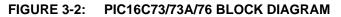
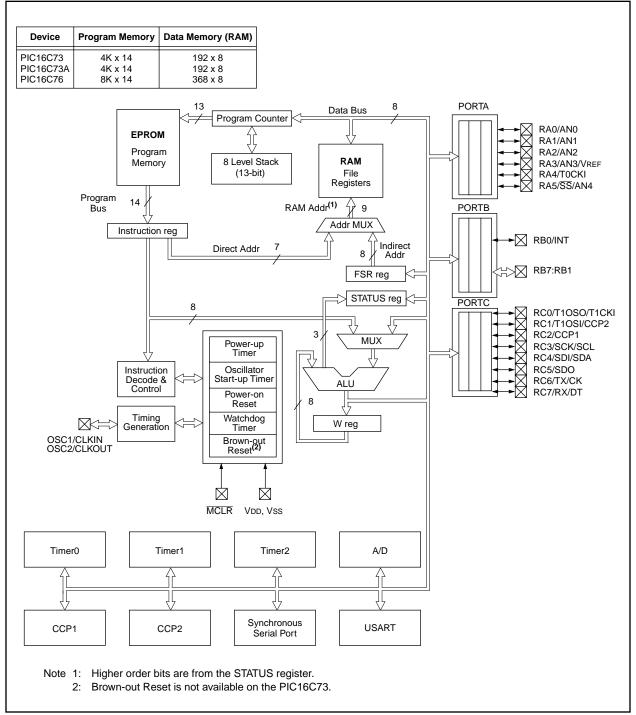


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc73a-04i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	l/O/P Type	Buffer Type	Description
OSC1/CLKIN	13	14	30	I	ST/CMOS ⁽⁴⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	14	15	31	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	2	18	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19	I/O	TTL	RA0 can also be analog input0
RA1/AN1	3	4	20	I/O	TTL	RA1 can also be analog input1
RA2/AN2	4	5	21	I/O	TTL	RA2 can also be analog input2
RA3/AN3/Vref	5	6	22	I/O	TTL	RA3 can also be analog input3 or analog reference voltage
RA4/T0CKI	6	7	23	I/O	ST	RA4 can also be the clock input to the Timer0 timer/ counter. Output is open drain type.
RA5/ SS /AN4	7	8	24	I/O	TTL	RA5 can also be analog input4 or the slave select for the synchronous serial port.
						PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	33	36	8	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	34	37	9	I/O	TTL	
RB2	35	38	10	I/O	TTL	
RB3	36	39	11	I/O	TTL	
RB4	37	41	14	I/O	TTL	Interrupt on change pin.
RB5	38	42	15	I/O	TTL	Interrupt on change pin.
RB6	39	43	16	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	40	44	17	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
Legend: I = input	0 = 0	utput lot used			put/output	P = power ST = Schmitt Trigger input

TABLE 3-3: PIC16C/4//4A/// PINOUT DESCRIPTION	TABLE 3-3:	PIC16C74/74A/77 PINOUT DESCRIPTION
---	------------	------------------------------------

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

IABLE	4-Z .		3// 3A// 4	114A SP	ECIAL FU	INC HOIN	REGISI	ER SUN		(Cont.a)	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (2)
Bank 1		•		·						-	
80h ⁽⁴⁾	INDF	Addressing	this location	uses conter	nts of FSR to ac	dress data i	memory (not	a physical re	egister)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽⁴⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte	•	•			0000 0000	0000 0000
83h ⁽⁴⁾	STATUS	IRP(7)	RP1 ⁽⁷⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽⁴⁾	FSR	Indirect data	a memory ad	ldress pointe	er					XXXX XXXX	uuuu uuuu
85h	TRISA	—	—	PORTA Dat	ta Direction Re	gister				11 1111	11 1111
86h	TRISB	PORTB Dat	a Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Dat	ta Direction F	Register						1111 1111	1111 1111
88h (5)	TRISD	PORTD Dat	ta Direction F	Register						1111 1111	1111 1111
89h (5)	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Da	ta Direction E	Bits	0000 -111	0000 -111
8Ah ^(1,4)	PCLATH	—	—	—	Write Buffer fo	or the upper	5 bits of the	Program Cou	unter	0 0000	0 0000
8Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	—	—	—	—	—	—	—	CCP2IE	0	0
8Eh	PCON	—	—	—	-	—	_	POR	BOR(6)	dd	uu
8Fh	—	Unimpleme	nted							-	—
90h	—	Unimpleme	nted							-	—
91h	_	Unimpleme	nted							—	—
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	is Serial Port	(I ² C mode)	Address Regis	ter				0000 0000	0000 0000
94h	SSPSTAT	—	—	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
95h	—	Unimpleme	nted	•						-	_
96h	—	Unimpleme	nted							-	—
97h	—	Unimpleme	nted							-	-
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generator Re	egister						0000 0000	0000 0000
9Ah	_	Unimpleme	nted							-	_
9Bh	—	Unimpleme	nted							-	-
9Ch	_	Unimpleme	nted								_
9Dh	—	Unimpleme	nted							_	_
9Eh	—	Unimpleme	nted							-	_
9Fh	ADCON1	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	000

