

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc74a-04-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

FIGURE 3-3: PIC16C74/74A/77 BLOCK DIAGRAM

FIGURE 4-13: PIR1 REGISTER PIC16C73/73A/74/74A/76/77 (ADDRESS 0Ch)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
PSPIF ⁽¹⁾ bit7	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF bit0	R = Readable bit W = Writable bit		
								U = Unimplemented bit, read as '0'		
bit 7:	DSDIE(1).	Parallel S	lave Port	Pood/M/rite	a Interrupt I	- 		- n = Value at POR reset		
Dit 7.	1 = A read or a write operation has taken place (must be cleared in software)0 = No read or write has occurred									
 bit 6: ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed (must be cleared in software) 0 = The A/D conversion is not complete 										
bit 5:	bit 5: RCIF : USART Receive Interrupt Flag bit 1 = The USART receive buffer is full (cleared by reading RCREG) 0 = The USART receive buffer is empty									
bit 4:	 it 4: TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is empty (cleared by writing to TXREG) 0 = The USART transmit buffer is full 									
bit 3:	 3: SSPIF: Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive 									
bit 2:	bit 2: CCP1IF : CCP1 Interrupt Flag bit <u>Capture Mode</u> 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred <u>Compare Mode</u> 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred <u>PWM Mode</u> Unused in this mode									
bit 1:	TMR2IF : 7 1 = TMR2 0 = No TM	FMR2 to F ∷to PR2 m ∕IR2 to PR	PR2 Match natch occu 2 match o	n Interrupt urred (mus occurred	Flag bit t be cleared	d in softwa	re)			
bit 0:	TMR1IF : ¹ 1 = TMR1 0 = TMR1	FMR1 Ove register o register o	erflow Inte overflowed did not ove	rrupt Flag I (must be erflow	bit cleared in s	software)				
Note 1:	PIC16C73 on these of	3/73A/76 d devices, a	devices do Iways mai	o not have Intain this b	a Parallel S bit clear.	Slave Port i	mplemente	d, this bit location is reserved		
Interru global enabli	upt flag bits g enable bit, ng an interr	get set whe GIE (INTC upt.	en an interro ON<7>). Us	upt conditior ser software	n occurs rega should ensi	ardless of th ure the appr	e state of its opriate interr	corresponding enable bit or the upt flag bits are clear prior to		

5.4 PORTD and TRISD Registers

Applicable Devices 72 73 73A 74 74A 76 77

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 5-7: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

Name	Name Bit# Buffer Type		Function					
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0					
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1					
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2					
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3					
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4					
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5					
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6					
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7					

TABLE 5-7:PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port Mode.

TABLE 5-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD	PORTD Data Direction Register								1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	 PORTE Data Direction Bits 			0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTD.

FIGURE 9-2: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	R	= Readable bit
bit7						•	bit0	W	= Writable bit
biti							bito	U	= Unimplemented bit,
									read as '0'
								- n	= Value at POR reset
bit 7:	Unimplem	ented: Rea	id as '0'						
hit 6-3.	TOUTPS		Timer2 Ou	itnut Postsos	ala Salact hi	te			
bit 0 0.		Postscale		1001000		13			
	0000 = 1.1	Postscale							
	•								
	• 1111 - 1·1	6 Postecolo							
	<u> </u>	IO FUSISCAIE	5						
bit 2:	TMR2ON:	Timer2 On I	bit						
	1 = Timer2	is on							
	0 = Timer2	is off							
bit 1-0:	T2CKPS1:	T2CKPS0:	Timer2 Clo	ock Prescale	Select bits				
	0.0 = Presc	aler is 1							
	01 = Presc	caler is 4							
	$1 \times = Presc$	caler is 16							
	111 11000								

TABLE 9-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ^(1,2)	ADIF	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ^(1,2)	ADIE	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
11h	TMR2 Timer2 module's register									0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	92h PR2 Timer2 Period Register									1111 1111	1111 1111

 Legend:
 x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module.

 Note
 1:
 Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.

 2:
 The PIC16C72 does not have a Parallel Slave Port or a USART, these bits are unimplemented, read as '0'.

