (PIC16C76/77)

TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	0000 0000	0000 0000							

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Re	eceive Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat	or Regis		0000 0000	0000 0000				

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Dh	PIR2	—	—	—	—	_	—	—	CCP2IF	0	0
8Dh	PIE2	_	_	_	—	_	—	—	CCP2IE	0	0
1Eh	ADRES	A/D Resu	It Registe	er						xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	—	_	_	—	_	PCFG2	PCFG1	PCFG0	000	000
05h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	Ou 0000
85h	TRISA	_	_	PORTA I	Data Directior	Register	•			11 1111	11 1111
09h	PORTE	—		—	—	—	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Dat	a Directior	n Bits	0000 -111	0000 -111

TABLE 13-3: \$	SUMMARY OF A/D REGISTERS, PIC16C73/73A/74/74A/76/77	
----------------	---	--

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC6C73/73A/76, always maintain these bits clear.

14.0 SPECIAL FEATURES OF THE CPU Applicable Devices

72 73 73A 74 74A 76 77

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- · Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- · In-circuit serial programming

The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

14.1 Configuration Bits

Applicable Devices

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

FIGURE 14-1: CONFIGURATION WORD FOR PIC16C73/74

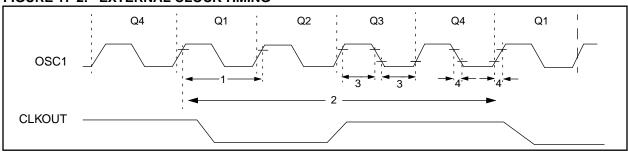
		—	—	—		_	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13												bit0	Address	2007h
bit 13-5:	Unimple	mented	I: Read	as '1'										
bit 4:	CP1:CP0 11 = Coo 10 = Upp 01 = Upp 00 = All r	le prote per half per 3/4th	ction of of progin of prog	f ram me gram m	emory	•		d						
bit 3:	PWRTE : 1 = Powe 0 = Powe	r-up Tin	ner ena	bled	le bit									
bit 2:	WDTE : W 1 = WDT 0 = WDT	enable	d	r Enable	e bit									
bit 1-0:	FOSC1:F 11 = RC 10 = HS 01 = XT 00 = LP 0	oscillato oscillato oscillato	or or or	tor Sele	ection b	vits								

PIC16C7X

Register		Applicable Devices						Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
SSPADD	72	73	73A	74	74A	76	77	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	72	73	73A	74	74A	76	77	00 0000	00 0000	uu uuuu
TXSTA	72	73	73A	74	74A	76	77	0000 -010	0000 -010	uuuu -uuu
SPBRG	72	73	73A	74	74A	76	77	0000 0000	0000 0000	uuuu uuuu
ADCON1	72	73	73A	74	74A	76	77	000	000	uuu

TABLE 14-8: INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.'d)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).


2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 14-7 for reset value for specific condition.

GOTO	Uncondit	tional Br	anch			INCF	Increment	tf		
Syntax:	[label]	GOTO	k			Syntax:	[label]	NCF f	,d	
Operands:	$0 \le k \le 20$)47				Operands:	$0 \le f \le 127$,		
Operation:	$k \rightarrow PC < 2$	10:0>					d ∈ [0,1]			
	PCLATH<	<4:3> → I	PC<12:11	>		Operation:	(f) + 1 \rightarrow (c	destina	tion)	
Status Affected:	None					Status Affected:	Z			
Encoding:	10	1kkk	kkkk	kkkk]	Encoding:	00	1010	dfff	ffff
Description:	GOTO is an eleven bit i into PC bit PC are loa GOTO is a f	mmediate s <10:0>. ded from	value is lo The upper PCLATH<4	baded bits of 4:3>.	-	Description:	The content mented. If 'd the W regist placed back	d' is 0 the ter. If 'd' i	e result is is 1 the re	placed in
Words:	1					Words:	1			
Cycles:	2					Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4		Q Cycle Activity:	Q1	Q2	Q3	Q4
1st Cycle	Decode	Read literal 'k'	Process data	Write to PC			Decode	Read register 'f'	Process data	Write to destination
2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation						
						Example	INCF	CNT,		
Example	GOTO TH	IERE					Before Inst			-
	After Insti	ruction					7	NT	= 0xF = 0	F
	I	PC = Address THERE		THERE			After Instru		- 0	
								NT	= 0x0	D
							Z		= 1	

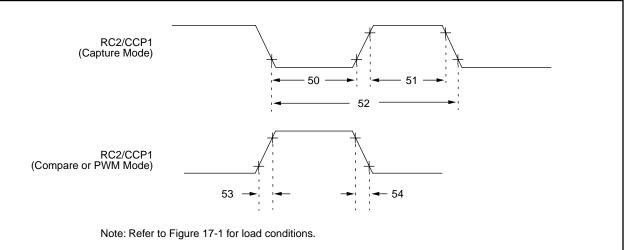
Applicable Devices 72 73 73A 74 74A 76 77