TABLE 4-2: PIC16C73/73A/74/74A SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.

- 4: These registers can be addressed from either bank.
- 5: PORTD and PORTE are not physically implemented on the PIC16C73/73A, read as '0'.
- 6: Brown-out Reset is not implemented on the PIC16C73 or the PIC16C74, read as '0'.

7: The IRP and RP1 bits are reserved on the PIC16C73/73A/74/74A, always maintain these bits clear.

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input
RA1/AN1	bit1	TTL	Input/output or analog input
RA2/AN2	bit2	TTL	Input/output or analog input
RA3/AN3/VREF	bit3	TTL	Input/output or analog input or VREF
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0
			Output is open drain type
RA5/SS/AN4	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	—	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	—	—	PORTA Dat	PORTA Data Direction Register					11 1111	11 1111
9Fh	ADCON1	—		—	_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

5.6 <u>I/O Programming Considerations</u> Applicable Devices 72 73 73A 74 74A 76 77

5.6.1 BI-DIRECTIONAL I/O PORTS

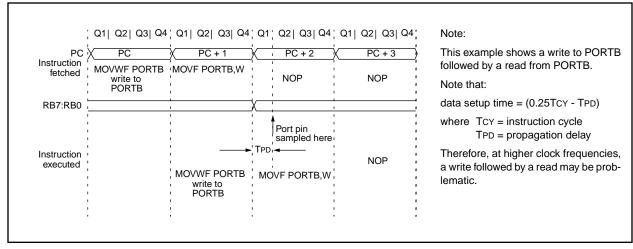
Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched to an output, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-4 shows the effect of two sequential readmodify-write instructions on an I/O port.

EXAMPLE 5-4: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs
; PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
;not connected to other circuitry


i								
;					PORT	latch	PORT pins	
;								
	BCF	PORTB,	7	;	01pp	pppp	11pp pppp	
	BCF	PORTB,	6	;	10pp	pppp	llpp pppp	
	BSF	STATUS,	RP0	;				
	BCF	TRISB,	7	;	10pp	pppp	11pp pppp	
	BCF	TRISB,	6	;	10pp	pppp	10pp pppp	
;								

;Note that the user may have expected the ;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

5.6.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-10). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/ O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

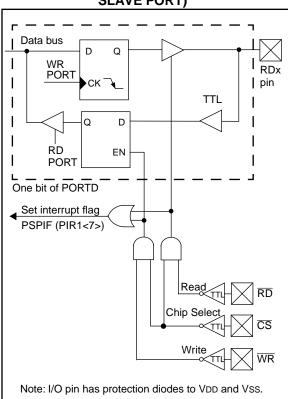
FIGURE 5-10: SUCCESSIVE I/O OPERATION

5.7 Parallel Slave Port Applicable Devices 72 73 73 74 74 76 77

PORTD operates as an 8-bit wide Parallel Slave Port, or microprocessor port when control bit PSPMODE (TRISE<4>) is set. In slave mode it is asynchronously readable and writable by the external world through \overline{RD} control input pin RE0/ \overline{RD} /AN5 and \overline{WR} control input pin RE1/ \overline{WR} /AN6.

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD/AN5 to be the RD input, RE1/ WR/AN6 to be the WR input and RE2/CS/AN7 to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set) and the A/D port configuration bits PCFG2:PCFG0 (ADCON1<2:0>) must be set, which will configure pins RE2:RE0 as digital I/O.