11.5.1.3 TRANSMISSION

When the $R\overline{W}$ bit of the incoming address byte is set and an address match occurs, the $R\overline{W}$ bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The \overline{ACK} pulse will be sent on the ninth bit, and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSP-BUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 11-26). An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

FIGURE 11-26: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

FIGURE 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R-0	R-x	
SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	SPEN : Ser 1 = Serial p 0 = Serial p	ial Port Ena port enable port disable	able bit d (Configu ed	es RC7/R	X/DT and	RC6/TX/CI	K pins as se	rial port pins)
bit 6:	RX9 : 9-bit I $1 = $ Selects $0 = $ Selects	Receive Er 9-bit rece 8-bit rece	nable bit ption ption					
bit 5:	SREN: Sing	gle Receive	e Enable bi	t				
	Asynchrone Don't care	<u>ous mode</u>						
	$\frac{\text{Synchrono}}{1 = \text{Enable}}$ $0 = \text{Disable}$ This bit is c	<u>us mode -</u> s single rec es single re cleared afte	<u>master</u> ceive ceive er receptior	is comple	ete.			
	Synchrono Unused in t	<u>us mode -</u> this mode	<u>slave</u>					
bit 4:	CREN: Cor	ntinuous Re	eceive Ena	ble bit				
	Asynchrone 1 = Enable 0 = Disable	<u>ous mode</u> s continuo es continuo	us receive us receive					
	Synchrono 1 = Enable 0 = Disable	<u>us mode</u> s continuo es continuo	us receive us receive	until enable	e bit CREN	l is cleared	I (CREN ove	errides SREN)
bit 3:	Unimplem	ented: Rea	ad as '0'					
bit 2:	FERR: Fran 1 = Framing 0 = No fran	ming Error g error (Ca ning error	bit n be updat	ed by reac	ling RCRE	G register	and receive	next valid byte)
bit 1:	OERR : Ove 1 = Overrue 0 = No ove	errun Error n error (Ca rrun error	bit n be cleare	ed by clear	ing bit CRI	EN)		
bit 0:	RX9D : 9th	bit of recei	ved data (C	an be par	ity bit)			

FIGURE 14-16: INTERRUPT LOGIC

The following table shows which devices have which interrupts.

Device	TOIF	INTF	RBIF	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	CCP2IF
PIC16C72	Yes	Yes	Yes	-	Yes	-	-	Yes	Yes	Yes	Yes	-
PIC16C73	Yes	Yes	Yes	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C73A	Yes	Yes	Yes	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C74	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C74A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C76	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C77	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

FIGURE 14-17: INT PIN INTERRUPT TIMING

Note 1: INTF flag is sampled here (every Q1).

- 2: Interrupt latency = 3-4 Tcy where Tcy = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.

3: CLKOUT is available only in RC oscillator mode.
4: For minimum width of INT pulse, refer to AC specs.
5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

PIC16C7X

[label]	IORWF	f,d							
$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$								
(W) .OR.	$(f) \rightarrow (de)$	estination)						
Z									
00	0100	dfff	ffff						
Inclusive C ter 'f'. If 'd' W register back in reg	Inclusive OR the W register with regis- ter 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.								
1									
1									
Q1	Q2	Q3	Q4						
Decode	Read register 'f'	Process data	Write to destination						
IORWF		RESULT,	0						
Before In	struction								
		= 0x13	}						
After Instruction									
	RESULT	= 0x13	3						
	W	= 0x93	3						
	$[label] \\ 0 \le f \le 12 \\ d \in [0,1] \\ (W) .OR. \\ Z \\ 00 \\ Inclusive C \\ ter 'f'. If 'd' \\ W register \\ back in reg \\ 1 \\ 1 \\ Q1 \\ \hline Decode \\ IORWF \\ Before In \\ After Inst \\ \end{bmatrix}$	$\begin{bmatrix} label \end{bmatrix} \text{ IORWF} \\ 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) .OR. (f) \rightarrow (de Z \\ \hline 00 & 0100 \\ \\ \text{Inclusive OR the W} \\ \text{ter 'f'. If 'd' is 0 the re W register. If 'd' is 1 \\ \text{back in register. If 'd' is 1 } \\ \text{back in register. If 'd' is 1 } \\ \text{back in register 'f'. } \\ 1 \\ 1 \\ Q1 & Q2 \\ \hline Decode & Read \\ register \\ 'f' \\ \hline IORWF \\ \hline Before Instruction \\ RESULT \\ W \\ After Instruction \\ RESULT \\ W \\ 7 \\ \end{bmatrix}$	$\begin{bmatrix} label \end{bmatrix} \text{ IORWF} f,d \\ 0 \le f \le 127 \\ d \in [0,1] \\ (W) .OR. (f) → (destination Z \\ \hline 00 & 0100 & dfff \\ \text{Inclusive OR the W register witter 'f'. If 'd' is 0 the result is place W register. If 'd' is 1 the result back in register 'f'. \\ 1 \\ 1 \\ Q1 & Q2 & Q3 \\ \hline Decode & Read register 'f'. \\ IORWF & RESULT , \\ Before Instruction \\ RESULT = 0x13 \\ W & = 0x91 \\ After Instruction \\ RESULT = 0x13 \\ W & = 0x93 \\ Z & = 1 \\ \end{bmatrix}$						