17.5 <u>Timing Diagrams and Specifications</u>

FIGURE 17-2: EXTERNAL CLOCK TIMING

TABLE 17-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			100	—	_	ns	HS osc mode (-10)
			50	—	—	ns	HS osc mode (-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250		—	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			100	_	250	ns	HS osc mode (-10)
			50	—	250	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	—	DC	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1) High or	100	_	_	ns	XT oscillator
	TosH	Low Time	2.5	—	_	μs	LP oscillator
			15			ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	—		25	ns	XT oscillator
	TosF	Fall Time		_	50	ns	LP oscillator
				_	15	ns	HS oscillator

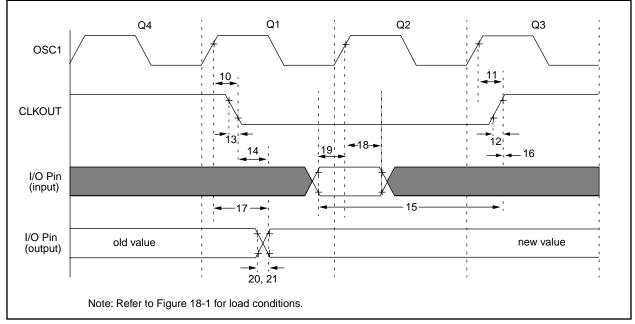

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77

TABLE 17-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)


Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 input low time	No Prescaler		0.5Tcy + 20	—		ns	
			With Prescaler PIC16C		10	—	_	ns	
			PIC16 LC 72		20	—	_	ns	
51*	TccH	CCP1 input high time	No Prescaler	•	0.5Tcy + 20	—	—	ns	
			With Prescaler PIC16C		10	—	_	ns	
				PIC16 LC 72	20	—	_	ns	
52*	TccP	CCP1 input period			<u>3Tcy + 40</u> N	—	—	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 output rise time		PIC16 C 72	_	10	25	ns	
				PIC16 LC 72	—	25	45	ns	
54*	TccF	CCP1 output fall time		PIC16 C 72	_	10	25	ns	
				PIC16 LC 72	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 18-3: CLKOUT AND I/O TIMING

TABLE 18-3: CLKOUT AND I/O TIMING REQUIREMENTS
--

Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 [↑] to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		—	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time	T fall time			100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out vali	d	_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOU	דע ↑	0.25Tcy + 25	_	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	· ↑	0	_	-	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		-	50	150	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to	PIC16 C 73/74	100	-		ns	
		Port input invalid (I/O in hold time)	PIC16 LC 73/74	200	_	_	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	0			ns	
20*	TioR	Port output rise time	PIC16 C 73/74	—	10	25	ns	
			PIC16 LC 73/74	—	_	60	ns	
21*	TioF	Port output fall time	PIC16 C 73/74	_	10	25	ns	
			PIC16 LC 73/74	—	_	60	ns	
22††*	Tinp	INT pin high or low time	pin high or low time			_	ns	
23††*	Trbp	RB7:RB4 change INT high	RB7:RB4 change INT high or low time			_	ns	

* These parameters are characterized but not tested.

†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

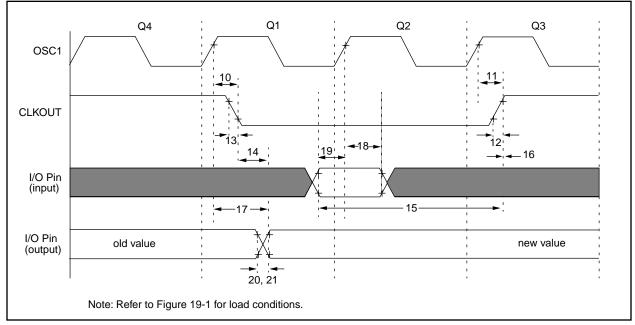
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 72 73 73A 74 74A 76 77

		Standa	rd Opera	ting	Conditio	ons (un	less otherwise stated)		
			ing tempe	-		•	\leq TA \leq +125°C for extended,		
	ARACTERISTICS	-			-40)°C ≤	\leq TA \leq +85°C for industrial and		
	ARACTERISTICS				0°0	2 ≤	\leq TA \leq +70°C for commercial		
		Operati	ing voltage	e Vdi	D range a	as desc	ribed in DC spec Section 19.1 and		
		Section 19.2.							
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions		
No.				†					
	Output High Voltage								
D090	I/O ports (Note 3)	Voн	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С		
D090A			Vdd - 0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С		
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С		
D092A			Vdd - 0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С		
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin		
	Capacitive Loading Specs on Output Pins								
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when exter nal clock is used to drive OSC1.		
D101	All I/O pins and OSC2 (in RC	Сю	-	-	50	pF			
D102	mode) SCL, SDA in I ² C mode	Св	-	-	400	pF			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 72 73 73A 74 74A 76 77