There are actually two 8-bit latches, one for data-out (from the PIC16/17) and one for data input. The user writes 8-bit data to PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored, since the microprocessor is controlling the direction of data flow.


A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. When either the \overline{CS} or \overline{WR} lines become high (level triggered), then the Input Buffer Full status flag bit IBF (TRISE<7>) is set on the Q4 clock cycle, following the next Q2 cycle, to signal the write is complete (Figure 5-12). The interrupt flag bit PSPIF (PIR1<7>) is also set on the same Q4 clock cycle. IBF can only be cleared by reading the PORTD input latch. The input Buffer Overflow status flag bit IBOV (TRISE<5>) is set if a second write to the Parallel Slave Port is attempted when the previous byte has not been read out of the buffer.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The Output Buffer Full status flag bit OBF (TRISE<6>) is cleared immediately (Figure 5-13) indicating that the PORTD latch is waiting to be read by the external bus. When either the \overline{CS} or \overline{RD} pin becomes high (level triggered), the interrupt flag bit PSPIF is set on the Q4 clock cycle, following the next Q2 cycle, indicating that the read is complete. OBF remains low until data is written to PORTD by the user firmware.

When not in Parallel Slave Port mode, the IBF and OBF bits are held clear. However, if flag bit IBOV was previously set, it must be cleared in firmware.

An interrupt is generated and latched into flag bit PSPIF when a read or write operation is completed. PSPIF must be cleared by the user in firmware and the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

FIGURE 5-11: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

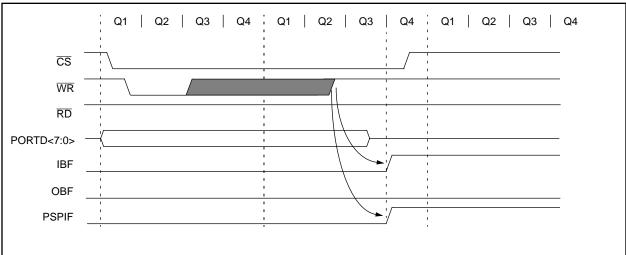
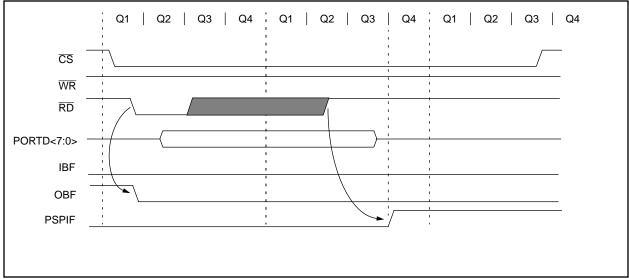



FIGURE 5-12: PARALLEL SLAVE PORT WRITE WAVEFORMS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	Port dat	a latch	when w	ritten: Port pi	ns when	read			xxxx xxxx	uuuu uuuu
09h	PORTE	_	—	_	_	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Da	ata Directior	n Bits	0000 -111	0000 -111
0Ch	PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
9Fh	ADCON1	—	—		—	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Parallel Slave Port.

8.3 <u>Timer1 Operation in Asynchronous</u> <u>Counter Mode</u> Applicable Devices 72 73 73A 74 74A 76 77

If control bit T1SYNC (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt on overflow which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 8.3.2).

In asynchronous counter mode, Timer1 can not be used as a time-base for capture or compare operations.

8.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit T1SYNC is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high time and low time requirements. Refer to the appropriate Electrical Specifications Section, timing parameters 45, 46, and 47.