MOVLW	Move Lit	eral to V	v							
Syntax:	[label]	MOVLW	/ k							
Operands:	$0 \le k \le 25$	55								
Operation:	$k \to (W)$	$k \rightarrow (W)$								
Status Affected:	None									
Encoding:	11	00xx	kkkk	kkkk						
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.									
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read literal 'k'	Process data	Write to W						
Example	MOVLW After Inst	0x5A ruction								
		= W	0x5A							

MOVF	Move f									
Syntax:	[label]	MOVF	f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$								
Operation:	$(f) \rightarrow (des$	stination)							
Status Affected:	Z									
Encoding:	00 1000 dfff fff									
Description:	The contents of register f is moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.									
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process data	Write to destination						
Example	MOVF	FSR,	0							
	After Instruction W = value in FSR register Z = 1									

MOVWF	Move W	to f		
Syntax:	[label]	MOVW	= f	
Operands:	$0 \le f \le 12$	27		
Operation:	$(W) \rightarrow (f)$			
Status Affected:	None			
Encoding:	00	0000	lff	ffff
Description:	Move data 'f'.	from W r	egister 1	to register
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Proces data	S Write register 'f'
Example	MOVWF	OPTIC	N_REG	
	Before In	struction OPTION W	= 0x = 0x	(FF (4F
	After Inst	ruction OPTION W	= 0x	(4F

PIC16C7X

SLEEP

Syntax:	[label]	SLEEP					
Operands:	None						
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \mbox{ prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$						
Status Affected:	TO, PD						
Encoding:	00	0000	0110	0011			
Description:	The power-down status bit, PD is cleared. Time-out status bit, $\overline{10}$ is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See						
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	No- Operation	No- Operation	Go to Sleep			
Example:	SLEEP						

SUBLW	Subtract	W from I	iteral					
Syntax:	[label]	SUBLW	′ k					
Operands:	$0 \le k \le 25$	$0 \le k \le 255$						
Operation:	k - (W) \rightarrow	• (W)						
Status Affected:	C, DC, Z							
Encoding:	11	110x	kkkk	kkkk				
Description:	The W reg ment meth The result	ister is sub od) from th is placed i	ntracted (2's ne eight bit n the W reg	s comple- literal 'k'. jister.				
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read literal 'k'	Process data	Write to W				
Example 1:	SUBLW	0x02						
	Before In:	struction						
		W = C =	1 ?					
		Z =	?					
	After Inst	ruction						
		VV = C =	1 1; result is	positive				
	_ / .	Z =	0					
Example 2:	Before In	struction						
		W = C =	2 ?					
		Z =	?					
	After Inst	ruction						
		W = C =	0 1; result i	s zero				
		Z =	1					
Example 3:	Before In	struction						
		W = C =	3 ?					
		Z =	?					
	After Inst	ruction						
		W =	0xFF	negative				
		Z =	0	noganve				

PIC16C7X

Applicable Devices 72 73 73A 74 74A 76 77

TABLE 17-8: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz mode	4700		—	ns	Only relevant for repeated START
		Setup time	400 kHz mode	600	—	-		condition
91	THD:STA	START condition	100 kHz mode	4000	—	—	ne	After this period the first clock
		Hold time	400 kHz mode	600	—	—	113	pulse is generated
92	Tsu:sto	STOP condition	100 kHz mode	4700	—	—	ne	
		Setup time	400 kHz mode	600	—	—	113	
93	THD:STO	STOP condition	100 kHz mode	4000	—	—	ne	
		Hold time	400 kHz mode	600	—	—	115	

Applicable Devices 72 73 73A 74 74A 76 77

18.2 DC Characteristics: PIC16LC73/74-04 (Commercial, Industrial)

DC CHA		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial					
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	3.0	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2,5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D020	Power-down Current	IPD	-	7.5	30	μA	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$
D021	(Note 3,5)		-	0.9	13.5	μA	VDD = $3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$
D021A			-	0.9	18	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

Applicable Devices 72 73 73A 74 74A 76 77

DC CHA	RACTERISTICS	Standa Operation Operation	rd Opera ng temper ng voltage 18.2.	ting rature e Voc	Conditio -40 0°C o range as	ns (unl °C ≤ ≲ ≤ s descr	ess otherwise stated) TA \leq +85°C for industrial and TA \leq +70°C for commercial ibed in DC spec Section 18.1 and
Param No.	Characteristic	Sym	Min	Тур †	Мах	Units	Conditions
D100	Capacitive Loading Specs on Output Pins OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when exter- nal clock is used to drive OSC1.
D101 D102	All I/O pins and OSC2 (in RC mode) SCL, SDA in I ² C mode	Сю Св	-	-	50 400	pF pF	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 72 73 73A 74 76 77