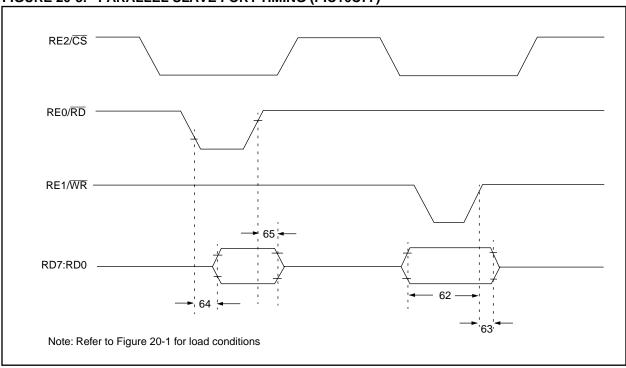
FIGURE 19-3: CLKOUT AND I/O TIMING

TABLE 19-3: CLKOUT AND I/O TIMING REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1 [↑] to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		—	35	100	ns	Note 1
13*	TckF	CLKOUT fall time	—	35	100	ns	Note 1	
14*	TckL2ioV	CLKOUT \downarrow to Port out valid	_	—	0.5Tcy + 20	ns	Note 1	
15*	TioV2ckH	Port in valid before CLKOU	Tosc + 200	—	_	ns	Note 1	
16*	TckH2iol	Port in hold after CLKOUT	0	-	—	ns	Note 1	
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid	-	50	150	ns		
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to	PIC16 C 73A/74A	100	-	—	ns	
		Port input invalid (I/O in hold time)	PIC16 LC 73A/74A	200	—	—	ns	
19*	TioV2osH	Port input valid to OSC1 [↑]	(I/O in setup time)	0	_	—	ns	
20*	TioR	Port output rise time	PIC16 C 73A/74A	_	10	40	ns	
			PIC16 LC 73A/74A	—	—	80	ns	
21*	TioF	Port output fall time	PIC16 C 73A/74A	—	10	40	ns	
		PIC16 LC 73A/74A		_	—	80	ns	
22††*	Tinp	INT pin high or low time	Тсү	—	—	ns		
23††*	Trbp	RB7:RB4 change INT high	or low time	Тсү	_	—	ns	

* These parameters are characterized but not tested.

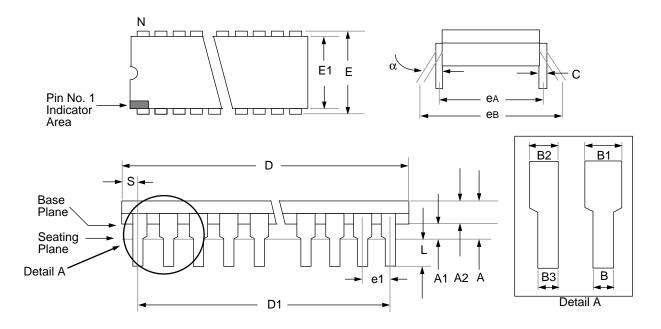
†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77


TABLE 20-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C77)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
62	TdtV2wrH	Data in valid before $\overline{WR}\uparrow$ or $\overline{CS}\uparrow$ (setup tir	ata in valid before \overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} (setup time)				ns ns	Extended Range Only
63*	TwrH2dtl	\overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} to data–in invalid (hold time)	PIC16 C 77	20	—	—	ns	
			PIC16 LC 77	35	—	—	ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid	$\overline{\text{CS}}\downarrow$ to data–out valid			80 90	ns ns	Extended Range Only
65	TrdH2dtl	\overline{RD}^{\uparrow} or $\overline{CS}^{\downarrow}$ to data–out invalid	$\overline{\text{CS}}\downarrow$ to data–out invalid			30	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

22.3 28-Lead Plastic Dual In-line (300 mil) (SP)

Package Group: Plastic Dual In-Line (PLA)						
Symbol	Millimeters			Inches		
	Min	Мах	Notes	Min	Max	Notes
α	0°	10°		0 °	10°	
Α	3.632	4.572		0.143	0.180	
A1	0.381	_		0.015	_	
A2	3.175	3.556		0.125	0.140	
В	0.406	0.559		0.016	0.022	
B1	1.016	1.651	Typical	0.040	0.065	Typical
B2	0.762	1.016	4 places	0.030	0.040	4 places
B3	0.203	0.508	4 places	0.008	0.020	4 places
С	0.203	0.331	Typical	0.008	0.013	Typical
D	34.163	35.179		1.385	1.395	
D1	33.020	33.020	Reference	1.300	1.300	Reference
E	7.874	8.382		0.310	0.330	
E1	7.112	7.493		0.280	0.295	
e1	2.540	2.540	Typical	0.100	0.100	Typical
eA	7.874	7.874	Reference	0.310	0.310	Reference
eB	8.128	9.652		0.320	0.380	
L	3.175	3.683		0.125	0.145	
Ν	28	-		28	-	
S	0.584	1.220		0.023	0.048	