8.3.2 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running, from an external asynchronous clock, will guarantee a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 8-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

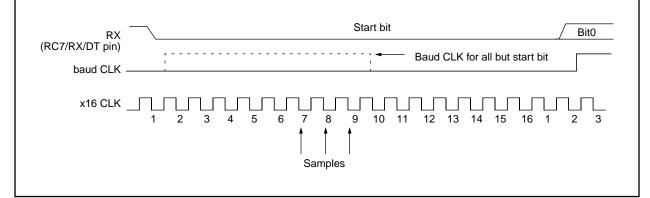
EXAMPLE 8-1: READING A 16-BIT FREE-RUNNING TIMER

```
; All interrupts are disabled
  MOVE
         TMR1H, W ;Read high byte
  MOVWF TMPH
                   ;
         TMR1L, W ;Read low byte
  MOVF
  MOVWE TMPL
                   ;
  MOVF
         TMR1H, W ;Read high byte
         TMPH, W ;Sub 1st read
  SUBWF
                   ; with 2nd read
  BTFSC STATUS,Z ;Is result = 0
         CONTINUE ;Good 16-bit read
  GOTO
;
; TMR1L may have rolled over between the read
 of the high and low bytes. Reading the high
;
 and low bytes now will read a good value.
  MOVF
         TMR1H, W ;Read high byte
  MOVWF
         TMPH
         TMR1L, W ;Read low byte
  MOVE
  MOVWE TMPL
                   ;
; Re-enable the Interrupt (if required)
                   ;Continue with your code
CONTINUE
```

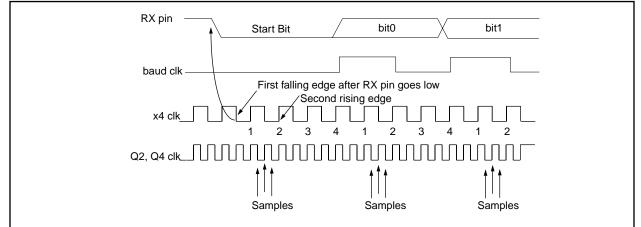
8.4 <u>Timer1 Oscillator</u> Applicable Devices 72 73 73 74 74 76 77

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 8-1 shows the capacitor selection for the Timer1 oscillator.

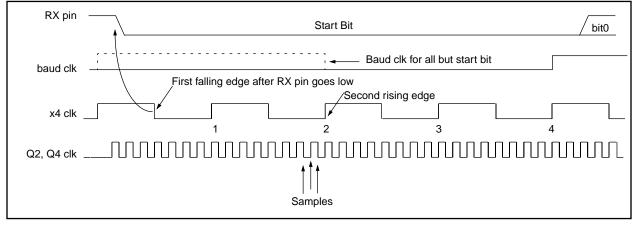
The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.


TABLE 8-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

Osc Type	pe Freq C1 C2						
LP	32 kHz 33 pF 33 pF						
	100 kHz	15 pF	15 pF				
	200 kHz 15 pF 15 pF						
These v	alues are for o	design guidan	ce only.				
Crystals Tes	ted:						
32.768 kHz	32.768 kHz Epson C-001R32.768K-A ± 20 PP						
100 kHz	Hz Epson C-2 100.00 KC-P ± 20 PPM						
200 kHz	kHz STD XTL 200.000 kHz ± 20 PPN						
of o time 2: Sind cha reso	lote 1: Higher capacitance increases the stability of oscillator but also increases the start-up time.						


12.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin. If bit BRGH (TXSTA<2>) is clear (i.e., at the low baud rates), the sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 12-3). If bit BRGH is set (i.e., at the high baud rates), the sampling is done on the 3 clock edges preceding the second rising edge after the first falling edge of a x4 clock (Figure 12-4 and Figure 12-5).


FIGURE 12-3: RX PIN SAMPLING SCHEME. BRGH = 0 (PIC16C73/73A/74/74A)

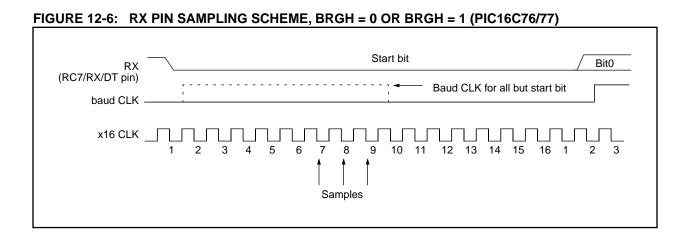


FIGURE 12-4: RX PIN SAMPLING SCHEME, BRGH = 1 (PIC16C73/73A/74/74A)