FIGURE 18-5: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 18-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param	Sym	Characteristic			Min	Typ†	Max	Units	Conditions
No.									
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5TCY + 20	—	—	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	—	—	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	—	—	ns	
				With Prescaler	Greater of:	-	—	ns	N = prescale value
					20 or <u>Tcy + 40</u>				(2, 4,, 256)
					N				
45*	Tt1H	T1CKI High Time	Synchronous, P	Prescaler = 1	0.5TCY + 20	-	—	ns	Must also meet
			Synchronous,	PIC16 C 7X	15	_	—	ns	parameter 47
			Prescaler = 2.4.8	PIC16 LC 7X	25	-	_	ns	
			Asynchronous	PIC16 C 7X	30	_	_	ns	-
				PIC16 LC 7X	50	_	_	ns	-
46*	Tt1L	T1CKI Low Time	Synchronous, P	Prescaler = 1	0.5Tcy + 20	-	—	ns	Must also meet
			Synchronous,	PIC16 C 7X	15	—	—	ns	parameter 47
			Prescaler =	PIC16 LC 7X	25	—	—	ns	1
			2,4,8						
			Asynchronous	PIC16 C 7X	30	_	—	ns	
				PIC16 LC 7X	50	—	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 7X	Greater of:		—	ns	N = prescale value
					30 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
				PIC16 LC 7X	Greater of:				N = prescale value
					50 OR <u>ICY + 40</u>				(1, 2, 4, 8)
			A ay in als rain ay in	DICACCZV	N CO				
			Asynchronous		60			ns	
	E 14	The end are silled in		PIC16LC/X	100	-		ns	
	Ft1	i imeri oscillator inp	but frequency ran	Ige	DC	-	200	KHZ	
40	TOKEZtrand	Coscillator enabled t	by setting bit TTC	DOLEIN)	27000		77000		
48	ICKEZUNI	Delay from external	Clock edge to th	nerincrement	21050		11050		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 72 73 73A 74 74A 76 77

TABLE 19-13: A/D CONVERTER CHARACTERISTICS:

PIC16C73A/74A-04 (Commercial, Industrial, Extended) PIC16C73A/74A-10 (Commercial, Industrial, Extended) PIC16C73A/74A-20 (Commercial, Industrial, Extended) PIC16LC73A/74A-04 (Commercial, Industrial)

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
A01	Nr	Resolution		_	_	8-bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A02	Eabs	Total Absolute error			_	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A03	EIL	Integral linearity error		_	_	<±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A04	Edl	Differential linearity error		—		<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A05	Efs	Full scale error		—	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A06	Eoff	Offset error		_		<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A10	_	Monotonicity			guaranteed	—	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage		3.0V	_	VDD + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3		Vref + 0.3	V	
A30	Zain	Recommended impedar analog voltage source	ice of	_		10.0	kΩ	
A40	IAD	A/D conversion current	PIC16 C 73A/74A	—	180	_	μA	Average current consump-
		(VDD)	PIC16 LC 73A/74A	_	90	_	μA	tion when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)		10	_	1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 13.1.
					_	10	μΑ	cycle

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

22.3 28-Lead Plastic Dual In-line (300 mil) (SP)

Package Group: Plastic Dual In-Line (PLA)								
	Millimeters			Inches				
Symbol	Min	Max	Notes	Min	Max	Notes		
α	0°	10°		0°	10°			
Α	3.632	4.572		0.143	0.180			
A1	0.381	_		0.015	_			
A2	3.175	3.556		0.125	0.140			
В	0.406	0.559		0.016	0.022			
B1	1.016	1.651	Typical	0.040	0.065	Typical		
B2	0.762	1.016	4 places	0.030	0.040	4 places		
B3	0.203	0.508	4 places	0.008	0.020	4 places		
С	0.203	0.331	Typical	0.008	0.013	Typical		
D	34.163	35.179		1.385	1.395			
D1	33.020	33.020	Reference	1.300	1.300	Reference		
E	7.874	8.382		0.310	0.330			
E1	7.112	7.493		0.280	0.295			
e1	2.540	2.540	Typical	0.100	0.100	Typical		
eA	7.874	7.874	Reference	0.310	0.310	Reference		
eB	8.128	9.652		0.320	0.380			
L	3.175	3.683		0.125	0.145			
N	28	-		28	-			
S	0.584	1.220		0.023	0.048			