13.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

Applicable Devices

The analog-to-digital (A/D) converter module has five inputs for the PIC16C72/73/73A/76, and eight for the PIC16C74/74A/77.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin. The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Figure 13-1, controls the operation of the A/D module. The ADCON1 register, shown in Figure 13-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	R = Readable bit
bit7	bito bito visual construction c							
bit 7-6:	t 7-6: ADCS1:ADCS0: A/D Conversion Clock Select bits 00 = Fosc/2 01 = Fosc/8 10 = Fosc/32 11 = FRC (clock derived from an internal RC oscillator)							
bit 5-3:	bit 5-3: CHS2:CHS0 : Analog Channel Select bits 000 = channel 0, (RA0/AN0) 001 = channel 1, (RA1/AN1) 010 = channel 2, (RA2/AN2) 011 = channel 3, (RA3/AN3) 100 = channel 4, (RA5/AN4) $101 = channel 5, (RE0/AN5)^{(1)}$ $110 = channel 6, (RE1/AN6)^{(1)}$ $111 = channel 7, (RE2/AN7)^{(1)}$							
bit 2:	GO/DON	E: A/D Co	nversion S	Status bit				
	<u>If ADON = 1</u> 1 = A/D conversion in progress (setting this bit starts the A/D conversion) 0 = A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conversion is complete)							
bit 1:	Unimpler	nented: F	Read as '0	,				
bit 0:	 t 0: ADON: A/D On bit 1 = A/D converter module is operating 0 = A/D converter module is shutoff and consumes no operating current 							
Note 1: A/D channels 5, 6, and 7 are implemented on the PIC16C74/74A/77 only.								

FIGURE 13-1: ADCON0 REGISTER (ADDRESS 1Fh)

14.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 14.8 for details on SLEEP mode.

14.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 7.0)

14.5.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 5.2)

Note:	For the PIC16C73/74, if a change on the
	I/O pin should occur when the read opera-
	tion is being executed (start of the Q2
	cycle), then the RBIF interrupt flag may not
	get set.

14.6 <u>Context Saving During Interrupts</u> Applicable Devices

72 73 73A 74 74A 76 77

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 14-1 stores and restores the STATUS, W, and PCLATH registers. The register, W_TEMP, must be defined in each bank and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Stores the PCLATH register.
- d) Executes the ISR code.
- e) Restores the STATUS register (and bank select bit).
- f) Restores the W and PCLATH registers.

EXAMPLE 14-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

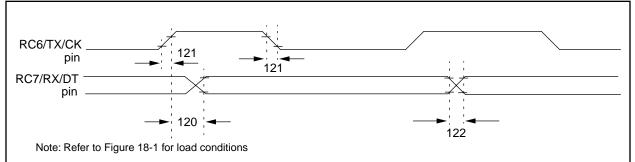
MOVWF SWAPF CLRF	W_TEMP STATUS,W STATUS	;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W ;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
MOVF	PCLATH, W	;Only required if using pages 1, 2 and/or 3
MOVWF	PCLATH_TEMP	;Save PCLATH into W
CLRF	PCLATH	;Page zero, regardless of current page
BCF	STATUS, IRP	;Return to Bank 0
MOVF	FSR, W	;Copy FSR to W
MOVWF	FSR_TEMP	;Copy FSR from W to FSR_TEMP
:		
:(ISR)		
:		
MOVF	PCLATH_TEMP, W	;Restore PCLATH
MOVWF	PCLATH	;Move W into PCLATH
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

15.1 Instruction Descriptions

ADDLW	Add Lite	ral and	N						
Syntax:	[<i>label</i>] Al	DDLW	k						
Operands:	$0 \le k \le 2k$	55							
Operation:	(W) + k –	$(W) + k \to (W)$							
Status Affected:	C, DC, Z								
Encoding:	11	111x	kkkk	kkkk					
Description:	added to t	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.							
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read literal 'k'	Process data	Write to W					
Example:	ADDLW	0x15							
	Before In	struction	1						
		= W	0x10						
	After Inst		005						
		W =	0x25						
ADDWF	Add W a	nd f							
Syntax:	[<i>label</i>] A	DDWF	f,d						
Operands:	$0 \le f \le 12$	27							

ANDLW	AND Lite	eral with	w	
Syntax:	[<i>label</i>] A	NDLW	k	
Operands:	$0 \le k \le 2$	55		
Operation:	(W) .AND	D. (k) \rightarrow (W)	
Status Affected:	Z			
Encoding:	11	1001	kkkk	kkkk
Description:	The conte AND'ed wi result is pl	ith the eig	0	l 'k'. The
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal "k"	Process data	Write to W
Example	ANDLW	0x5F		
	Before In	struction	1	
		W =	0xA3	
	After Inst	W =	0x03	
ANDWF	AND W v	vith f		
Syntax:	[<i>label</i>] A	NDWF	f,d	
Operands:	$0 \le f \le 12$	27		

ADDWF	Add W and f							
Syntax:	[<i>label</i>] A	DDWF	f,d					
Operands:	$0 \le f \le 12$ $d \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$						
Operation:	(W) + (f) \rightarrow (destination)							
Status Affected:	C, DC, Z							
Encoding:	00	0111	dfff	ffff				
Description:	register 'f'. in the W re	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.						
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process data	Write to destination				
Example	ADDWF	FSR,	0					
	Before In							
	W = 0x17 FSR = 0xC2							
	After Inst	ruction						
		W = FSR =	0xD9 0xC2					


ANDWF	AND W v	vith f						
Syntax:	[<i>label</i>] A	NDWF	f,d					
Operands:	$0 \le f \le 12$ $d \in [0,1]$	$0 \le f \le 127$ $d \in [0,1]$						
Operation:	(W) .AND	D. (f) \rightarrow (d	destinatio	n)				
Status Affected:	Z							
Encoding:	00	0101	dfff	ffff				
Description:	is 0 the reater ter. If 'd' is	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W regis- ter. If 'd' is 1 the result is stored back in register 'f'.						
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process data	Write to destination				
Example	ANDWF	FSR,	1					
	Before In							
		W = FSR =	0x17 0xC2					
	After Inst							
			0x17					
		FSR =	0x02					

<u> 8</u> 8 5																
HCS200 HCS300 HCS301										7	7					7
24CXX 25CXX 93CXX							7			7		7				
PIC17C75X	Available 3Q97		7	7					7	7						
PIC17C4X	7		7	7	7	7			7	7			7			
PIC16C9XX	2		7	7	7				7	7					7	
PIC16C8X	2	7	7	7	7	7		7	7	7			7			
PIC16C7XX	7	7	7	7	7	7		7	7	7				7		
PIC16C6X	7	7	7	7	7	7		7	7	7				7		
PIC16CXXX	7	7	7	7	7	7			7	7			7			
PIC16C5X	7	7	7	2	7	7		7	7	7			7			
PIC14000	7		7	7	7				7	7						
PIC12C5XX	2	7	7	2	7				7	7						
	PICMASTER®/ PICMASTER-CE In-Circuit Emulator	CEPIC Low-Cost In-Circuit Emulator	MPLAB™ Integrated Development Environment	MPLAB™ C Compiler	Lo fuzzyTECH®-MP Explorer/Edition Fuzzy Logic Dev. Tool	MP-DriveWay™ Applications Code Generator	Total Endurance™ Software Model	PICSTART® Lite Ultra Low-Cost Dev. Kit	0. PICSTART® Plus Low-Cost Universal Dev. Kit	PRO MATE® II Universal Programmer	KEELOQ [®] Programmer	SEEVAL [®] Designers Kit	PICDEM-1	PICDEM-2	BICDEM-3	KEELOQ [®] Evaluation Kit

TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 18-11: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

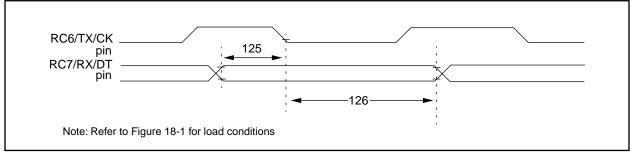


TABLE 18-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)	PIC16 C 73/74	_	_	80	ns	
		Clock high to data out valid	PIC16 LC 73/74	_	—	100	ns	
121	Tckrf	Clock out rise time and fall time	PIC16 C 73/74	_	—	45	ns	
		(Master Mode)	PIC16 LC 73/74	_	—	50	ns	
122	Tdtrf	Data out rise time and fall time	PIC16 C 73/74	_	—	45	ns	
			PIC16 LC 73/74	_	—	50	ns	