22.6 28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)

	Package Group: Plastic SSOP								
	Millimeters			Inches					
Symbol	Min	Max	Notes	Min	Мах	Notes			
α	0°	8°		0°	8°				
A	1.730	1.990		0.068	0.078				
A1	0.050	0.210		0.002	0.008				
В	0.250	0.380		0.010	0.015				
С	0.130	0.220		0.005	0.009				
D	10.070	10.330		0.396	0.407				
E	5.200	5.380		0.205	0.212				
е	0.650	0.650	Reference	0.026	0.026	Reference			
Н	7.650	7.900		0.301	0.311				
L	0.550	0.950		0.022	0.037				
Ν	28	28		28	28				
CP	-	0.102		-	0.004				

E.10 PIC17CXXX Family of Devices

		PIC17C42A	PIC17CR42	PIC17C43	PIC17CR43	PIC17C44
Clock	Maximum Frequency of Operation (MHz)	33	33	33	33	33
	EPROM Program Memory (words)	2К	—	4K	—	8K
Memory	ROM Program Memory (words)	—	2К	—	4K	—
	RAM Data Memory (bytes)	232	232	454	454	454
Peripherals	Timer Module(s)	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3
	Captures/PWM Module(s)	2	2	2	2	2
	Serial Port(s) (USART)	Yes	Yes	Yes	Yes	Yes
	Hardware Multiply	Yes	Yes	Yes	Yes	Yes
	External Interrupts	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	11	11	11	11	11
	I/O Pins	33	33	33	33	33
Features	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
	Number of Instructions	58	58	58	58	58
	Packages	40-pin DIP; 44-pin PLCC, MQFP, TQFP				

		PIC17C752	PIC17C756	
Clock	Maximum Frequency of Operation (MHz)	33	33	
	EPROM Program Memory (words)	8K	16K	
Memory	ROM Program Memory (words)	—	_	
	RAM Data Memory (bytes)	454	902	
Peripherals	Timer Module(s)	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3	
	Captures/PWM Module(s)	4/3	4/3	
	Serial Port(s) (USART)	2	2	
	Hardware Multiply	Yes	Yes	
	External Interrupts	Yes	Yes	
	Interrupt Sources	18	18	
	I/O Pins	50	50	
Features	Voltage Range (Volts)	3.0-6.0	3.0-6.0	
	Number of Instructions	58	58	
	Packages	64-pin DIP; 68-pin LCC, 68-pin TQFP	64-pin DIP; 68-pin LCC, 68-pin TQFP	

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

PIN COMPATIBILITY

Devices that have the same package type and VDD, VSS and MCLR pin locations are said to be pin compatible. This allows these different devices to operate in the same socket. Compatible devices may only requires minor software modification to allow proper operation in the application socket (ex., PIC16C56 and PIC16C61 devices). Not all devices in the same package size are pin compatible; for example, the PIC16C62 is compatible with the PIC16C63, but not the PIC16C55.

Pin compatibility does not mean that the devices offer the same features. As an example, the PIC16C54 is pin compatible with the PIC16C71, but does not have an A/D converter, weak pull-ups on PORTB, or interrupts.

Pin Compatible Devices	Package
PIC12C508, PIC12C509, PIC12C671, PIC12C672	8-pin
PIC16C154, PIC16CR154, PIC16C156, PIC16CR156, PIC16C158, PIC16CR158, PIC16C52, PIC16C54, PIC16C54A, PIC16C754A, PIC16C56, PIC16C58A, PIC16CR58A, PIC16C61, PIC16C554, PIC16C556, PIC16C558 PIC16C620, PIC16C621, PIC16C622 PIC16C641, PIC16C642, PIC16C661, PIC16C662 PIC16C710, PIC16C71, PIC16C711, PIC16C715 PIC16F83, PIC16CR83, PIC16F84A, PIC16CR84	18-pin, 20-pin
PIC16C55, PIC16C57, PIC16CR57B	28-pin
PIC16CR62, PIC16C62A, PIC16C63, PIC16CR63, PIC16CR63, PIC16C66, PIC16C72, PIC16C73A, PIC16C76	28-pin
PIC16CR64, PIC16C64A, PIC16C65A, PIC16CR65, PIC16C67, PIC16C74A, PIC16C77	40-pin
PIC17CR42, PIC17C42A, PIC17C43, PIC17CR43, PIC17C44	40-pin
PIC16C923, PIC16C924	64/68-pin
PIC17C756, PIC17C752	64/68-pin

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.