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-12: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 18-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before $CK \downarrow (DT setup time)$	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	—	—	ns	

+: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

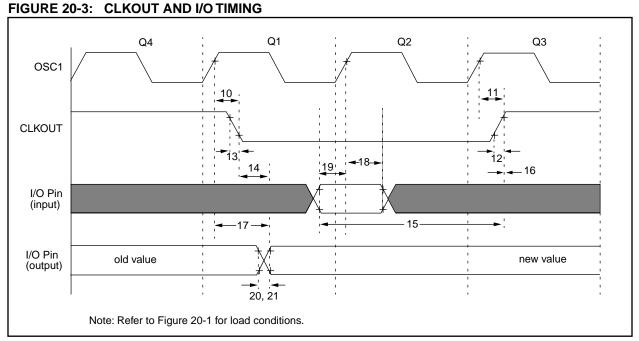
Applicable Devices 72 73 73A 74 74A 76 77

TABLE 19-13: A/D CONVERTER CHARACTERISTICS:

PIC16C73A/74A-04 (Commercial, Industrial, Extended) PIC16C73A/74A-10 (Commercial, Industrial, Extended) PIC16C73A/74A-20 (Commercial, Industrial, Extended) PIC16LC73A/74A-04 (Commercial, Industrial)

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution		_		8-bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A02	EABS	Total Absolute error		_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A03	EIL	Integral linearity error		_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A04	Edl	Differential linearity erro		_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A05	Efs	Full scale error		_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A06	EOFF	Offset error		_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A10	—	Monotonicity		—	guaranteed	—	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage		3.0V	—	Vdd + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3	—	Vref + 0.3	V	
A30	ZAIN	Recommended impedar analog voltage source	ice of	_	_	10.0	kΩ	
A40	IAD	A/D conversion current	PIC16 C 73A/74A	_	180	—	μΑ	Average current consump-
		(VDD)	PIC16 LC 73A/74A	-	90	—	μA	tion when A/D is on. (Note 1)
A50	A50 IREF VREF input current (N		2)	10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 13.1.
				_	—	10	μA	During A/D Conversion cycle

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

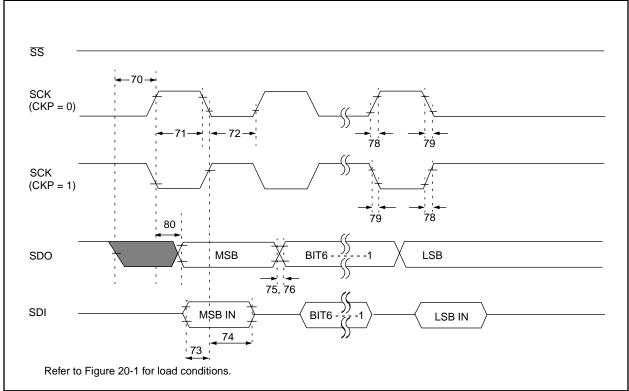
PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77

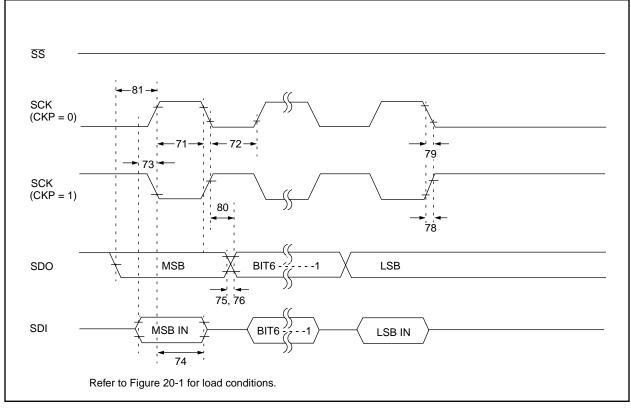
TABLE 20-3:	CLKOUT AND I/O TIMING REQUIREMENTS
IADEE 20-3.	

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 [↑] to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time	_	35	100	ns	Note 1	
13*	TckF	CLKOUT fall time	_	35	100	ns	Note 1	
14*	TckL2ioV	CLKOUT \downarrow to Port out valid	-	-	0.5Tcy + 20	ns	Note 1	
15*	TioV2ckH	Port in valid before CLKOL	rt in valid before CLKOUT \uparrow		-	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	0	—		ns	Note 1	
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		-	50	150	ns	
18*	TosH2iol	OSC1↑ (Q2 cycle) to	PIC16 C 76/77	100	-	_	ns	
		Port input invalid (I/O in hold time)	PIC16 LC 76/77	200	-	_	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	0	—	_	ns	
20*	TioR	Port output rise time	PIC16 C 76/77	_	10	40	ns	
			PIC16 LC 76/77	_	—	80	ns	
21*	TioF	Port output fall time	PIC16 C 76/77	_	10	40	ns	
			PIC16 LC 76/77	_	—	80	ns	
22††*	Tinp	INT pin high or low time		Тсү	-	-	ns	
23††*	Trbp	RB7:RB4 change INT high	or low time	Тсү	-	_	ns	

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are asynchronous events not related to any internal clock edges.


Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 72 73 73A 74 74A 76 77

FIGURE 20-9: SPI MASTER MODE TIMING (CKE = 0)

FIGURE 20-10: SPI MASTER MODE TIMING (CKE = 1)

PIC16C7X

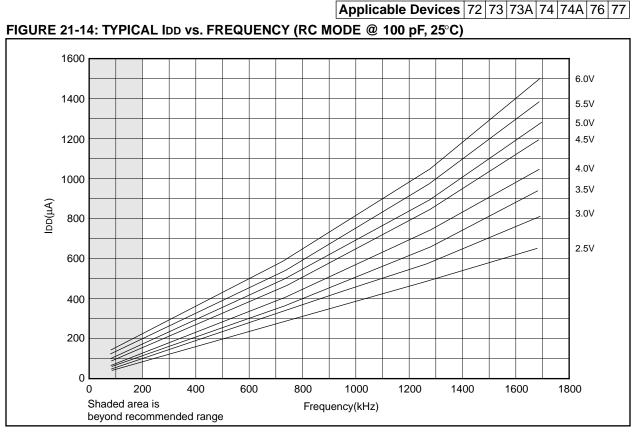
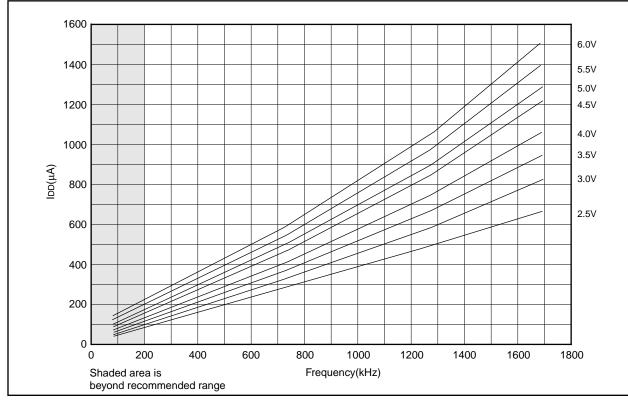



FIGURE 21-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO 85°C)

Data based on matrix samples. See first page of this section for details.

APPENDIX C: WHAT'S NEW

Added the following devices:

- PIC16C76
- PIC16C77

Removed the PIC16C710, PIC16C71, PIC16C711 from this datasheet.

Added PIC16C76 and PIC16C77 devices. The PIC16C76/77 devices have 368 bytes of data memory distributed in 4 banks and 8K of program memory in 4 pages. These two devices have an enhanced SPI that supports both clock phase and polarity. The USART has been enhanced.

When upgrading to the PIC16C76/77 please note that the upper 16 bytes of data memory in banks 1,2, and 3 are mapped into bank 0. This may require relocation of data memory usage in the user application code.

Added Q-cycle definitions to the Instruction Set Summary section.

APPENDIX D: WHAT'S CHANGED

Minor changes, spelling and grammatical changes.

Added the following note to the USART section. This note applies to all devices except the PIC16C76 and PIC16C77.

For the PIC16C73/73A/74/74A the asynchronous high speed mode (BRGH = 1) may experience a high rate of receive errors. It is recommended that BRGH = 0. If you desire a higher baud rate than BRGH = 0 can support, refer to the device errata for additional information or use the PIC16C76/77.

Divided SPI section into SPI for the PIC16C76/77 and SPI for all other devices.